
NPFL138, Lecture 9

Seq2seq, NMT, Transformer

Milan Straka

April 15, 2025

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Sequence-to-Sequence Architecture (Seq2seq)

2/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Sequence-to-Sequence Architecture

Sequence-to-Sequence is a name for an architecture allowing to produce an arbitrary output
sequence from an input sequence .

Unlike span labeling/CTC, no assumptions are necessary and we condition each output sequence
element on all input sequence elements and all already generated output sequence elements:

y , … , y 1 M x , … ,x 1 N

P(y ∣ X) = P(y ∣
i=1

∏
M

i x , … ,x , y , … , y).1 N 1 i−1

3/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Sequence-to-Sequence Architecture

Figure 1 of "Sequence to Sequence Learning with Neural Networks", https://arxiv.org/abs/1409.0473

4/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Sequence-to-Sequence Architecture

Figure 1 of "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", https://arxiv.org/abs/1406.1078

5/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Sequence-to-Sequence Architecture

Training
The so-called teacher forcing is used during
training – the gold outputs are used as inputs
during training.

Inference
During inference, the network processes its own
predictions – such an approach is called
autoregressive decoding.

Usually, the generated logits are processed by
an , the chosen word embedded and

used as next input.

arg max

6/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Word Embedding Tying

7/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Tying Word Embeddings

In the decoder, we both:

embed the previous prediction, using a matrix of size ,

where is the vocabulary size and is the embedding size;

classify the hidden state into current prediction, using a matrix
of size .

Both these matrices have similar meaning – they represent words in
the embedding space (the first explicitly represents words by the
embeddings, the second produces logits by computing weighted
cosine similarity of the inputs and columns of the weight matrix).

Therefore, it makes sense to tie these matrices, i.e., to represent
one of them as a transposition of the other.

However, while the embedding matrix should usually have
constant variance per dimension, the output layer should keep
the variance of the RNN output; therefore, the output layer
matrix is usually the embedding matrix divided by .

RV ×D

V D

RD×V

 D

8/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Attention

9/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Attention

10/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Bahdanau (or Additive) Attention

11/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Bahdanau Attention

Figure 1 of "Neural Machine Translation by Jointly Learning to
Align and Translate", https://arxiv.org/abs/1409.0473

As another input during decoding, we add context vector :

We compute the context vector as a weighted combination of
source sentence encoded outputs:

The weights are softmax of over ,

with being

c i

s =i f(s ,y , c).i−1 i−1 i

c =i α h

j

∑ ij j

α ij e ij j

α =i softmax(e),i

e ij

e =ij v tanh(V h +⊤
j Ws +i−1 b).

12/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Bahdanau Attention Implementation

13/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Trained Attention Visualization

Figure 3 of "Neural Machine Translation by Jointly Learning to Align and Translate", https://arxiv.org/abs/1409.0473

14/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Luong (or Dot-Product) Attention

15/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Luong Attention

In the described Bahdanau (additive) attention, we performed

There are however other methods how and can be combined, most notably the

Luong (or dot-product) attention, which uses just a dot product:

The latter is easier to implement, but may sometimes be more difficult to train (scaling helps a
bit, wait for the Transformer self-attention description); both approaches are used in quite a few
papers.

e =ij v tanh(V h +⊤
j Ws +i−1 b).

V h j Ws i−1

e =ij (V h) (Ws).j
T

i−1

16/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Subword Units (BPE, WordPieces)

17/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Subword Units – BPE

Translate subword units instead of words. The subword units can be generated in several ways,
the most commonly used are:

BPE: Using the byte pair encoding algorithm. Start with individual characters plus a special
end-of-word symbol . Then, merge the most occurring symbol pair by a new symbol

, with the symbol pair never crossing word boundary (so that the end-of-word symbol

cannot be inside a subword).

Considering text with words low, lowest, newer, wider, a possible sequence of merges:

The BPE algorithm is executed on the training data, and it generates the resulting
dictionary, merging rules, and training data encoded using this dictionary.

