NPFL138, Lecture 7

Recurrent Neural Networks

Milan Straka

g April 1, 2025

Charles University in Prague
Charles L EUROPEAN UNION Faculty of Mathematics and Physics

European Structural and Inve tmetF nd

Umversnty LANGTECH Somors regenme e Institute of Formal and Applied Linguistics

U=

unless otherwise stated

L

Recurrent Neural Networks

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 2/55

Recurrent Neural Networks

Single RNN celi

mput
EEEEEE
state
EEEEEN
output
\/
Unrolled RNN cells
mput 1 mput 2 mput 3 mput 4

EEEEEE EEEEEE EEEEEE EEEEEE
output 1 output 2 output 3 output 4
\/ \/ \/ \J

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 3/55

Basic RNN Caell

mput

output = new state

previous state

(t-1)

Given an input) and previous state h , the new state is computed as

Rt — f(h(t_l),w(t); 9).
One of the simplest possibilities (called torch.nn.{RNN,RNNCell} in PyTorch) is

t t—1
hY = tanh(UR'Y + Va2 1+ b).
NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE

CLE

U=

4/55

Basic RNN cells suffer a lot from vanishing/exploding gradients (the so-called challenge of
long-term dependencies).

If we simplify the recurrence of states to just a linear approximation

h') ~ UR Y,

we get h') ~ Uth9,
If U has an eigenvalue decomposition of U = QAQ ™', we get that

hY) ~ QA'Q 'R,

The main problem is that the same function is iteratively applied many times.

Several more complex RNN cell variants have been proposed, which alleviate this issue to some
degree, namely LSTM and GRU.

RNN 5/55

Long Short-Term Memory (LSTM)

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 6/55

Long Short-Term Memory

Hochreiter & Schmidhuber (1997) suggested that to enforce constant error flow, we would like

f =1

They propose to achieve that by a constant error carrousel.

Ci—1

Ct

NPFL138, Lecture 7 RNN LSTM GRU Highway

RNNRegularization

LayerNorm RNNArchitectures WE CLE

PR

L

7/55

Long Short-Term Memory UL

They also propose an input and output gates which control the flow of information into and
out of the carrousel (memory cell ¢;).

iy < o(W'a; + V'hy 1 + b)

o, < oc(Wx; + V°hy_1 + b°)

ci ¢ 1+t ©@tanh(Wx, + VVhy 1 + bY)
h; < o; ® tanh(c;)

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE CLE 8/55

Later, Gers, Schmidhuber & Cummins (1999) added a possibility to forget information from
memory cell ¢;.

it o (W'e, + V'hyy + 1)

—o(Wla, + Vb, + bf) N
o; +— o(Wx + V°h;_ 1+ b°)
¢+ fr ©¢ 1+ ©tanh(WVay + VPhy | + by)ﬁ‘
h; < o; ® tanh(c;) -

Note that since 2015, following the paper

® R. Jozefowicz et al.: An Empirical Exploration of Recurrent Network Architectures

the forget gate bias b’ is usually initialized to 1, so that the forget gate is closer to 1 and the

gradients can easily flow through multiple timesteps. (Gers et al. advocated this in the original
paper already.) (BTW, I think 3 might be even better, as o(1) ~ 0.731, o(3) ~ 0.953.)

LSTM 9/55

Long Short-Term Memory

A A

)
2)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 10/55

Long Short-Term Memory

(

v
N
T

|
&)

NPFL138, Lecture 7 RNN

|

-O-»

|o||o]|[tanh]| | O
—

J

|
&)

Moditfication of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png

GRU Highway RNNRegularization LayerNorm

RNNA-rchitectures WE CLE 11/55

Long Short-Term Memory

Modification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-C-line.png

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 12/55

Long Short-Term Memory UL

NPFL138, Lecture 7 RNN

LSTM

GRU

i =0 (Wilhi—1, 2] + b;)
Ct — tanh(Wc [ht_l,.il?t] —+ bc)

Modlification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-i.png

Highway RNNRegularization LayerNorm RNNArchitectures WE CLE 13/55

Long Short-Term Memory

fi Ji = U(Wf hi—1,a] + bf)

Modlification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-f.png

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 14/55

Long Short-Term Memory

e e Cy=fi0C 1 +i0C,

Modification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-C.png

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 15/55

Long Short-Term Memory

NPFL138, Lecture 7 RNN

LSTM

GRU

Highway

:U(Wo[ht—lyl‘t} + bo)

