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Reinforcement Learning
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Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Reinforcement learning is a machine learning paradigm, different from supervised and

unsupervised learning.
UNSUPERVISED:

The essence of reinforcement learning
ME T0O. BUT AT LEAST

is t(.) learn from /nte.rac.t/ons with t.he SUPERVISED: THEY Told YoU THE
environment to maximize a numeric THEY GAVE ME SO ANSWERS REINFORCEMENT:
reward signal. MUCH To READ, AND AT LEAST Y'ALL

DON'T MAKE

The learner is not told which actions TESTS. | OUR OWN BoOoK!

to take, and the actions may affect
not just the immediate reward, but
also all following rewards.

DTN

https: //i.redd.it/50sqtdcyh1j11. jpg
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Reinforcement Learning Successes

® Human-level video game playing (DQN) — 2013 (2015 Nature), Mnih.

et al, Deepmind. il
O After 7 years of development, the Agent57 beats humans on all 57 &=

Atari 2600 games, achieving a mean score of 4766% compared to
human players.

Figure 1 of "A Comparison of learning
algorithms on the Arcade Learning
Environment",

® AlphaGo beat 9-dan professional player Lee Sedol in Go in Mar 2016. https: /arxiv.org/absy 1410, 8620
O After two years of development, AlphaZero achieved best

performance in Go, chess, shogi, being trained using self-play only.
A

Chess Shogi Go

AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
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W:84.2% D:2.2% L:13.6% W:68.9% L:31.1%
o I
ol L L
W: 2.0% D:97.2% L:0.8% W:982% D:0.0% L: 1.8% W:53.7% L: 46.3%

Figure 2 of "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.
® |mpressive performance in Dota2, Capture the flag FPS, StarCraft Il, ...
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Reinforcement Learning Successes

® Neural Architecture Search — since 2017
O automatically designing CNN image recognition networks surpassing state-of-the-art

performance (NasNet, EfficientNet, EfficientNetV2, ..)
O also used for other architectures, activation functiogs, optimizers, ..

Normal Cell Reduction Cell

Page 3 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012

® Controlling cooling in Google datacenters directly by Al (2018)
O reaching 30% cost reduction

® Improving efficiency of VP9 codec (2022; 4% in bandwidth with no
loss in quality)

. |
https: //assets-global.website-files.com/
621e749a546b7592125f38ed /
622690391abb0e8clecf4bba_ Data%20Centers. jpg
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Reinforcement Learning Successes

® Designing the layout of TPU chips (AlphaChip; since 2021,
opensourced)

® Discovering faster algorithms for matrix multiplication
(AlphaTensor, Oct 2022), sorting (AlphaDev, June 2023)

® Searching for solutions of mathematical problems (FunSearch, __
Dec 2023) i

h ttps.',,/’ﬂ',,/’Stor/age.goo/eap/'. co/gweb—un /:-b/ogfpubshf
prod /images/12-11-24_ Trillium-Snippet__ SocialS. width-

® Generally, RL can be used to Optimize nondifferentiable losses 600.format-webp. webp
O |mproving translation quality in 2016

O Reinforcement learning from human feedback (RLHF) is simmmmase, s
used to train chatbots (ChatGPT, ...) e

Anew prompt

............. is sampled from o)
prompt dataset. the dataset.
© Im ' ' f R ,
v
| proving reasoning O LLMs Deep eek R1 il the polcy E
demonstrates the @ generates e s e
- desired output % utput A2
© Provin g math theorems (Al phaGeometry 2 ;
nnnnnnnnn
o upon i
v
This data is used SFT v
to fine-tune GPT-3 M The reward model e
with supervised - calculates a Py
learning. P ) v rewan d for L]
4 This data is used e the output pad
2ER to train our SA {
reward model s The reward
0-0-0-0 d to updat
he policy
ing PPO.

