NPFL138, Lecture 14

Speech Synthesis, External
Memory, Meta-Learning

Milan Straka

= May 20, 2024

Charles University in Prague

4
\ *:*:*
F/,L OmEAN UNIO Faculty of Mathematics and Physics

. : : .
A LANGTECH Oranionat Prooramme e Institute of Formal and Applied Linguistics

Development and Education

U=
o

unless otherwise stated



WaveNet UL

Our goal is to model speech, using a convolutional auto-regressive model

P(x) = HP(wt|a:t_1, ey T1).
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Figure 2: Visualization of a stack of causal convolutional layers.
Figure 2 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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WaveNet UL

However, to achieve larger receptive field, we utilize dilated (or atrous) convolutions:
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Figure 3: Visualization of a stack of dilated causal convolutional layers.

Figure 3 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499
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Dilated Versus Regular Versus Strided Convolutions

https: //github.com/vdumoulin /conv_arithmetic

https: //github.com/vdumoulin/conv_arithmetic

Dilated Convolution

Transposed Strided Convolution

https://github.com/vdumoulin /conv_arithmetic

https://github.com/vdumoulin /conv._arithmetic
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Output Distribution
WaveNet generates audio with 16kHz frequency and 16-bit samples.

However, classification into 65 536 classes would not be efficient. Instead, WaveNet adopts the
p-law transformation, which passes the input samples in [—1, 1] range through the p-law

encoding

log(1 + 255|z|)
log(1 + 255)

sign(x)

and the resulting [—1, 1] range is linearly quantized into 256 buckets.

The model therefore predicts each samples using classification into 256 classes, and then uses
the inverse of the above transformation on the model predictions.
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WaveNet — Architecture
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Figure 4: Overview of the residual block and the entire architecture.
Figure 4 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

The outputs of the dilated convolutions are passed through the gated activation unit:

z=tanh(W;xx) © c(W, x ).
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Global Conditioning
Global conditioning is performed by a single latent representation h, changing the gated
activation function to

z=tanh(Wixax+Vih)©0o(W,*xx+ V h).

Local Conditioning

For local conditioning, we are given a time series h, possibly with a lower sampling frequency.
We first use transposed convolutions y = f(h) to match resolution and then compute

analogously to global conditioning

z=tanh(Wisxax+Vixy) Qo(W,yxax+ V, xy).
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The original paper did not mention hyperparameters, but later it was revealed that:

® 30 layers were used
O grouped into 3 dilation stacks with 10 layers each

O in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

® kernel size of a dilated convolution is 2 (and increased to 3 in Parallel WaveNet)
® residual connection has dimension 512

® gating layer uses 256+256 hidden units

® the 1 X 1 convolutions in the output step produce 256 filters

® trained for 1 000000 steps using Adam with a fixed learning rate of 2e-4

WaveNet 8/57
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Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and log F{ values.
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Similar gated activations seem to work the best in Transformers, in the FFN module.

Activation Name Formula FEN(x; Wi, W,)

RelLU max (0, ) max (0, W)W,

GELU rP(x) GELU(xW )W,

Swish zo(x) Swish(xW )W,

There are several variants of the new gated activations:

Activation Name Formula FFN(x; W,V ,W5)
GLU (Gated Linear Unit) g(xW +b) ® (zV +¢) (c(xW) © £V )W,
ReGLU max(0,zW +b) ® (£V +¢) (max(0,eW) o xV )W,
GEGLU GELU(xW +b) ® (£V +¢) (GELU(zW) © £V )W,
SwiGLU Swish(xW + b) ©® (&€V +¢) (Swish(xW) © £V )W,