0; ® tanh (Cy)

U=

Modification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-focus-o.png

RNNRegularization

LayerNorm RNNArchitectures WE CLE

16/55

Gated Recurrent Unit (GRU)

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 17/55

Gated recurrent unit (GRU) was proposed by Cho et al. (2014) as a simplification of LSTM.
The main differences are

® no memory cell,
® forgetting and updating tied together.

ri < oc(W'e; +V'hi 1 +0b")

u; < o(W'a; + V¥'hy_1 + b")

h; < tanh(W"a, + V" (r, ® hy_1) + b")
hy < u ®hi 1+ (1—w) O h,

GRU 18/55

Gated Recurrent Unit

NPFL138, Lecture 7 RNN

LSTM

GRU

Highway

~
~
|

_ht—la Lt |

_ht—la Tt

U=

)
)

tanh (W [r, o hy_1, x4])

—(1—zt)®ht_1—|—zt®5t

Modlification of http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png

RNNRegularization

LayerNorm

RNNAr rchitectures

WE CLE 19/55

The main differences between GRU and LSTM:

® GRU uses fewer parameters and less computation.
O six matrices W, V instead of eight

® GRU are easier to work with, because the state is just one tensor, while it is a pair of
tensors for LSTM.

® |In most tasks, LSTM and GRU give very similar results.

® However, there are some tasks, on which LSTM achieves (much) better results than GRU.
O For a demonstration of difference in the expressive power of LSTM and GRU (caused by

the coupling of the forget and update gate), see the paper
m G. Weiss et al.: On the Practical Computational Power of Finite Precision RNNs for
Language Recognition https: //arxiv.org/abs/1805.04908

O For a difference between LSTM and GRU on a real-word task, see for example
" T. Dozat et al.: Deep Biaffine Attention for Neural Dependency Parsing
https://arxiv.org/abs/1611.01734

GRU 20/55

https://arxiv.org/abs/1805.04908
https://arxiv.org/abs/1611.01734

Arch. SM-tst | 10M-v | 20M-v 20M-tst

Tanh 4811 4729 | 4.635 4.582 (97.7)
LSTM 4699 | 4.511 4437 | 4.399 (81.4)
LSTM-f || 4785 | 4.752 | 4.658 | 4.606 (100.8)
LSTM-i 47755 | 4558 | 4.480 | 4.444 (85.1)
LSTM-o || 4.708 | 4.496 | 4.447 | 4.411 (82.3)
LSTM-b || 4.698 | 4.437 | 4.423 | 4.380 (79.83)
GRU 4.684 | 4554 | 4.559 | 4.519(91.7)
MUT1 4.699 | 4.605 4.594 | 4.550 (94.6)
MUT?2 4707 | 4.539 | 4.538 | 4.503(90.2)
MUT3 4.692 | 4.523 4.530 | 4.494 (89.47)

Arch. Arith. XML PTB

Tanh 0.29493 | 0.32050 | 0.08782
LSTM 0.89228 | 0.42470 | 0.08912
LSTM-f || 0.29292 | 0.23356 | 0.08808
LSTM-1 || 0.75109 | 0.41371 | 0.08662
LSTM-o || 0.86747 | 0.42117 | 0.08933
LSTM-b || 0.90163 | 0.44434 | 0.08952
GRU 0.89565 | 0.45963 | 0.09069
MUT1 0.92135 | 0.47483 | 0.08968
MUT?2 0.89735 | 0.47324 | 0.09036
MUTS3 0.90728 | 0.46478 | 0.09161

Table 1. Best next-step-prediction accuracies achieved by the
various architectures (so larger numbers are better). LSTM-
{f,i,0} refers to the LSTM without the forget, input, and output
gates, respectively. LSTM-b refers to the LSTM with the addi-
tional bias to the forget gate.

RNN LSTM GRU Highway

RNNRegularization

Table 3. Perplexities on the PTB. The prefix (e.g., SM) denotes
the number of parameters in the model. The suffix “v” denotes
validation negative log likelihood, the suffix*“tst” refers to the test
set. The perplexity for select architectures is reported in paren-
theses. We used dropout only on models that have 10M or 20M
parameters, since the SM models did not benefit from dropout at
all, and most dropout-free models achieved a test perplexity of
108, and never greater than 120. In particular, the perplexity of
the best models without dropout is below 110, which outperforms
the results of Mikolov et al. (2014).