Figure 2 of "Training language models to follow instructions
with human feedback”, https://arxiv.org/abs/2203.02155
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Multi-armed Bandits
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Compulsive gambling

Hiogen Cortoons: htp:.! fwww_ hogencor fooes com,
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Multi-armed Bandits Uz

Reward

distribution 4.(10)

1 2 3 4 5 6 7 8 9 10

Action

Figure 2.1 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd. html
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We start by selecting an action A; (the index of the arm to use), and we obtain a reward Rj.
We then repeat the process by selecting an action Ay, obtaining Rs, selecting As, ..., with the
indices denoting the time step when the actions and rewards occurred.

Let g, (a) be the real value of an action a:

q(a) = E[R¢|A; = al.

Assuming our goal is to maximize the sum of rewards Zz R;, the optimal strategy is to
repeatedly perform the action with the largest value g, (a).
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However, we do not know the real action values g, (a) = E[R;|A; = a].

Therefore, we will try to estimate them, denoting @Q;(a) our estimated value of action a at

time t (before taking the trial t).

A natural way to estimate (Q;(a) is to average the observed rewards:

Q ( ) « sum of rewards when action a is taken
t\a) = . . .
number of times action a was taken

Utilizing our estimates Q¢(a), we define the greedy action A; as

A; = argmax Q;(a).

a

When our estimates are accurate enough, the optimal strategy is to repeatedly perform the
greedy action.
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Let X1, Xa,...,X, are independent and identically distributed (iid) random variables
with finite mean E[Xz] = 1 < 00, and let

Weak Law of Large Numbers

The average Xy converges in probability to u:

X, 5 u when n — oo, ie., lim P(|X,—pl<e) =1
n—oo

Strong Law of Large Numbers

The average X converges to p almost surely:

X, g,u when n — oo, i.e., P( lim X, :,LL) = 1.

n—oo
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Choosing a greedy action is exploitation of current estimates. WWe however also need to
explore the space of actions to improve our estimates.

To make sure our estimates converge to the true values, we need to sample every action
unlimited number of times.

An e-greedy method follows the greedy action with probability 1 — &, and chooses a uniformly
random action with probability €.

MABandits 13/65



e-greedy Method Ust

1.5

Considering the 10-armed bandit e=0.1
: e=0.01
problem: |
—( (greed
® we generate 2000 random Average ==0greedy)
. rewar
Instances
. 0.5 4
© each ¢, (a) is sampled from
. 1 2|50 S(I)O 75|0 lOIOO
® for every instance, we run 1000 Steps
steps of the e-greedy method
. 100% _
O we consider € of 0, 0.01, 0.1
80% ] gy s
® we plot the averaged results over 0
the 2000 instances Optimal =00
action  40%
20% —
0% ] ] | | |
1 250 500 750 1000
Steps
Figure 2.2 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-
2nd html
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Markov Decision Process
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St»( Agent } Ay

reward
A
( Environment |
éR‘ t+1( At
< Dynamics p I:
| St+1‘ St

A Markov decision process (MDP) is a quadruple (S, A, p,~y), where:

® S is a set of states,

e Ais a set of actions,

® p(Sii1 =58, Ry 1 =7r|S; = s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward 7 € R,

® v € 1[0,1] is a discount factor (we always use v = 1 and finite episodes in this course).

Let a return G; be Gy = Y o Y* R 1+1. The goal is to optimize E[Gy].
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If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks. Each episode then ends in a special terminal
state, followed by a reset to a starting state (either always the same, or sampled from a
distribution of starting states).

In episodic tasks, it is often the case that every episode ends in at most H steps. These finite-

horizon tasks then can use discount factor v = 1, because the return G = Zio YRy 1 is
well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor v needs to be sharply smaller than 1.
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A policy 7 computes a distribution of actions in a given state, i.e., T(a|s) corresponds to a
probability of performing an action a in state s.

We will model a policy using a neural network with parameters 0:
m(als; 0).