• A,B
AB

r •
l o

lo w

e r•

→ r•
→ lo

→ low

→ er•

18/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Subword Units – BPE

The end-of-word symbol was described to be at the end of a subword in the original paper.
However, in existing implementations, we usually represent beginning-of-word symbol at
the beginning of a subwords instead (usually a suitable encoded space).
Furthermore, when considering multilingual models, there are in fact quite a lot of
characters. Therefore, some tokenizers allow representing bytes of UTF-8 encoding.

Byte-level BPE or BBPE allows even subword splitting at arbitrary boundaries (inside a
single UTF-8-encoded codepoint).
Sentence-piece model splits at Unicode codepoint boundaries, but can represent
unknown characters using bytes of UTF-8 encoding.

For example, a phrase “Přelétavý motýlek” can be tokenized as

Using sentence-piece implementation of BPE:
['▁Pře', 'lé', 'ta', 'vý', '▁mot', 'ý', 'lek']
Byte-level BPE, first trained on English data, the second on Czech data
['P', 'Å', 'Ļ', 'el', 'Ã©t', 'av', 'Ã', '½', 'Ġmot', 'Ã', '½', 'le', 'k']
['PÅĻe', 'lÃ©t', 'avÃ½', 'ĠmotÃ½', 'lek']

19/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Subword Units – WordPieces

WordPieces: Given a text divided into subwords, we can compute unigram probability of
every subword, and then get the likelihood of the text under a unigram language model by
multiplying the probabilities of the subwords in the text.

When we have only a text and a subword dictionary, we divide the text in a greedy fashion,
iteratively choosing the longest existing subword.

When constructing the subwords, we again start with individual characters (compared to
BPE, we have a start-of-word character instead of an end-of-word character), and then
repeatedly join such a pair of subwords that increases the unigram language model
likelihood the most.

In the original implementation, the input data were once in a while “reparsed”

(retokenized) in a greedy fashion with the up-to-date dictionary. However, the recent
implementations do not seem to do it – but they retokenize the training data with the
final dictionary, contrary to the BPE approach.

For both approaches, usually quite little subword units are used (32k-64k), often generated on
the union of the two vocabularies of the source and target languages (the so-called joint BPE or
shared wordpieces).

20/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

BPE and WordPieces Comparison

Both the BPE and the WordPieces give very similar results; the biggest difference is that during
the inference:

for BPE, the sequence of merges must be performed in the same order as during the
construction of the BPE (because we use the output of BPE as training data),
for WordPieces, it is enough to find longest matches from the subword dictionary (because
we reprocessed the training data with the final dictionary);
note that the above difference is mostly artificial – if we reparsed the training data in the
BPE approach, we could also perform “greedy tokenization”.

Of course, the two algorithms also differ in the way how they choose the pair of subwords to
merge.

Both algorithms are implemented in quite a few libraries, most notably the sentencepiece
library and the Hugging Face tokenizers package.

21/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Google Neural Machine Translation (GNMT)

22/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Google NMT

Figure 1 of "Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144

23/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Google NMT

Figure 6 of "Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144

24/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Beyond one Language Pair

Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...", https://arxiv.org/abs/1609.06647

25/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Beyond one Language Pair

Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding", https://arxiv.org/abs/1606.01847

26/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Multilingual and Unsupervised Translation

Many attempts at multilingual translation.

Individual encoders and decoders, shared attention.

Shared encoders and decoders.

Surprisingly, even unsupervised translation can be performed. By unsupervised we understand
settings where we have access to large monolingual corpora, but no parallel data.

In 2019, the best unsupervised systems were on par with the best 2014 supervised systems.

Table 3 of "An Effective Approach to Unsupervised Machine Translation", https://arxiv.org/abs/1902.01313

Nowadays, language models like ChatGPT can be also considered unsupervised machine
translation, and then achieve superior performance without explicit parallel data.

27/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

The Transformer Architecture

28/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Attention is All You Need

For some sequence processing tasks, sequential processing (as performed by recurrent neural
networks) of its elements might be too restrictive.