GLUs
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[ ] [ ] [ ] U\/
Gated Activations in Transformers =
Score | CoLA SST-2 MRPC MRPC STSB STSB QQP QQP MNLIm MNLImm QNLI RTE EM F1
Average | MCC Acc F1 Acc PCC SCC F1 Acc Acc Acc Acc Acc FFNReLU 83.18 90.87
FFNgeLu 8380 | 51.32 94.04 93.08 90.20 89.64 89.42 89.01 91.75  85.83 86.42 9281 80.14  FFNapLu 83.09  90.79
FFNGeLU 83.86 | 53.48 94.04 92.81  90.20 89.69 89.49 88.63 91.62  85.89 86.13 9239 8051  ppNg . 83.95  90.76
FFNswish 83.60 | 49.79 93.69 9231  89.46 89.20 88.98 88.84 91.67  85.22 85.02 0233 81.23 —ppNo 3583 90.69
FFNGLy 8420 | 49.16 9427 9239  89.46 89.46 89.35 88.79 91.62  86.36 86.18 92,92 84.12
FFNaraLu 8412 | 53.65 9392 9268  89.71 90.26 90.13 89.11 9185 8615 8617 9281 7942  FENGEGLU 83.55  91.12
FFNBilinear 83.79 | 51.02 94.38 9228 8946 90.06 89.84 88.95 9169 86.90  87.08 9292 81.95 FFNBilinear 83.82 91.06
FFNswicLU 84.36 | 51.59 93.92 9223 8897 90.32 90.13 89.14 91.87  86.45 86.47  92.93 8339  FFNsyicLu 83.42  91.03
FFNgreaLU 84.67 | 56.16 94.38 92.06  89.22 89.97 89.85 88.86 91.72  86.20 86.40 92.68 81.59  FFNgeqLu 83.53 91.18
Table 2 of "GLU Variants Improve Transformer”, https://arxiv.org/abs/2002.05202 Table 4 of "GLU Variants Improve Transformer",
https: //arxiv.org/abs,/2002.05202
Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ ‘ WMT EnDe
Vanilla Transformer 223M 11.17T 3.50 2.182 4+ 0.005 1.838 71.66 17.78 23.02 | 26.62
GeLU 223 M 11.17T 3.58 2.179 £ 0.003 1.838 75.79 17.86 25.13 26.47
Swish 223M 11.17 3.62 2.186 £+ 0.003 1.847 73.77 17.74 24.34 26.75
ELU 223 M 11.1T 3.56 2.270 £+ 0.007 1.932 67.83 16.73 23.02 26.08
GLU 223 M 11.1T 3.59 2.174 4+ 0.003 1.814 74.20 17.42 24.34 27.12
GeGLU 223 M 11.17 3.55 2.130 £ 0.006 1.792 75.96 18.27 24.87 26.87
ReGLU 223 M 11.1T 3.57 2.145 £+ 0.004 1.803 76.17 18.36 24.87 27.02
SeLLU 223 M 11.1T 3.55 2.315 £ 0.004 1.948 68.76 16.76 22.75 25.99
SwiGLU 223M 11.1T 3.53 2.127 £ 0.003 1.789 76.00 18.20 24.34 27.02
LiGLU 223M 11.17T 3.59 2.149 £ 0.005 1.798 75.34 17.97 24.34 26.53
Sigmoid 223 M 11.1T 3.63 2.291 £0.019 1.867 74.31 17.51 23.02 26.30
Softplus 223M 11.1T 3.47 2.207 £ 0.011 1.850 72.45 17.65 24.34 26.89
Table 1 of "Do Transformer Modifications Transfer Across Implementations and Applications?", https://arxiv.org/abs/2102.11972
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Parallel WaveNet is an improvement of the original WaveNet by the same authors.

First, the output distribution was changed from 256 p-law values to a Mixture of Logistic
(suggested in another paper — PixelCNN++, but reused in other architectures since):

T ~ Zm Logistic(gi, S;)-

]

N © © o

The logistic distribution is a distribution with a o as cumulative
density function (where the mean and scale is parametrized by p and

0.2f e

TiT T % T
Wi »w »n »
| (| |
»—l‘m.pww

oAttt

). Therefore, we can write

P(alm,p,8) = 3 m [0(x+0‘5 _,Uz') ) a(“’ _ 05 —m)],

S; S;

1

= i i i -
-5 0 5 10 15 20

where we replace —0.5 and 0.5 in the edge cases by —oo and oo.
In Parallel WaveNet teacher, 10 mixture components are used.

ParallelWaveNet 12/57



Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we model P(z;) as P(x;|2.;) = Logistic (z;; u' (2<¢), s'(2)) for a random z

drawn from a logistic distribution Logistic(0, 1). Therefore, using the reparametrization trick,

By = (2<t) + 20 8 (2<1)-

Usually, one iteration of the algorithm does not produce good enough results — consequently,
4 iterations were used by the authors. In further iterations,

5’52 — K ( )"‘f’/’ (wz<t1)-

After N iterations, P(& |z~4) is a logistic distribution with location pt* and scale st
N

N
ot _ G (i1 ) tot _ i(oie1
g i ( (Hj>is (x.,”)) and s; 113 (x

where we have denoted z as 2° for convenience.