If the number of actions is finite, we consider the policy to be a categorical distribution and
utilize the softmax output activation as in supervised classification.
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To evaluate a quality of a policy, we define value function vﬂ(s), or state-value function, as
v ($) “E, |G¢|St = s] = E, [ZOO yth+k+1|St = s}
k=0
— EAtNW(S) ESt+1aRt+1Np(37At) [Rt“‘l + 7EAt+1NW(5t+1)E5t+2,Rt+2Np(St+1,At+1) [Rt—|—2 T ... H

An action-value function for a policy 7 is defined analogously as
oo
%r(sa CL) = Er [Gt|St =5, A; = a] = [E; [Zkzo ’Yth+k+1|St =5, 4; = a] .

The value function and the state-value function can be easily expressed using one another:

v?T(S) = Equr [Qﬂ'(87 CI,)] )
qw(S, CL) — ]Es’,rwp [’I‘ -+ /YIU?T(S,)] .
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Optimal state-value function is defined as

v, (s) = Max Uy (s),

and optimal action-value function is defined analogously as

0.(s,a) £ maxg.(s, a).

Any policy m, with v, = v, is called an optimal policy. Such policy can be defined as
m.(s) = argmax ¢, (s, a) = argmax E[R;,1 + 70, (Si+1)|S; = s, A; = a]. When multiple

a a
actions maximize g. (s, a), the optimal policy can stochastically choose any of them.

Existence

In finite-horizon tasks or if v < 1, there always exists a unique optimal state-value function,

a unique optimal action-value function, and a (not necessarily unique) optimal policy.
MDP 20/65



The REINFORCE Algorithm
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Policy Gradient Methods Uz
We train the policy
m(als; 0)

by maximizing the expected return v, (s).

To that account, we need to compute its gradient Vv, (s).
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Assume that S and A are finite, v = 1, and that maximum episode length H is also finite.

Let 7w(al|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
on-policy distribution under 7 as u(s). Let also J(0) = E,_,v.(s).

Then

Vour(s) x Y P(s—...—>§|1)) aqr(s',a)Ven(als';0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vem(als;0),

seS acA

where P(s — ... — s'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps.
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Vur(s)

v[za n(als; 0)g+(s, @)
= qw(s, a)Vr(als; 0) + w(a|s; 0)Va;, (s, a)}

a

— qﬁ(s, a)Vr(als; 0) + w(als; 0)V( Zs’,r p(s',rls,a)(r + vw(sl)))]

— qﬁ(s, a)Vr(a|s;0) + w(als; 0) ( Zsl p(s']s, a)Vvﬂ(Sl))]

a

)

We now expand v, (s').

=", |4:(s.0)Vr(als;0) + w(als;0)( 3, pls'|s,a)
S [anls'sa)Vn(a'|s's 0) + n(@]s':0) (3, 05", a') Vs (s)]) )]

Continuing to expand all Uﬂ( "), we obtain the following:

V(s Zs s P (s — s in k steps |m) Z Aqﬁ(s', a)Vem(als'; ).

ac
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To finish the proof of the first part, it is enough to realize that

H
o P(s — s in k steps |7) «x P(s — ... — §'|m).

For the second part, we know that

VoJ(0) = EsnVavs(s) x Esop ZP(S — ... — 8 |m) Zqﬂ(s', a)Vem(al|s'; 0),
s'eS acA

therefore using the fact that u(s') = Eg p,P(s — ... — §'|m) we get

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vem(als;8).

s€S acA

Finally, note that the theorem can be proven with infinite S and A; and also for infinite
episodes when discount factor v < 1.
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The REINFORCE algorithm (Williams, 1992) directly uses the policy gradient theorem,

minimizing —J (@) = —E,_,v.(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es )y Eorngr(s,a)Ve — logm(als; 9),

where we used the fact that

1
m(als; 0)

Vo logm(als; 0) = Vom(als; 0).
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REINFORCE Algorithm Uzt

REINFORCE therefore minimizes the loss —J(0) with gradient
Ev uEo-rg-(5,a) Vo — log(als; )

where we estimate the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for T,

Input: a differentiable policy parameterization m(al|s, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7—1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,T — 1:
G Y1 VI Ry (G)
00+ oaGVinrm(AS:,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd.html by removing y”t from the update of 6
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REINFORCE Algorithm Example Performance Uz

