TrainableModule
The Keras-inspired high-level API for training PyTorch models.
The TrainableModule class is a high-level API for training PyTorch models. It is a subclass of torch.nn.Module and:
-
It provides a high-level API for training, evaluation, and prediction via fit, evaluate, and predict methods. Each can be customized by overriding the corresponding train_step, test_step, or predict_step methods.
-
The module automatically handles moving the model to a specified device, using the first available accelerator (GPU, MPS, XPU) by default. To this end, configure or load_weights must always be called first before using the high-level API.
-
The module provides API for serialization and deserialization of the model, both the weights (save_weights, load_weights) and the configuration (save_config, load_config).
-
The module keeps a collection of metrics implementing the MetricProtocol (e.g., any metric from
torchmetric
), and stores the computed logs in a text file, in TensorBoard logs, and in the console.
npfl138.TrainableModule
Bases: Module
A simple Keras-like module for training with raw PyTorch.
The module provides fit/evaluate/predict methods, computes loss and metrics, and generates TensorBoard, text file, and console logs. By default, it uses an accelerator (GPU, MPS, XPU) if available, and CPU otherwise.
The input to the model can be either a single tensor/PackedSequence or a tuple of those. Similarly, the output can be a single tensor/PackedSequence or a tuple of those. However, when there are multiple outputs, you must handle loss and metrics computation manually.
Source code in npfl138/trainable_module.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
|
STOP_TRAINING
class-attribute
instance-attribute
STOP_TRAINING: Literal['stop_training'] = 'stop_training'
A constant returned by callbacks to stop the training.
__init__
__init__(module: Module | None = None)
Initialize the module, optionally with an existing PyTorch module.
Parameters:
-
module
(Module | None
, default:None
) –An optional existing PyTorch module to wrap, e.g., a torch.nn.Sequential or a pretrained Transformer. If given, the module still must be configured.
Source code in npfl138/trainable_module.py
195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
configure
configure(
*,
optimizer: Optimizer | None | KeepPrevious = keep_previous,
scheduler: LRScheduler | None | KeepPrevious = keep_previous,
loss: LossProtocol | None | KeepPrevious = keep_previous,
metrics: dict[str, MetricProtocol] | KeepPrevious = keep_previous,
initial_epoch: int | KeepPrevious = keep_previous,
logdir: str | None | KeepPrevious = keep_previous,
device: device | str | Literal["auto"] | KeepPrevious = keep_previous
) -> Self
Configure the module fitting, evaluation, and placement.
The method can be called multiple times, preserving previously set values by default.
Note
When an input argument cannot be None
, the corresponding field is
never None
after this call.
Parameters:
-
optimizer
(Optimizer | None | KeepPrevious
, default:keep_previous
) –The optimizer to use for training.
-
scheduler
(LRScheduler | None | KeepPrevious
, default:keep_previous
) –An optional learning rate scheduler used after every batch.
-
loss
(LossProtocol | None | KeepPrevious
, default:keep_previous
) –The loss function to minimize, implementing the LossProtocol.
-
metrics
(dict[str, MetricProtocol] | KeepPrevious
, default:keep_previous
) –A dictionary of additional metrics to compute, each being an object implementing the MetricProtocol (reset/update/compute), e.g., a
torchmetrics.Metric
. -
initial_epoch
(int | KeepPrevious
, default:keep_previous
) –The initial epoch of the model used during training and evaluation.
-
logdir
(str | None | KeepPrevious
, default:keep_previous
) –An optional directory where textual and TensorBoard logs should be stored.
-
device
(device | str | Literal['auto'] | KeepPrevious
, default:keep_previous
) –The device to move the module to. When "auto", or
keep_previous
with no previously set device, the first of cuda/mps/xpu is used if available.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
unconfigure
unconfigure() -> Self
Remove all training configuration of the TrainableModule.