Instead, we may want to be able to combine sequence elements independently on their distance.

Such processing is allowed in the Transformer architecture, originally proposed for neural
machine translation in 2017 in Attention is All You Need paper.

29/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer

Figure 1 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762

30/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer

http://jalammar.github.io/images/t/The_transformer_encoder_decoder_stack.png

31/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer

http://jalammar.github.io/images/t/Transformer_decoder.png

32/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer

http://jalammar.github.io/images/t/encoder_with_tensors_2.png

33/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

34/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

Assume that we have a sequence of words represented using a matrix .

The attention module for queries , keys and values is

defined as:

The queries, keys and values are computed from the input word representations using a

linear transformation as

for trainable weight matrices and .

n X ∈ Rn×d

Q ∈ Rn×d k K ∈ Rn×d k V ∈ Rn×d v

Attention(Q,K,V) = softmax V .(
 d k

QK⊤

)

X

Q

K

V

= XWQ

= XWK

= XW V

W ,W ∈Q K Rd×d k W ∈V Rd×d v

35/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

http://jalammar.github.io/images/t/transformer_self_attention_vectors.png

36/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

http://jalammar.github.io/images/t/self-attention-output.png

37/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

https://miro.medium.com/max/2000/1*jBsfVNOOcJ-I3tsLVgni_w.png

38/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Self-Attention

http://jalammar.github.io/images/t/self-attention-matrix-calculation.png

http://jalammar.github.io/images/t/self-attention-matrix-calculation-2.png

39/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Multihead Attention

Multihead attention is used in practice. Instead of using one huge attention, we split queries,
keys and values to several groups (similar to how ResNeXt works), compute the attention in
each of the groups separately, concatenate the results and multiply them by a matrix .

Figure 2 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762

WO

40/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Multihead Attention

http://jalammar.github.io/images/t/transformer_attention_heads_qkv.png

41/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Multihead Attention

http://jalammar.github.io/images/t/transformer_attention_heads_z.png

http://jalammar.github.io/images/t/transformer_attention_heads_weight_matrix_o.png

42/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Multihead Attention

http://jalammar.github.io/images/t/transformer_multi-headed_self-attention-recap.png

43/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Multihead Attention

https://towardsdatascience.com/wp-
content/uploads/2021/01/175EUBJLaqAMcDjgwWVh-_A.png

When multihead attention is used, we first generate
query/key/value vectors of the same dimension, and then
split them into smaller pieces. Therefore, multihead
attention does not increase complexity (much) and is
analogous to ResNeXt/GroupNorm.

https://data-science-blog.com/wp-content/uploads/2022/01/mha_3-1030x608.png

44/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Why Attention

Table 1 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762

45/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Feed Forward Networks

46/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Feed Forward Networks

Feed Forward Networks
The self-attention is complemented with FFN layers, which is a fully connected ReLU layer with
four times as many hidden units as inputs, followed by another fully connected layer without
activation.

47/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Post-LN Configuration including Residuals

http://jalammar.github.io/images/t/transformer_resideual_layer_norm_2.png

48/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Pre-LN Configuration

49/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Decoder

http://jalammar.github.io/images/t/transformer_resideual_layer_norm_3.png

Figure 1 of "Attention Is All You Need",
https://arxiv.org/abs/1706.03762

50/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Decoder

Figure 1 of "Attention Is All You Need",
https://arxiv.org/abs/1706.03762

Masked Self-Attention
During decoding, the self-attention must attend only to earlier
positions in the output sequence.

This is achieved by masking future positions, i.e., zeroing their
weights out, which is usually implemented by setting them to

before the calculation.

Encoder-Decoder Attention
In the encoder-decoder attentions, the queries comes from the
decoder, while the keys and the values originate from the encoder.

−∞
softmax

51/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

52/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

http://jalammar.github.io/images/t/transformer_positional_encoding_vectors.png

53/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

Positional Embeddings
We need to encode positional information (which was implicit in RNNs).

Learned embeddings for every position.