ParallelWaveNet
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The consequences of changing the model to
1 1 1
T, = W (2<t) + 205 (2<1)

7 = () a8 (@)

are:

® During inference, the prediction can be computed in parallel, because :L'Zg depends only on

1—1 1
r_; ,nhoton T_,.

® However, we cannot perform training in parallel. If we try maximizing the log-likelihood of

an input sequence 2!, we need to find out which z sequence generates it.

© The z1 can be computed using :L'i

O However, 2o depends not only on :c% and a:% but also on z7; generally, z; depends on

2’ and also on all Z-, and can be computed only sequentially.

Therefore, WaveNet can perform parallel training and sequential inference, while the proposed
model can perform parallel inference but sequential training.

ParallelWaveNet 14/57



Probability Density Distillation e

The authors propose to train the network by a probability density distillation using a teacher
WaveNet (producing a mixture of logistic with 10 components) with KL-divergence as a loss.

Wave N et Teache r O O O O O O O O O O O O O O 0.0 Teacher Qutput
O O O O O O O O O O O O O O
Linguistic features -----»
O O O O O O O O O O O (¢
AAA7 Af/l?/
O
T T T T T Generated Samples
O O OO0 00O OO 0000 0 0 0 x¢=g(2¢|2<z~)

T f T T f
OO0 O OO OO OO0 OO0 0 0 0 0.0 Student Output
WaveNet Student Plorlsos

o O 0O O O O O O O 0O ,C

Linguistic features -----+ | O O O O ¢

vy

T T T T T Input noise

©c 0 0 O o oo o o o o o o o o o Zq
Figure 2 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433
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Therefore, instead of computing 2z from some gold x,, we

® sample a random z;

® generate the output @;

® use the teacher WaveNet model to estimate the log-likelihood of @;
® update the student to match the log-likelihood of the teacher.

Denoting the teacher distribution as Pr and the student distribution as Pg, the loss is
Dk (Ps||Pr) = H(Ps, Pr) — H(Ps).
Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the

student as high as possible — it is indeed crucial not to match just the mode of the teacher.

® (Consider a teacher generating white noise, where every sample comes from N(O, 1) —in
this case, the cross-entropy loss of a constant 0, complete silence, would be maximal.

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed,
and the student does not attempt to fool it but to match its distribution instead.

ParallelWaveNet 16/57



Probability Density Distillation Details UL

Because the entropy of a logistic distribution Logistic(u, s) is log s + 2, the entropy term
H(Ps) can be rewritten as follows:

- T
H(PS) — IIEE,ZNLogistic(O,l) Z — logpS(wt |z<t)]

| t=1

+ 2T.

A
— IE:zr\JLogis’cic(O,l) Z lOg 3(z<t7 9)
L t=1

Therefore, this term can be computed without having to generate @.
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Probability Density Distillation Details

However, the cross-entropy term H(Pg, Pr) requires sampling from Pg to estimate:

H(Ps, Pr) = [ —Ps(x)log Pr(z)

ST

_PS(‘B) log Pr ($t|f‘3<t)

e

—Ps(x4)Ps(x¢|x-t) Ps(x~t|x<t) log Pr(z:|e<t)

=

1
M 10 10
S

reo [ [ ~Ps(ee-)tog Pr(aecs [ Ps<w>t|wgt>]

\ . S/
~~

1

I
—_

t

T
Z EPS(m<t)H(PS(CBt [ ®<t), Pr(z: |fl3<t)) :
t=1
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H(Ps, Pr) ZEPSw<t H(Ps(@i|@<), Pr(w|z))

We can therefore estimate H(Ps, Pr) by:

* drawing a single sample @ from the student Ps [a Logistic(pu™°t, s*°*)],

e compute all Pp(z¢|®¢) from the teacher in parallel [mixture of logistic distributions],

® and finally evaluate H(Ps(xt|x~t), Pr(zi|X~t)) by sampling multiple different x; from
the Pg(x¢|®<t).

The authors state that this unbiased estimator has a much lower variance than naively
evaluating a single sequence sample under the teacher using the original formulation.