Only the module device is kept.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
262 263 264 265 266 267 268 269 270 271 272 273 |
|
fit
fit(
dataloader: DataLoader,
*,
epochs: int,
dev: DataLoader | None = None,
callbacks: list[CallbackProtocol] = [],
log_graph: bool = False,
console: int = console_default(2)
) -> Logs
Train the model on the given dataset.
Parameters:
-
dataloader
(DataLoader
) –The training dataset, each element a pair of inputs and outputs; the inputs and outputs can be either single tensors or sequences of tensors.
-
epochs
(int
) –The number of epochs to train.
-
dev
(DataLoader | None
, default:None
) –An optional development dataset to evaluate after every epoch, with the same format as the training dataset.
-
callbacks
(list[CallbackProtocol]
, default:[]
) –A list of callbacks to call after every epoch, each implementing the CallbackProtocol with arguments
self
,epoch
, andlogs
, possibly returning [TrainableModule.STOP_TRAINING](npfl138.TrainableModule.STOP_TRAINING] to stop the training (note that the module is set to evaluation mode before calling each callback). -
log_graph
(bool
, default:False
) –Controls whether to log the model graph to TensorBoard.
-
console
(int
, default:console_default(2)
) –Controls the console verbosity: 0 for silent, 1 for epoch logs, 2 for additional only-when-writing-to-console progress bar, 3 for persistent progress bar. The default is 2, but be overridden by the
CONSOLE
environment variable.
Returns:
-
logs
(Logs
) –A dictionary of logs from the training and optionally dev evaluation.
Note
The module is set to evaluation mode when returning from this method.
Source code in npfl138/trainable_module.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
train_step
train_step(xs: TensorOrTensors, y: TensorOrTensors) -> Logs
An overridable method performing a single training step, returning the logs.
Parameters:
-
xs
(TensorOrTensors
) –The input batch to the model, either a single tensor or a sequence of tensors.
-
y
(TensorOrTensors
) –The target output batch of the model, either a single tensor or a sequence of tensors.
Returns:
-
logs
(Logs
) –A dictionary of logs from the training step.
Source code in npfl138/trainable_module.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
compute_loss
compute_loss(
y_pred: TensorOrTensors, y: TensorOrTensors, *xs: tuple[Tensor]
) -> Tensor
Compute the loss of the model given the inputs, predictions, and target outputs.
Parameters:
-
y_pred
(TensorOrTensors
) –The model predictions, either a single tensor or a sequence of tensors.
-
y
(TensorOrTensors
) –The target output of the model, either a single tensor or a sequence of tensors.
-
*xs
(tuple[Tensor]
, default:()
) –The inputs to the model, unpacked, if the input was a sequence of tensors.
Returns:
-
loss
(Tensor
) –The computed loss.
Source code in npfl138/trainable_module.py
360 361 362 363 364 365 366 367 368 369 370 371 |
|
compute_metrics
compute_metrics(
y_pred: TensorOrTensors, y: TensorOrTensors, *xs: TensorOrTensors
) -> Logs
Compute and return metrics given the inputs, predictions, and target outputs.
Parameters:
-
y_pred
(TensorOrTensors
) –The model predictions, either a single tensor or a sequence of tensors.
-
y
(TensorOrTensors
) –The target output of the model, either a single tensor or a sequence of tensors.
-
*xs
(TensorOrTensors
, default:()
) –The inputs to the model, unpacked, if the input was a sequence of tensors.
Returns:
-
logs
(Logs
) –A dictionary of computed metrics.
Source code in npfl138/trainable_module.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
|
evaluate
evaluate(
dataloader: DataLoader,
*,
log_as: str | None = "test",
callbacks: list[CallbackProtocol] = [],
console: int = console_default(1)
) -> Logs
An evaluation of the model on the given dataset.
Parameters:
-
dataloader
(DataLoader
) –The dataset to evaluate on, each element a pair of inputs and outputs; the inputs and outputs can be either a single tensor or a sequence of tensors.