LayerNorm RNNArchitectures WE CLE

21/55

Recall that when we approximate ') ~ Uh(t_l), assuming the eigenvalue decomposition of

U=QAQ ! we get
hY ~ QA'Q 'Y,

This motivated a specific initialization scheme for the U matrix in Keras and TensorFlow — this
so-called recurrent kernel (the concatenation of all the V*, vi ve vy matrices) is

initialized with a randomly generated orthogonal matrix. This orthogonal initialization is
available as torch.nn.init.orthogonal_ in PyTorch, but it is not used as the default
initialization of RNNSs.

Our npf1138 module changes the RNN initialization defaults to:

® initialize the recurrent kernel using orthogonal initialization,
® initialize the non-recurrent kernel using Glorot (Xavier) initialization,

® initialize biases to zero, with the exception of forget cell bias in LSTM initialized to 1.

GRU 22/55

Highway Networks

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 23/55

For input @, fully connected layer computes
y «— H(x,Wy).
Highway networks add residual connection with gating:
y+ Hxe,Wg)oT(x,Wrp)+x (1—T(x, Wr)).

Usually, the gating is defined as

T(il), WT) — O'(WTiB + bT)

Note that the resulting update is very similar to a GRU cell with h; removed; for a fully
connected layer H(x, W) = tanh(W g + by) it is exactly it, apart from copying @
instead of h;_1.

Analogously to LSTM, the transform gate bias by should be initialized to a negative number.

Highway 24/55

Highway Networks on MNIST

10" 5 = 10"
E — 10 layers
1 Plain Networks Highway Networks = = 20layers

10° ghway - .- 50layers 10°
e 100 layers

=
<
=

107 4

flee e e .,

10° 4

Training Set Cross Entropy Error

10
0°4 00000000 T~ T
1076 T T T T T T T T T T T T T T 1076
0 50 100 150 200 250 300 350 400 350 300 250 200 150 100 50 0
Epochs Epochs

Training Set Cross Entropy Error

~ 10°
B Plain E
@ Highway

10 20 50 100
Number of layers

Figure 1: Comparison of optimization of plain networks and highway networks of various depths.
Left: The training curves for the best hyperparameter settings obtained for each network depth.
Right: Mean performance of top 10 (out of 100) hyperparameter settings. Plain networks become
much harder to optimize with increasing depth, while highway networks with up to 100 layers can

still be optimized well. Best viewed on screen (larger version included in Supplementary Material).
Figure 1 of "Training Very Deep Networks", https://arxiv.org/abs/1507.06228

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm

RNNArchitectures WE CLE 25/55

Lesioned Highway Layer
1 10 20 30 40 50

10 F T T T T T
i MNIST

Mean Cross Entropy Error

non-lesioned performance

Mean Cross Entropy Error

Lesioned Highway Layer

10 20

30 40 50

T T

| non-lesioned performance

T T T

CIFAR-100

Figure 4: Lesioned training set performance (y-axis) of the best 50-layer highway networks on
MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis). Evaluated on
the full training set while forcefully closing all the transform gates of a single layer at a time. The
non-lesioned performance is indicated as a dashed line at the bottom.

RNN LSTM GRU Highway RNNRegularization LayerNorm

RNNA-rchitectures WE CLE

26/55

Regularizing RNNs

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 27/55

Dropout

® Using dropout on hidden states interferes with long-term dependencies.

® However, using dropout on the inputs and outputs works well and is used frequently.
O |n case residual connections are present, the output dropout needs to be applied before

adding the residual connection.
O In PyTorch, torch.nn.{RNN,LSTM,GRU} has a parameter dropout, which adds a

dropout layer with given dropout probability on the output of all but the last RNN

layers, i.e., on the places that you cannot place it manually.
® However, using a multi-layer torch.nn.{RNN,LSTM, GRU} module does not use

residual connections, so personally | never use the multi-layer variant.

® Several techniques were designed to allow using dropout on hidden states.
© Variational Dropout
O Recurrent Dropout
O Zoneout

RNNRegularization 28/55

Regularizing RN Ns

Variational Dropout

Yt—1 Y Yt+1 Yt—1 Yt Yt+1
V'S AN A[AN AN AN
————— O------>0------>0----> >0 >0 > []—
A AN AN AN AN
————— O------>------>0----= >0 >[] an >
AN AN »l\ AN AN AN
Tt—1 Tt Tt41 Tt—1 Tt Tt4+1
(a) Naive dropout RNN (b) Variational RNN

Figure 1 of "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks", https://arxiv.org/abs/1512.05287. pdf

To implement variational dropout on inputs, the same dropout mask must be used for all time

steps (torch.nn.Dropoutl in PyTorch; using noise_shape in Keras).