0 vilso) | |
v R
20r a=2- g—14
o =
16 __o9—12
Go <o AT
poliey Total reward
£-greedy right .
7O) =) | e on episode |
S=l-]a averaged over 100 runs anl |‘
e EEFE o I
\
-100 -, X N . N N . N . N | ;
0 0.1 02 03 04 05 06 07 08 09 1 l ’
probability of right action
Example 13.1 of "Reinforcement Learning: An -80 +
Introduction, Second Edition".
-90 - I | I I I |
1 200 400 600 800 1000
Episode

Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
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REINFORCE with Baseline

NPFL138, Lecture 11 RL MABandits MDP REINFORCE Baseline NAS RLWhatNext GenerativeModels VAE 29/65



The returns can be arbitrary: better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s))Ver(als; 0).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Veor(a|s; 8) = b(s va (als;0) =b(s)Ve Y m(als;0) = b(s)Vel = 0.

Baseline
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A good choice for b(s) is v, (s), which can be shown to minimize the variance of the gradient
estimator. Such baseline reminds centering of the returns, given that

Vr(8) = Eqorgr(s,a).

Then, better-than-average returns are positive and worse-than-average returns are negative.

Of course, we need a way to estimate the vﬂ(s) baseline. The usual approach is to approximate

it by another neural network model. That a model model is trained using mean square error of
the predicted and observed returns.

Baseline 31/65



REINFORCE with Baseline Uz

In REINFORCE with baseline, we train:

1. the policy network using the REINFORCE algorithm, and
2. the value network by minimizing the mean squared error.

REINFORCE with Baseline (episodic), for estimating 7y ~ .

Input: a differentiable policy parameterization 7(als, )
Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: step sizes a® > 0, a% > 0

Initialize policy parameter 6 € RY and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sg, Ag, R1,...,S7_1, Ar_1, R, following = (-|-, 9)
Loop for each step of the episode t =0,1,...,T — 1:
G« Z£=t+1 vt 1Ry, (G)
0+ G — IA)(St,W)
W W+ aV Vo (S,w)
00+ a?5Vinn(4,]S,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd.html by removing y”t from the update of 6
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[} [} —
REINFORCE with Baseline Example Performance =
1.6
20l optimal
stochastic
policy
“or dy right
e-greedy rig
J(0) = vry (S)
.60 -
=3 G
801 { e-greedy left
-100 L1 1 i i 1 1 1 f 1 1 |
0 01 02 03 04 05 06 07 08 09 1
probability of right action
Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
10- ve(S0) 0.  REINFORCE with baseline o®=2"° a%=2"¢ )
A A e W S o gy 0+ (50)
20+ o=9o-13 w ' -20 -
a=2"1
REINFORCE
1 _ o—13
GO 40+ a=212 GO a0l a=2
Total reward , Total reward
on episode A on episode
averaged over 100 runs averaged over 100 runs |
-60 - | If -60 - j
Wy
l\]‘
-80 - ‘ -80
-90 —l 1 1 1 1 ] -90 B
1 200 400 600 800 1000 1 200 400 600 800 1000
Episode Episode
Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition". Figure 13.2 of "Reinforcement Learning: An Introduction”,
http://www.incompleteideas.net/book/the-book-2nd.html
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Neural Architecture Search
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® \We can design neural network architectures using reinforcement learning.

® The designed network is encoded as a sequence of elements, and is generated using an
RNN controller, which is trained using the REINFORCE with baseline algorithm.

(Sample architecture A w

L with probability p J l

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

(Scale gradient of p by Fn
Lto update the controllerJ

® For every generated sequence, the corresponding network is trained on CIFAR-10 and the
development accuracy is used as a return.
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Neural Architecture Search: NASNet, 2017 et

The overall architecture of the designed network is fixed and only the Normal Cells and
Reduction Cells are generated by the controller.

Softmax
x N
Softmax Reduction Cell
x N x N
Reduction Cell Reduction Cell
x N x N
Reduction Cell Reduction Cell | x2
A
x N 3x3 conv, stride 2
A
Image Image
CIFAR10 ImageNet
Architecture Architecture

Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012
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Neural Architecture Search: NASNet, 2017

® Each cell is composed of B blocks (B = 9 is used in NASNet).