Finally, analogously to the normal distribution, the logistic distribution offers the
reparametrization trick. Therefore, we can differentiate log Pr(x:|®-;) with respect to both

x: and @&~ (while the categorical distribution is differentiable only with respect to &).

ParallelWaveNet 19/57



The Parallel WaveNet model consists of 4 iterations with 10, 10, 10, 30 layers, respectively.
The dimension of the residuals and the gating units is 64 (compared to 512 in WaveNet).

The Parallel WaveNet generates over 500k samples per second, compared to ~170 samples per
second of a regular WaveNet — more than a 1000 times speedup.

Method Subjective 5-scale MOS
16kHz, 8-bit p-law, 25h data:

LSTM-RNN parametric [27] 3.67 £+ 0.098
HMM-driven concatenative [27] 3.86 £ 0.137
WaveNet [27] 4.21 £+ 0.081
24kHz, 16-bit linear PCM, 65h data:

HMM-driven concatenative 4.19 + 0.097
Autoregressive WaveNet 4.41 £+ 0.069
Distilled WaveNet 4.41 = 0.078

For comparison, using a single iteration with 30 layers achieve MOS of 4.21.

ParallelWaveNet 20/57



The Parallel WaveNet can be trained to generate speech of multiple speakers (using the global
conditioning). Because such a model needs larger capacity, it used 30 layers in every iteration

(instead of 10, 10, 10, 30).

Parametric | Concatenative | Distilled WaveNet
English speaker 1 (female - 65h data) 3.88 4.19 4.41
English speaker 2 (male - 21h data) 3.96 4.09 4.34
English speaker 3 (male - 10h data) 3.77 3.65 4.47
English speaker 4 (female - 9h data) 3.42 3.40 3.97
Japanese speaker (female - 28h data) 4.07 3.47 4.23

Table 2: Comparison of MOS scores on English and Japanese with multi-speaker distilled WaveNets.
Note that some speakers sounded less appealing to people and always get lower MOS, however
distilled parallel WaveNet always achieved significantly better results.

ParallelWaveNet
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To generate high-quality audio, the probability density distillation is not entirely sufficient.
The authors therefore introduce additional losses:

® power loss: ensures the power in different frequency bands is on average similar
between the generated speech and human speech. For a conditioned training data (a, c)

and WaveNet student g, the loss is
| STFT(g(2, ¢)) — STFT(x)||".

® perceptual loss: apart from the power in frequency bands, we can use a pre-trained
classifier to extract features from generated and human speech and add a loss measuring
their difference. The authors propose the loss as squared Frobenius norm of differences
between Gram matrices (uncentered covariance matrices) of features of a WaveNet-like
classifier predicting phones from raw audio.

® contrastive loss: to make the model respect the conditioning instead of generating outputs
with high likelihood independent on the conditioning, the authors propose a contrastive
distillation loss (v = 0.3 is used in the paper):

Dxy, (Ps(e1)||Pr(e1)) — vDkr (Ps(e1)||Pr(er)).

ParallelWaveNet 22/57



Preference Scores

versus baseline concatenative system

Method Win - Lose - Neutral
Losses used

KL + Power 60% - 15% - 25%
KL + Power + Perceptual 66% - 10% - 24%
KL + Power + Perceptual + Contrastive (= default) 65% - 9% - 26%

Table 3: Performance with respect to different combinations of loss terms. We report preference
comparison scores since their mean opinion scores tend to be very close and inconclusive.

ParallelWaveNet 23/57



Tacotron 2 model presents end-to-end speech synthesis directly from text. It consists of two

components trained separately:

® a seq2seq model processing input characters and generating mel spectrograms;
® 3 Parallel WaveNet generating the speech from Mel spectrograms.

Waveform

Mel Spectrogram Samples

5 Conv Layer L [ WaveNet
Post-Net C : (  MoL )

l Linear ]
[ 2 Layer ] [ 2 LSTM Projection
Pre-Net Layers "
L|‘nea'r ]—> Stop Token
Projection

Location
Sensitive

A

Attention
Input Text Character 3 Conv Bidirectional
P Embedding Layers LSTM
WaveNet GLUs ParallelWaveNet Tacotron NTM MANN DNC TTM
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The Mel spectrograms are computed using STFT (short-time Fourier transform).