-
log_as
(str | None
, default:'test'
) –The name of the dataset used in the logs; when
None
, no logs are written. -
callbacks
(list[CallbackProtocol]
, default:[]
) –A list of callbacks to call after the evaluation, each implementing the CallbackProtocol with arguments
self
,epoch
, andlogs
arguments. -
console
(int
, default:console_default(1)
) –Controls the console verbosity: 0 for silent, 1 for a single message. The default is 1, but be overridden by the
CONSOLE
environment variable.
Source code in npfl138/trainable_module.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
|
test_step
test_step(xs: TensorOrTensors, y: TensorOrTensors) -> Logs
An overridable method performing a single evaluation step, returning the logs.
Parameters: xs: The input batch to the model, either a single tensor or a sequence of tensors. y: The target output batch of the model, either a single tensor or a sequence of tensors.
Returns:
-
logs
(Logs
) –A dictionary of logs from the evaluation step.
Source code in npfl138/trainable_module.py
427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
predict
predict(
dataloader: DataLoader,
*,
data_with_labels: bool = False,
as_numpy: bool = True
) -> list[Tensor | tuple[Tensor, ...] | ndarray | tuple[ndarray, ...]]
Compute predictions for the given dataset.
Parameters:
-
dataloader
(DataLoader
) –The dataset to predict on, each element either directly the input or a pair whose first element is the input; the input can be either a single tensor or a sequence of tensors.
-
data_with_labels
(bool
, default:False
) –Specifies whether the dataloader elements are (input, labels) pairs or just inputs (the default).
-
as_numpy
(bool
, default:True
) –A a flag controlling whether the output should be converted to a numpy array or kept as a PyTorch tensor.
Returns:
-
predictions
(list[Tensor | tuple[Tensor, ...] | ndarray | tuple[ndarray, ...]]
) –A Python list whose elements are predictions of the individual examples. Note that if the input was padded, so will be the predictions, which will then need to be trimmed.
Source code in npfl138/trainable_module.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
predict_step
predict_step(
xs: TensorOrTensors, as_numpy: bool = True
) -> Tensor | tuple[Tensor, ...] | ndarray | tuple[ndarray, ...]
An overridable method performing a single prediction step.
Parameters:
-
xs
(TensorOrTensors
) –The input batch to the model, either a single tensor or a sequence of tensors.
-
as_numpy
(bool
, default:True
) –A flag controlling whether the output should be converted to a numpy array.
Returns:
Source code in npfl138/trainable_module.py
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
save_weights
Save the model weights to the given path.
Parameters:
-
path
(str
) –The path to save the model weights to; a
.pt
extension is recommended. -
optimizer_path
(str | None
, default:None
) –An optional path to save the optimizer state to, relative to the model weights path.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
load_weights
load_weights(
path: str,
optimizer_path: str | None = None,
device: device | str | Literal["auto"] | KeepPrevious = keep_previous,
) -> Self
Load the model weights from the given path.
Parameters:
-
path
(str
) –The path to load the model weights from.
-
optimizer_path
(str | None
, default:None
) –An optional path to load the optimizer state from, relative to the model weights path.
-
device
(device | str | Literal['auto'] | KeepPrevious
, default:keep_previous
) –The device to load the model to; when "auto", or
keep_previous
with no previously set device, the first of cuda/mps/xpu is used if available.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
|
save_config
staticmethod
Save a JSON-serializable configuration to the given path.
The configuration can be given as a dictionary or as keyword arguments and the configuration values might also be argparse.Namespace objects.
Parameters:
-
path
(str
) –The path to save the configuration to; a
.json
extension is recommended. -
config
(dict
, default:{}
) –The configuration dictionary to save.
-
**kwargs
(dict
, default:{}
) –Additional configuration values to save.
Source code in npfl138/trainable_module.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
|
load_config
staticmethod
Load a JSON-serializable configuration from the given path.
Parameters:
-
path
(str
) –The path to load the configuration from.
Returns:
-
config
(dict
) –The loaded configuration dictionary.