® Each block is designed by a RNN controller generating 5 parameters.

x
© =
I g Select one Select second Select operation for Select operation for Select method to
%’ © N hidden state A hidden state N first hidden state [ | second hidden state [ combine hidden state
(2]
\ A \ A \ X y A
5% \ \ \
5 =
£s > > > > > —>
kel
8 s \ \ % \ < \ ) \ .
v 7 \ / 7 v/ 7
~ - - - -
.
I repeat B times |

fm——————
:new hidden Iayer:
________ 1

3 x 3 conv

2 x 2 maxpool

: hidden layer A I

: hidden layer B :

Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete parameters, each of which corresponds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our

experiments, the number of blocks B is 5.
Figure 3 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012

Step 1. Select a hidden state from h;, h;_1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create

a new hidden state.

Page 3 of "Learning Transferable Architectures for Scalable Image Recognition®,

NPFL138, Lecture 11 T

MABandits

MDP

REINFORCE

https://arxiv.org/abs/1707.07012

Baseline

identity

1x7 then 7x1 convolution
3x3 average pooling

5x5 max pooling

1x1 convolution

3x3 depthwise-separable conv
7x7 depthwise-separable conv

e 1x3 then 3x1 convolution
3x3 dilated convolution
3x3 max pooling

3x3 convolution

[ ]
[ ]
e 7x7 max pooling
[ ]
[ ]

5x5 depthwise-seperable conv

Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition”,

NAS

RLWhatNext

GenerativeModels

https: //arxiv.org/abs/1707.07012

VAE
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Neural Architecture Search: NASNet, 2017

The final Normal Cell and Reduction Cell chosen from 20k architectures (500GPUs, 4days).
[Pt ]

hi+1

concat

—a
>
-
——
—

|

L S

»

[

iden sep | | sep avg | |iden avg avg sep | | sep
tity 3x3 | | 5x5 3x3 | | tity 3x3 | [ 3x3 5x5 [ [ 3x3

(72
L3
W T

Normal Cell Reduction Cell

Page 3 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012
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EfficientNet changes the search in three ways.

® (Computational requirements are part of the return. Notably, the goal is to find an
architecture ™ maximizing

TargetFLOPS=400M \ """
DevelopmentAccuracy(m) - ( aree ) :

FLOPS(m)

where the constant 0.07 balances the accuracy and FLOPS (the constant comes from an

empirical observation that doubling the FLOPS brings about 5% relative accuracy gain, and
1.05 = 29 gives B8 ~ 0.0704).

® |t uses a different search space allowing to control kernel sizes and channels in different
parts of the architecture (compared to using the same cell everywhere as in NASNet).

® Training directly on ImageNet, but only for 5 epochs.

In total, 8k model architectures are sampled, and PPO algorithm is used instead of the
REINFORCE with baseline.
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EfficientNet Search =
Input Block Block Block Block Block Block Block
image 1 2 > — 7 4 — 5 > 6 7 —> output
i o ------------------------- ------------------------- ] - Blocks are predefined Skeletons.
_> Lg}qer L - Lza_}(ler Ly _> LZYfr (> 2x Lf_ner > Search Space Per Block i:
L 2 Fz: - 4 F4: ConvOp: dconv, conv, ...

e e e e e e e, e, ———————————

The overall architecture consists of 7 blocks, each described by 6
parameters — 42 parameters in total, compared to 50 parameters of’

e Squeeze-and-excitation [13] ratio S F Ratio: 0, 0.25.

the NASNet search space.

NPFL138, Lecture 11 RL

MABandits

______________________________________

P T

<

MDP

REINFORCE

Baseline

NAS

RLWhatNext

Contents in blue are searched

Number of layers per block N;.
Page 4 of "MnasNet: Platform-Aware Neural
Architecture Search for Mobile”,
https://arxiv.org/abs/1807.11626

GenerativeModels

KernelSize: 3x3, 5x5
SERatio: 0, 0.25, ...
SkipOp: identity, pool, ...
FilterSize: F,
#Layers: N,

Convolutional kernel size KernelSize: 3x3, 5x5.