® The authors propose a frame size of 50ms, 12.5ms frame hop, and a Hann window.

® STFT magnitudes are transformed into 80-channel Mel scale spanning 175Hz to 7.6kHz,
followed by a log dynamic range compression (clipping input values to at least 0.01).

To make sequential processing of input characters easier, Tacotron 2 utilizes location-sensitive
attention, which is an extension of the additive attention. While the additive (Bahdanau)
attention computes

o; = Attend(s;_1,h), «;; = softmax ('vT tanh(Vh; + Ws;_1 + b)),

the location-sensitive attention also inputs the previous time step attention weights into the
current attention computation:

a; = Attend(s;_1,h, a;_1).
In detail, the previous attention weights are processed by a 1-D convolution with kernel F'

a;; = softmax (v' tanh(Vh; + Ws;_1 + (F *a;_1); + b)).

Tacotron 25/57



System MOS
Parametric 3.492 1+ 0.096
Tacotron (Griffin-Lim) 4.001 = 0.087
Concatenative 4.166 = 0.091
WaveNet (Linguistic) 4.341 4+ 0.051
Ground truth 4.582 4+ 0.053
Tacotron 2 (this paper) 4.526 = 0.066

26/57



Tacotron 2
400
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200
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Much Worse Slightly  About the  Slightly Better Much
Worse Worse Same Better Better

Figure 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions”, https://arxiv.org/abs/1712.05884

You can listen to samples at https://google.github.io /tacotron/publications/tacotron2/
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https://google.github.io/tacotron/publications/tacotron2/

Synthesis System MOS
Training Predicted Ground truth

Tacotron 2 (Linear + G-L) 3.944 4+ 0.091
Predicted 4.526 £ 0.066  4.449 £+ 0.060 Tacotron 2 (Linear + WaveNet) 4.510 £ 0.054
Ground truth  4.362 4+ 0.066  4.522 4 0.055 Tacotron 2 (Mel + WaveNet) 4.526 £+ 0.066

Table 2. Comparison of evaluated MOS for our system when Table 3. Comparison of evaluated MOS for Griffin-Lim vs. WaveNet
WaveNet trained on predicted/ground truth mel spectrograms are as a vocoder, and using 1,025-dimensional linear spectrograms vs.
made to synthesize from predicted/ground truth mel spectrograms.  80-dimensional mel spectrograms as conditioning inputs to WaveNet.

Total  Num Dilation  Receptive field

layers cycles cycle size  (samples / ms) MOS
30 3 10 6,139/255.8  4.526 £ 0.066
24 4 6 505/21.0 4.547 £ 0.056
12 2 6 253/10.5 4.481 £ 0.059
30 30 1 61/2.5 3.930 + 0.076

Table 4. WaveNet with various layer and receptive field sizes.
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So far, all input information was stored either directly in network weights, or in a state of a
recurrent network.

However, mammal brains seem to operate with a working memory — a capacity for short-term
storage of information and its rule-based manipulation.

We can therefore try to introduce an external memory to a neural network. The memory M

will be a matrix, where rows correspond to memory cells.

NTM 29/57



Neural Turing Machines e

The network will control the memory using a controller which reads from the memory and
writes to is. Although the original paper also considered a feed-forward (non-recurrent)
controller, usually the controller is a recurrent LSTM network.

External Input External Output

CON T

Controller

SN

Read Heads Write Heads

| |

Figure 1 of "Neural Turing Machines", https://arxiv.org/abs/1410. 5401

NPFL138, Lecture 14 RWEVENES GLUs ParallelWaveNet Tacotron NTM MANN DNC TT™M 30/57



Reading
To read the memory in a differentiable way, the controller at time ¢ emits a read distribution wy

over memory locations, and the returned read vector 7; is then

Py = Z'wt(i) - M, (3).

Writing
Writing is performed in two steps — an erase followed by an add: the controller at time £ emits
a write distribution w; over memory locations, together with an erase vector e; and an add

vector a;. The memory is then updated as

M, (i) = My_1(3) |1 — wi(i)es] + we(3)ay.

NTM 31/57



Neural Turing Machine

The addressing mechanism is designed to allow both

® content addressing, and
® |ocation addressing.