Source code in npfl138/trainable_module.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
|
log_metrics
log_metrics(
logs: Logs,
epochs: int | None = None,
elapsed: float | None = None,
console: int = console_default(1),
) -> Self
Log the given dictionary to file logs, TensorBoard logs, and optionally the console.
Parameters:
-
logs
(Logs
) –The dictionary of logs to write.
-
epochs
(int | None
, default:None
) –An optional total number of epochs, used during logging the epoch number.
-
elapsed
(float | None
, default:None
) –An optional time elapsed since the beginning of the current epoch.
-
console
(int
, default:console_default(1)
) –Controls the console verbosity: 0 for silent, 1 for epoch logs. The default is 1, but be overridden by the
CONSOLE
environment variable.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
|
log_config
Log the given dictionary to the file logs, TensorBoard logs, and optionally the console.
Parameters:
-
config
(dict
) –The dictionary of configuration to write.
-
sort_keys
(bool
, default:True
) –Whether to sort the keys of the configuration dictionary.
-
console
(int
, default:console_default(1)
) –Controls the console verbosity: 0 for silent, 1 for epoch logs. The default is 1, but be overridden by the
CONSOLE
environment variable.
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
|
log_graph
log_graph(
data: DataLoader | TensorOrTensors, data_with_labels: bool = False
) -> Self
Log the traced module as a graph to the TensorBoard logs.
Tracing requires an example batch; either the first batch from the
dataloader passed in data
is used, or the data
itself is used.
Parameters:
-
data
(DataLoader | TensorOrTensors
) –The data to use for tracing the module, either a dataloader (in which case the first batch is used) or a single batch of inputs.
-
data_with_labels
(bool
, default:False
) –Specifies whether the dataloader elements are (input, labels) pairs or just inputs (the default).
Returns:
-
Self
–self
Source code in npfl138/trainable_module.py
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
|
get_log_file
get_log_file() -> TextIO
Possibly create and return a text-based log file for the current log.
To use this method, nonempty logdir
must have been set in configure
.
Returns:
-
file
(TextIO
) –The opened log file.
Source code in npfl138/trainable_module.py
658 659 660 661 662 663 664 665 666 667 668 669 |
|
get_tb_writer
get_tb_writer(name: str) -> SummaryWriter
Possibly create and return a TensorBoard writer for the given name.
To use this method, nonempty logdir
must have been set in configure
.
Returns:
-
writer
(SummaryWriter
) –The opened TensorBoard writer.
Source code in npfl138/trainable_module.py
671 672 673 674 675 676 677 678 679 680 681 682 |
|
npfl138.trainable_module.CallbackProtocol
Bases: Protocol
__call__
__call__(
module: TrainableModule, epoch: int, logs: Logs
) -> Literal["stop_training"] | None
Represents a callback called after every training epoch.
If the callback returns TrainableModule.STOP_TRAINING, the training stops.
Parameters:
-
module
(TrainableModule
) –the module being trained
-
epoch
(int
) –the current epoch number (one-based)
-
logs
(Logs
) –a dictionary of logs, newly computed metric or losses should be added here
Returns:
-
Literal['stop_training'] | None
–TrainableModule.STOP_TRAINING to stop the training;
-
Literal['stop_training'] | None
–None
to continue.
npfl138.trainable_module.LossProtocol
Bases: Protocol
__call__
__call__(y_pred: TensorOrTensors, y: TensorOrTensors) -> Tensor
Compute the loss of the given predictions and gold outputs.
npfl138.trainable_module.MetricProtocol
Bases: Protocol
reset
reset() -> None
Reset the metric to its initial state.
update
update(y_pred: TensorOrTensors, y: TensorOrTensors) -> None
Update the metric with the given predictions and gold outputs.
npfl138.trainable_module.Logs
module-attribute
A dictionary of logs, with keys being the log names and values being the log values.
npfl138.trainable_module.Tensor
module-attribute
Tensor: TypeAlias = Tensor | PackedSequence
A type alias for a single tensor or a packed sequence of tensors.