Skip ops SkipOp: pooling, identity residual, or no skip.
Output filter size F;.

VAE

e Convolutional ops ConvOp: regular conv (conv), depthwise
conv (dconv), and mobile inverted bottleneck conv [29].
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Stage Operator Resolution | #Channels | #Layers
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 X 56 40 2
5 MBConv6, k3x3 28 X 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7T X7 320 1
9 Convlxl & Pooling & FC 7Tx T 1280 1

NAS
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If you find deep reinforcement learning interesting, | have a whole course dedicated to it:
NPFL139 — Deep Reinforcement Learning.

® |t covers a range of reinforcement learning algorithms, from the basic ones to more
advanced algorithms utilizing deep neural networks.

® Summer semester, 3/2 C+Ex, 8 e-credits, similar structure as Deep learning.

® An elective (povinné volitelny) course in the programs:
O Artificial Intelligence,
O Language Technologies and Computational Linguistics.
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Generative Models
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Generative Models Uz

https: //images.squarespace-cdn.com/content /v1/6213c340453c3f502425776e /0715034d-4044-4c55-9131-e4bfd6dd20ca/2_4x.png
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Generative Models Uz

Everyone: Al art will make designers obsolete  Everyone: Al art will make designers obsolete

Al accepting the job: Al accepting the job:

o
https: //i.kym-cdn.com/photos /images /original /002/470/247/37b.jpg https://i.redd.it/now-that-hands-are-better-heres-a-meme-update-v0-73j3ez3wifoal.png?
. ' ' S s=bfbear61feabd1d44cct34d5961b23aeealb19bc
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Generative Models

Generative models are given a set of realizations of a random variable x and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.
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Deep Generative Models Uz
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Figure 1 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114

One possible approach to estimate P(&) is to assume that the random variable x depends on a
latent variable z:

ZP P(z|z) = E,.pwm P(z|2).

We use neural networks to estimate the conditional probability Py (x|2).
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AutoEncoders
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® Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space z is smaller than the

dimensionality of the input).
® When @ + € is used as input, autoencoders can perform denoising.

® However, the latent space 2 does not need to be fully covered, so a randomly chosen 2
does not need to produce a valid .
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AutoEncoders

l “A

encoded data can be decoded
O without loss if the autoencoder

has enough degrees of freedom
A encoder decoder

lsm?wf'”"w O

.. . without explicit regularisation
“training” data for ccml'evd' tjb"‘-"“d""' - . !
9 for new some points of the latent space
the autoencoder

are “meaningless” once decoded

https: //miro.medium.com/max/3608/1%SfaVxcGi_ELkKgAGOYRIQQ@2x.png
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Variational AutoEncoders
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We assume P(z) is fixed and independent on X.
We approximate P(@|z) using a neural network Py(x|z), the decoder.

However, in order to train an autoencoder, we need to know the “inverse” Py(z|x), which
cannot be usually computed directly.

Therefore, we approximate Py (z|x) by another trainable neural network Q. (2z|x), the
encoder.
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To derive a loss for training variational autoencoders, we first formulate the Jensen's inequality.

f(x)

Recall that convex functions by definition fulfil that for u, v %
and real 0 <t <1,

fltu+ (1 —t)v) <tf(u) + (1 —1t)f(v). ><%

The Jensen's inequality generalizes the above property to
any convex combination of points: if we have u; € R? and

weights w; € R™ such that ) . w; = 1, it holds that
f(zwiui) < szf(uz)
i i

The Jensen's inequality can be formulated also for
probability distributions (whose expectation can be
considered an infinite convex combination):

f(Blu]) < Ey[f(w)].

1 try + (1 —t)xs
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Our goal will be to maximize the log-likelihood as usual, but we need to express it using the
latent variable z:

log Pp(x) = log Ep(z) | Pa(z|2)].