Previous

State

Controller

Outputs —>
— — > Content

| k¢ | Addressing
| P
gt

W
|y

Interpolation

Convolutional [W+
, Shift > _
| s¢ —1 > Sharpening |y w,
Lt >

Figure 2 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401

\4 '~‘§O¢ +
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Content Addressing
Content addressing starts by the controller emitting the key vector k;, which is compared to all
memory locations M (%), generating a distribution using a softmax with temperature ;.

exp(p; - distance(k;, M (7))
> ; exp(pB; - distance(k;, M(j))

w; (i) =

The distance measure is usually the cosine similarity

alb
lal] - []b]]

distance(a, b) =

NTM 33/57



Location-Based Addressing

To allow iterative access to memory, the controller might decide to reuse the memory location
from the previous timestep. Specifically, it emits an interpolation gate g: € (0,1) and sets

wi = gwi + (1 — g )we-1.
Then, the current weighting may be shifted, i.e., the controller might decide to “rotate” the

weights by a small integer. For a given range (the simplest case are only shifts {—1,0,1}), the
network emits a softmax distribution over the shifts, and the weights are then defined using a

Zwt )8:(% — 7)-

Finally, not to lose precision over time, the controller emits a sharpening factor y; > 1, and the

circular convolution

final memory location weights are ’wt( ) = wt( )%/Z wt( )

NTM 34 /57



Overall Execution

Even if not specified in the original paper, following the DNC paper, the LSTM controller can
be implemented as a (potentially deep) LSTM. Assuming R read heads and one write head, the

input is ®; and R read vectors r} _,..., 7% | from the previous time step, the output of the
controller are vectors (v, €,), and the final output is y, = vy + W [rf,...,ri|. The &, is

a concatenation of

1 1 1 1 1 2 2 2 2 2 w w W w w w w
ktht7gt73t7'7t7kt7/8tagt73ta’7t7---a taﬂtagtasta’)’taetaat-
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Neural Turing Machines Urzt

Copy Task
Repeat the same sequence as given on input. Trained with sequences of length up to 20.
10 ‘
. LSTM —e—
2 3 NTM with LSTM Controller —=—
=5 I NTM with Feedforward Controller —— |
3
-
o)
>
o
@
9p]
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Q
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Q
&)

0 200 400 600 800 1000

sequence number (thousands)

Figure 3 of "Neural Turing Machines", https://arxiv.org/abs,/1410.5401
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Figure 4: NTM Generalisation on the Copy Task. The four pairs of plots in the top row
depict network outputs and corresponding copy targets for test sequences of length 10, 20, 30,
and 50, respectively. The plots in the bottom row are for a length 120 sequence. The network
was only trained on sequences of up to length 20. The first four sequences are reproduced with
high confidence and very few mistakes. The longest one has a few more local errors and one
global error: at the point indicated by the red arrow at the bottom, a single vector is duplicated,
pushing all subsequent vectors one step back. Despite being subjectively close to a correct copy,
this leads to a hioch loss.
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Figure 5: LSTM Generalisation on the Copy Task. The plots show inputs and outputs
for the same sequence lengths as Figure 4. Like NTM, LSTM learns to reproduce sequences
of up to length 20 almost perfectly. However it clearly fails to generalise to longer sequences.
Also note that the length of the accurate prefix decreases as the sequence length increases,
suggesting that the network has trouble retaining information for long periods.
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Neural Turing Machines

Associative Recall

In associative recall, a sequence is given on input, consisting of subsequences of length 3. Then
a randomly chosen subsequence is presented on input and the goal is to produce the following

subsequence.
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8 10 12 14 16 18 20

number of items per sequence

Figure 11 of "Neural Turing Machines", https://arxiv.org/abs/1410.5401
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Memory-augmented Neural Networks ==

We now focus on a learning to learn task — consider a network, which should learn
classification into a user-defined hierarchy by observing ideally a small number of samples.

Apart from finetuning the model and storing the information in the weights, an alternative is to
store the samples in external memory. Therefore, the model learns how to store the data and
access it efficiently, which allows it to learn without changing its weights.