Sinusoids of different frequencies:

This choice of functions should allow the model to attend to relative positions, since for any
fixed , is a linear function of , because

PE (pos,2i)

PE (pos,2i+1)

= sin pos/10000(2i/d)

= cos pos/10000(2i/d)

k PE pos+k PE pos

PE (pos+k,2i) = sin (pos + k)/10000(2i/d)

= sin pos/10000 ⋅ cos k/10000 + cos pos/10000 ⋅ sin k/10000(2i/d) (2i/d) (2i/d) (2i/d)

= offset ⋅ PE + offset ⋅ PE .(k,2i) (pos,2i) (k,2i+1) (pos,2i+1)

54/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

Positional Embeddings

Sinusoids of different frequencies

In the original description of positional embeddings (the one used on the previous slide), the
sines and cosines are interleaved, so for , the positional embeddings would look like:

However, in practice, most implementations concatenate first all the sines and only then all the
cosines:

This is also how we visualize the positional embeddings on the following slides.

d = 6

PE =pos (sin (), cos (), sin (), cos (), sin (), cos ()).100000
pos

100000
pos

100001/3
pos

100001/3
pos

100002/3
pos

100002/3
pos

 =PEpos (sin (), sin (), sin (), cos (), cos (), cos ()).100000
pos

100001/3
pos

100002/3
pos

100000
pos

100001/3
pos

100002/3
pos

55/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

56/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

57/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Positional Embeddings

58/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Training

59/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Training

Regularization
The network is regularized by:

dropout of input embeddings,
dropout of each sub-layer, just before it is added to the residual connection (and then
normalized),
label smoothing.

Default dropout rate and also label smoothing weight is 0.1.

Parallel Execution
Because of the masked attention, training can be performed in parallel.

However, inference is still sequential.

60/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformer – Training

Optimizer
Adam optimizer (with , smaller than the default value of) is used during

training, with the learning rate decreasing proportionally to inverse square root of the step
number.

Warmup
Furthermore, during the first updates, the learning rate is increased linearly

from zero to its target value.

In the original paper, 4000 warmup steps were proposed.

Note that the goal of warmup is mostly to prevent divergence early in training; the Pre-LN
configuration usually trains well even without warmup.

β =2 0.98 0.999

warmup_steps

learning_rate = min , ⋅ .
 d model

1
(

 step_num

1
warmup_steps

step_num

 warmup_steps

1
)

61/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformers Results

Table 2 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762

Subwords were constructed using BPE with a shared vocabulary of about 37k tokens.

62/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Transformers Ablations on En→De newtest2014 Dev

Table 4 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762

The PPL is perplexity per wordpiece, where perplexity is , i.e., in our case.eH(P) eloss

63/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

Decoder-Only Models

In seq2seq architecture, we have both an encoder and an decoder.

However, for text generation (chatbots, for example), a decoder-only model suffices.

Examples include GPT-1 (2018), GPT-2 (2019), ChatGPT, Copilot, Llama, …

The decoder-only models are trained as language models, i.e., they estimate conditional
probability of a word given its previous context (like Elmo).

They consist purely of the decoder part of a Transformer (so they do not contain neither an
encoder nor encoder-decoder attention; consequently, all their self-attentions are masked).

On https://bbycroft.net/llm, you can find a 3D visualization and the description of the
Transformer computation steps of several GPT models.

64/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

https://bbycroft.net/llm

Summary

Seq2seq is a general architecture of producing an output sequence from an input
sequence.

It is usually trained using teacher forcing, and use autoregressive decoding.

Attention allows focusing on any part of a sequence in every time step.

Transformer provides more powerful sequence-to-sequence architecture and also
sequence element representation architecture compared to RNNs, but requires
substantially more data.

When data are plentiful, best models for processing text, speech, and vision data
utilize the Transformer architecture (together with convolutions in the vision
domain).

In seq2seq architecture, we have both an encoder and the decoder. However, text
generation (i.e., in chatbots) is usually performed by decoder-only models.

65/65NPFL138, Lecture 9 Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training