In practice, the variational dropout on the hidden states is not frequently used, because it is not

supported by GPU-accelerated algorithms.

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm

RNNArchitectures WE CLE 29/55

Recurrent Dropout

Dropout only candidate states (i.e., values added to the memory cell in LSTM and previous
state in GRU), independently in every time-step.

Zoneout
Randomly preserve hidden activations instead of dropping them.

derivative through tanh

Batch Normalization

Very fragile and sensitive to proper initialization — there =

RNN gradient propagation

were papers with negative results (Dario Amodei et al, -
2015: Deep Speech 2 or Cesar Laurent et al, 2016: Lo
Batch Normalized Recurrent Neural Networks) until o

people managed to make it Work (Tim COOI:jmanS et a/’ 107155 ;06 360 400 500 600 700 800 085 L I L o

. " - . e (a) We visualize the gradient flow through a batch- (b) We show the empirical expected derivative and
201 6. Recurren t Ba tCh Normallza tlon, S p eC | fl Ca | |y, normalized tanh RNN as a function of v. High interquartile range of tanh nonlinearity as a func-
.. variance causes vanishing gradient. tion of input variance. High variance causes satura-
I n Itl a | IZ I n g /y — 0 1 d I d t h e t r I C k) tion, which decreases the expected derivative.
L] L]

RNNRegularization 30/55

Layer Normalization

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 31/55

Regularizing RNNs e

Batch Normalization

Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization

Neuron value is normalized across the layer.
Batch Norm Layer Norm Instance Norm Group Norm

H, W
H, W

NAVAVAVAVA
NAVANAVAVA
NAVANAVAVA

NAVANAVAWAN

L
L
L
L
L
L

NAVANAVAVAN
NAVANAVAVA
Z A A\ N\ N\

Z AN\ N\ N\

jS0)

Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE CLE 32/55

Consider a hidden value & € R”. Layer normalization (both during training and during
inference) is performed as follows.

Inputs: An example £ € RP, ¢ € R with default value 0.001
Parameters: B € RP? initialized to 0, v € R? initialized to 1
Outputs: Normalized example y

* /‘%%Zz‘zl%
o 0% 53l (@i —)’
¢ &+ (x¢—p)/Vo2+e
s Y+~ +p

LayerNorm 33/55

Regularizing RNNs

Layer Normalization

Much more stable than batch normalization for RNN regularization.

Attentivg reader

1.0 \
— LSTM
0.9 — BN-LSTM
— BN-everywhere
LN-LSTM

o
o

o
o

validation error rate
o
~

o
n

©
>

100 200 300 400 500 600 700 800
training steps (thousands)

Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans

et al., 2016].
Figure 2 of "Layer Normalization", https://arxiv.org/abs/1607.06450
Weight matrix Weight matrix Weight vector Dataset Dataset Single training case
re-scaling re-centering re-scaling re-scaling | re-centering re-scaling
Batch norm Invariant No Invariant Invariant Invariant No
Weight norm Invariant No Invariant No No No
Layer norm Invariant Invariant No Invariant No Invariant
Table 1 of "Layer Normalization", https://arxiv.org/abs/1607.06450
NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE CLE

34/55

In an important recent architecture (the Transformer architecture), many fully connected layers
are used, with a residual connection and a layer normalization.

Original “Post-LN” configuration

!

Layer normalization

!

Fully connected layer

i

ReLU

i

Fully connected layer

Improved “Pre-LN“ configuration since 2020

Fully connected layer

f

ReLLU

f

Fully connected layer

f

Layer normalization

f/

This could be considered a ResNet-like alternative of residual connections for fully-connected
layers (better than highway networks). Note the architecture can be interpreted as a variant of a

mobile inverted bottleneck 1 X 1 convolution block.