External Memory External Memory
Class Prediction El-2 5 Bl

¢ t t t Am

. i 1§ %%
! | | | ® IS S ol I S S " » coo (
‘ || Backpropagated

f f Shuffle: f f f f Signal f

(X1 ) (X001, 1) [Labels (x,.0) (x,.1) o X ~
\ | Classes | . ) |

Episode Samples Bind and Encode Retrieve Bound Information
(a) Task setup (b) Network strategy

Figure 1 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065
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ke - M(4)
ke (M)

K (ky, My (4)) (2)

which 1s used to produce a read-weight vector, w;, with
elements computed according to a softmax:

exp (K (kt, M, (z)))

wy (1) < > exp(K (ki My(4)))

3)

A memory, ry, 1s retrieved using this weight vector:

r; Z w? (1) My (2). (4)

WaveNet GLUs

ParallelWaveNet Tacotron NTM

wy —yw + W +w ®)

Here, v is a decay parameter and w; is computed as in (3).
The least-used weights, wi¥, for a given time-step can then
be computed using w;'. First, we introduce the notation
m(v,n) to denote the n*" smallest element of the vector v.
Elements of wi* are set accordingly:

s ) 0 ifwi (i) > m(wi,n)
wi"(7) { 1 ifwf%’“(i) gm(wg‘,n) ’ ©)

where n 1s set to equal the number of reads to memory.
To obtain the write weights w3, a learnable sigmoid gate
parameter is used to compute a convex combination of the
previous read weights and previous least-used weights:

Wy o(a)wi_; + (1 — o()wi;. (7)

Here, o () is a sigmoid function, H% and « is a scalar
gate parameter to interpolate between the weights. Prior
to writing to memory, the least used memory location is
computed from w;' ; and is set to zero. Writing to mem-
ory then occurs in accordance with the computed vector of

write weights:

M, (i) < My_1 (i) + w? (i)ky, Vi (8)
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Memory-augmented NNs
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(a) LSTM, five random classes/episode, one-hot vector labels
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(c) LSTM, fifteen classes/episode, five-character string labels
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(b) MANN, five random classes/episode, one-hot vector labels
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(d) MANN, fifteen classes/episode, five-character string labels

Figure 2. Omniglot classification. The network was given either five (a-b) or up to fifteen (c-d) random classes per episode, which were
of length 50 or 100 respectively. Labels were one-hot vectors in (a-b), and five-character strings in (c-d). In (b), first instance accuracy is
above chance, indicating that the MANN is performing “educated guesses” for new classes based on the classes it has already seen and
stored in memory. In (c-d), first instance accuracy is poor, as is expected, since it must make a guess from 3125 random strings. Second
instance accuracy, however, approaches 80% during training for the MANN (d). At the 100,000 episode mark the network was tested,
without further learning, on distinct classes withheld from the training set, and exhibited comparable performance.

Figure 2 of "One-shot learning with Memory-Augmented Neural Networks", https://arxiv.org/abs/1605.06065

NPFL138, Lecture 14 WaveNet GLUs ParallelWaveNet Tacotron NTM MANN DNC TT™M

45 /57



Table 2. Test-set classification accuracies for various architectures on the Omniglot dataset after 100000 episodes of training, using five-
character-long strings as labels. See the supplemental information for an explanation of 1st instance accuracies for the kNN classifier.

Table 1. Test-set classification accuracies for humans compared to
machine algorithms trained on the Omniglot dataset, using one-
hot encodings of labels and five classes presented per episode.

INSTANCE (% CORRECT)
MODEL 15T JND 3RD 4TH §TH 10™
HUMAN 345 57.3 70.1 71.8 81.4 924
FEEDFORWARD | 24.4 19.6 21.1 199 22.8 19.5
LSTM 244 495 553 61.0 63.6 62.5
MANN 36.4 82.8 91.0 92.6 94.9 98.1

INSTANCE (% CORRECT)

MODEL CONTROLLER # OF CLASSES | 1% 2NP 3RD 4™ 5™ 10™
KNN (RAW PIXELS) — 15 0.5 18.7 23.3 26.5 29.1 37.0
KNN (DEEP FEATURES) — 15 0.4 32.7 41.2 47.1 50.6 60.0
FEEDFORWARD - 15 0.0 0.1 0.0 0.0 0.0 0.0

LSTM — 15 0.0 2.2 2.9 4.3 5.6 12.7
MANN (LRUA) FEEDFORWARD 15 0.1 12.8 22.3 28.8 32.2 43.4
MANN (LRUA) LSTM 15 0.1 62.6 79.3 86.6 88.7 95.3
MANN (NTM) LSTM 15 0.0 354 61.2 71.7 77.7 88.4
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Differentiable Neural Computer Uz

NTM was later extended to a Differentiable Neural Computer.

d Memory usage
a Controller b Read and write heads € Memory and temporal links

e ~
Output ,
Write vector
] [ BN | ] ]

Erase vector

Write key

Read key
I Read mode
B F

N

‘ﬂ)
</
y

Figure 1 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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The DNC contains multiple read heads and one write head.