However, approximating the expectation using a single sample has monstrous variance, because
for most z, Pg(a|z) will be nearly zero.

We therefore turn to our encoder, which is able for a given & to generate “its” 2:

log Py(x) = log Ep(,) | Po(x|2)]

= logEq, (z]2) [Pe(w!z) ‘

now we use the Jensen’s inequality

Qf((zz I)w) ]

>E log Py (]2) + log - =)
= LQ,(z|x) 0g I'g\xL|=z 0og Q¢(Z|€B)
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The resulting variational lower bound or evidence lower bound (ELBO), denoted
L(0, p;x), can be also defined explicitly as:

L(6,p;x) = log Py(x) — Dxi (Qy (2|2)|| Po(2|x)).

Because KL-divergence is nonnegative, £(0, ;x) < log Py().

By using simple properties of conditional and joint probability, we get that

L(0, p;x) = Eq,(2/z) | log Po(z) + log Pa(2|z) — log Q,(z|z)]
= Eq, (zIz) | log Po(x, 2) — log Qy (z[)]

=Eq,(2/z) | 108 Po(x|2) + log P(z) — log Q,(z|x)]
= Eoq, (/=) :log Pg(m|z)] — D1, (de\az)HP(z)).

VAE
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—L(0, ;%) = Eq,(2]x) | —log Po(z|2)] + Dxi(Qy(2|2)[|P(2))

We train a VAE by minimizing the —L£(8, ; x).
The EQ(P(Z|33) is estimated using a single sample.

The distribution @, (z|@) is parametrized as a normal distribution N (2|, 0%), with the

model predicting p¢ and o given @.

O In order for o to be positive, we can use exp activation function (so that the network
predicts log o before the activation), or for example a softplus activation function.

O The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute Dxy, analytically; furthermore, if we

decide to parametrize Q,(2|®) using mean and variance, the maximum entropy
principle suggests we should use the normal distribution.

We use a prior P(z) = N (0, I).
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—L(0, ;%) = Eq,(2]x) | —log Po(z|2)] + Dxi(Qy(2|2)[|P(2))

image distribution latent space

T in latent space sample z

Q¢(z|a:)

Qyp(z|x) sample z .
e — —

encoder

Note that the loss has 2 intuitive components:

® reconstruction loss — starting with @, passing though (), sampling z and then passing

through Py should arrive back at @;

* latent loss — over all @, the distribution of Q,(2|x) should be as close as possible to the

prior P(z) = N(0, I), which is independent on .

Po(x|2)

decoder

image

xr

VAE
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Variational AutoEncoders — Reparametrization Trick

In order to backpropagate through z ~ Q,(z|x), note that if
z ~ N(p,0%),
we can write Z as
z~p+oN0,I).

Such formulation then allows differentiating 2z with respect to p and o and is called a
reparametrization trick (Kingma and Welling, 2013).
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Variational AutoEncoders — Reparametrization Trick

no problem for backpropagation = s==ea. backpropagation is not possible due to sampling
senpling | S o backpropagakion i5 reduired
/ and Yo brsinins N
..... px ~~~ \“
— l,lx e
..... o |
X
— O
X
sampling without reparametrisation trick sampling with reparametrisation trick

https: //miro.medium.com/max/3704/1*S8CoO3T GtFBpzv8GvmgKeg@2x.png
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Variational AutoEncoders — Reparametrization Trick

image

image distribution latent space
T in latent space sample z
Qyp(z|)
p| e ~N(0,1I)
Qp(z|x) z=¢€o+p Po(x|2)
| |
encoder o decoder

NPFL138, Lecture 11 RL MABandits
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Variational AutoEncoders
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(b) Learned MNIST manifold
Figure 4 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114
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Variational AutoEncoders
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(d) 20-D latent space

Figure 5 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114

(c) 10-D latent space

(b) 5-D latent space

(a) 2-D latent space
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Variational AutoEncoders

what can happen without regularisation x

V what we want to obtain with regularisation
NPFL138, Lecture 11 RL
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