LayerNorm 35/55

. : U=
Group Normalization =
Group Normalization is analogous to Layer normalization, but the channels are normalized in
groups (by default, G = 32).
|
=0
\
36 -
—+Batch Norm
34 ||-=-Group Norm
32 -
£30 |
28
]
26 -
24 — © © —o
22 ‘ ‘ ‘ ‘
32 16 8 4 2
batch size (images per worker)
Figure 1 of "Group Normalization", https://arxiv.org/abs/1803.08494
NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 36/55

Group Normalization

train error

--=-Batch Norm (BN)
--=-Layer Norm (LN)
—-—Instance Norm (IN)
--=-Group Norm (GN)

25

20 I I

val error

—Batch Norm (BN)
—Layer Norm (LN)
— Instance Norm (IN)
—Group Norm (GN)

epochs

I
10 20 30 40 50 60 70 80 90 100
epochs

Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.

Batch Norm (BN)
60

—BN, 32 ims/gpu
—BN, 16 ims/gpu
—BN, 8 ims/gpu
—BN, 4 ims/gpu
—BN, 2 ims/gpu

20 I I I I

60

error (%)
)) P P W w
S5 b3 S & 3 b

I)
G

Group Norm (GN)

—GN, 32 ims/gpu
—GN, 16 ims/gpu
—GN, 8 ims/gpu
—GN, 4 ims/gpu
—GN, 2 ims/gpu

I
0 10 20 30 40 50 60 70 80 90 100
epochs

20

0

epochs

Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.
Figures 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494

LSTM GRU

NPFL138, Lecture 7 RNN

Highway

RNNRegularization

LayerNorm RNNArchitectures WE CLE

37/55

APbeX APbeX APbeX

backbone APMak Apmask A prask
BN’ 377 579 409 32.8 54.3 34.7
GN 388 592 422 33.6 55.9 35.4

Table 4. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 C4. BN" means BN is frozen.

APbeX APbeX APbeX

backbone | box head AP™ask AP3j mask APmaSk
BN’ - 38.6 595 419 | 342 56.2 36.1
BN’ GN | 395 60.0 432 | 344 564 36.3
GN GN | 40.0 61.0 433 | 348 573 363

Table 5. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 FPN and a 4conv1fc bounding box
head. BN means BN is frozen.

LayerNorm

38/55

RNN Architectures and Tasks

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 39/55

Sequence Element Representation

Create output for individual elements, for example for classification of the individual elements.

input 1 mput 2 mput 3 mput 4
EEEEEE EEEEEE EEEEEE EEEEEE

EEEEEE EEEEEE EEEEEE EEEEEE
output 1 output 2 output 3 output 4
\/ \/ \/ \/

Sequence Representation

Generate a single output for the whole sequence (either the last output or the last state).

RNNArchitectures 40/55

Sequence Prediction

During training, predict next sequence element.

sequence
representation

RNNAT rchitectures 41/55

Multilayer RNNs Urzt

We might stack several layers of recurrent neural networks. Usually using two or three layers
gives better results than just one.

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 42 /55

Multilayer RN Ns

In case of multiple layers, residual connections usually improve results. Because dimensionality
has to be the same, they are usually applied from the second layer.

S g,
'>'> >

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE CLE

U\,L

43/55

To consider both the left and right contexts, a bidirectional RNN can be used, which consists
of parallel application of a forward RNN and a backward RNN.

The outputs of both directions can be either added or concatenated. Even if adding them
does not seem very intuitive, it does not increase dimensionality and therefore allows residual
connections to be used in case of multilayer bidirectional RNN.

RNN LSTM GRU Highway RNNRegularization LayerNorm RNNArchitectures WE CLE 44/55

Word Embeddings

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 45 /55

We might represent words using one-hot encoding, considering all words to be independent of
each other.

However, words are not independent — some are more similar than others.

|deally, we would like some kind of similarity in the space of the word representations.

Distributed Representation

The idea behind distributed representation is that objects can be represented using a set of
common underlying factors.

We therefore represent words as fixed-size embeddings into R? space, with the vector elements
playing role of the common underlying factors.

These embeddings are initialized randomly and trained together with the rest of the network.

WE 46 /55

The word embedding layer is in fact just a fully connected layer on top of one-hot encoding.
However, it is not implemented in that way.

Instead, the so-called embedding layer is used, which is much more efficient. When a matrix is
multiplied by an one-hot encoded vector (all but one zeros and exactly one 1), the row

corresponding to that 1 is selected, so the embedding layer can be implemented only as a simple
lookup.

In PyTorch, the embedding layer is available as

torch.nn.Embedding (input_dim, output_dim)

WE 47/55

Word Embeddings U=t

Even if the embedding layer is just a fully connected layer on top of one-hot encoding, it is
important that this layer is shared across the whole network.

D1 Dl
Vv D
Do D Do
Word in Vv Word in v D
one-hot > one-hot > =
encoding encoding
D3 Dy
Vv D

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 48/55

Character-Level Word Embeddings

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA rchitectures WE CLE 49 /55

Recurrent Character-level WEs

In order to handle words not seen during training, we
could find a way to generate a representation from the
word characters.

A possible way to compose the representation from
individual characters is to use RNNs — we embed
characters to get character representation, and then use
an RNN to produce the representation of a whole
sequence of characters.

Usually, both forward and backward directions are used,
and the resulting representations are
concatenated /added.

Character
Lookup
Table

Bi-LSTM

K y
@00 [CO0 CeJ] [OOQ

\ 4

\ 4

O O|—>|OVO Q00000
<.|<—|O Ol«—00]«—0®+0 9|

embeddings
for word "cats"

CLE

50/55

increased | John Noahshire phding
reduced | Richard || Nottinghamshire mixing
improved | George Bucharest modelling
expected | James Saxony styling
decreased | Robert Johannesburg blaming
targeted | Edward || Gloucestershire | christening

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are 1n the training vocabulary, those on the right
are nonce (invented) words.

CLE

51/55

Convolutional Character-level WEs

Alternatively, 1D convolutions might be used.

between nextword
J and prediction

Softmax output to
obtain distribution
over nextword

a representation for every input word trigram, but we need a
representation of the whole word. To that end, we use global
max-pooling — using it has an interpretable meaning, where the

Long short-term
memory network

Assume we use a 1D convolution with kernel size 3. It produces T

[

kernel is a pattern and the activation after the maximum is a /L ~

level of a highest match of the pattern anywhere in the word. _ \T/ (T
Kernels of varying sizes are usually used (because it makes sense O -
to have patterns for unigrams, bigrams, trigrams, ..) — for mect) | esingterr
example, 25 filters for every kernel size (1,2, 3,4,5) might be e N W

used. - et

of differentwidths

Lastly, authors employed a highway layer after the convolutions, ‘ ‘] i
improving the results (compared to not using any layer or using a L | e
fU”y ConneCted One) moment the absurdlt\ is recognized

RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA-rchitectures WE CLE 52/55

In Vocabulary

Out-of-Vocabulary

while his you richard trading computer-aided misinformed looooook
although your conservatives jonathan advertised — — —
LSTM-Word letting her we robeﬁ advertising — — —
though my guys neil turnover — — —
minute their [nancy turnover — — —
chile this your hard heading computer-guided informed look
LSTM-Char whole hhs young rich training computerized performed cook
(before highway) meanwhile is four richer reading disk-drive transformed looks
white has youth richter leading computer inform shook
meanwhile hhs we eduard trade computer-guided informed look
LSTM-Char whole this your gerard training computer-driven performed looks
(after highway) though their doug edward traded computerized outperformed looked
nevertheless your i carl trader computer transformed looking

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before
and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the
word-level model.

RNN LSTM GRU Highway RNNRegularization LayerNorm RNNA-rchitectures WE CLE 53/55

Character-level WE Implementation

Training
® (Generate unique words per batch.
® Process the unique words in the batch.

® (Copy the resulting embeddings suitably in the batch.

Inference

® \We can cache character-level word embeddings during inference.

NPFL138, Lecture 7 RNN LSTM GRU Highway RNNRegularization LayerNorm

RNNA- rchitectures

WE

CLE

U=

54/55

NLP Processing with CLEs

teie!

Doctor

o I e] 0
A ﬁT A
GRU GRU € GRU

A A A
GRU |2 GRU |2 GRU

;I—E%Rc

lives

GRU [€—
N) N
GRU [—>| GRU |2 GRU

o
X Mike

NPFL138, Lecture 7 RNN

LSTM

GRU

Highway

GRU GRU
N 7N
GRU GRU
in Canada

mem Character Embeddings
== Character-Level GRU
e \Word Embeddings
we \Word-Level GRU

CRF Layer

Figure 1 of "Multi-Task Cross-Lingual Sequence Tagging from Scratch”, https://arxiv.org/abs/1603.06270

RNNRegularization

LayerNorm

RNNA rchitectures WE CLE

55/55

==