The controller is a deep LSTM network, with input at time ¢ being the current input &; and R
1 R

read vectors r;_q1,...,7;"; from previous time step. The output of the controller are vectors
(v, €,). and the final output is y, = vy + W, |r,...,Pf]. The &, is a concatenation of
parameters for read and write heads (keys, gates, sharpening parameters, ...).

In DNC, the usage of every memory location is tracked, which enables performing dynamic
allocation — at each time step, a cell with least usage can be allocated.

Furthermore, for every memory location, we track which memory location was written to
previously and subsequently, allowing to recover sequences in the order in which it was written,
independently on the real indices used.

The write weighting is defined as a weighted combination of the allocation weighting and write
content weighting, and read weighting is computed as a weighted combination of read content
weighting, previous write weighting, and subsequent write weighting.
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Differentiable Neural Computer

a Random graph

Underground input:
(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)
(BakerSt, Marylebone, Circle)

(BakerSt, Marylebone, Bakerloo)
(BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

84 edges in total
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Traversal

Traversal question:
(BondSt, _, Central),

(, _, Circle), (_, _, Circle),
(, _, Circle), (_, _, Circle),
(_, _, Jubilee), (, _, Jubilee),

Answer:
(BondSt, NottingHillGate, Central)
(NottingHillGate, GloucesterRd, Circle)

(Westminster, Gre.enPark, Jubilee)
(GreenPark, BondSt, Jubilee)

Shortest-path

Shortest-path question:

(Moorgate, PiccadillyCircus, _)

Answer:

(Moorgate, Bank, Northern)

(Bank, Holborn, Central)

(Holborn, LeicesterSq, Piccadilly)
(LeicesterSq, PiccadillyCircus, Piccadilly)

Figure 2 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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(Mat, Charlotte, Mother)
54 edges in total
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Differentiable Neural Computer
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Figure 3 of "Hybrid computing using a neural network with dynamic external memory", https://www.nature.com/articles/nature20101
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Token Turing Machines ez

Token Turing Machines are a sequential, autoregressive Transformer model with memory for
sequential visual understanding.
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Token Turing Machines

In every time step £, we get

® 3 fixed-size memory Mt ¢ Rmxd
® 2 fixed-size input I' € R"*¢

In every step, we perform
e Z' < Read(M', I’
e O' < Process(Z"),

),

o M « Write(M*, I', O"),

e Y« Output(O°).

NPFL138, Lecture 14 WaveNet

GLUs

ParallelWaveNet

—
FxL
Robot
‘,’ control 3 \“ ’,‘ .
!, OUtpUtS vector . E!' R
| A R
K ]
: Processing i Processing
- =¥ Memory [~ Read [~ unit 71| Memory |~ Read || unit
: (i.e., layers) i (i.e., layers)
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''''' top drawer” S tep t “Open top drawer” Step t+ 1
Figure 1. TTM overview with robot examples. Each dotted rectangle shows TTM at each step.
Figure 1 of "Token Turing Machines", https://arxiv.org/abs/2211.09119
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Token summarization S, summarizes a
sequence of V' € RP*? tokens into k < p
tokens Z € RF*4,

First, weight vector w; is computed as

w, + softmax (g’ V7 /v/d),
and then
zi — w. V.

Finally, read operation is implemented as a
summarization to 7 tokens

Memory
(m =96
tokens)

> Token Summariser

r=16
tokens

Input:
n = 3076 tokens
per step J

Processing Unit
(Transformer
layers)

Figure 2. TTM Read. Note how it greatly reduces the computation
of the subsequent processing module by summarising the input

sequence as well.

def

Z' — Read(I', M") = S, (M*||I").

TT™
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Processing Unit, Output Computation

The processing unit computes 7 tokens 0k N

from the 7 read tokens Z°*, by using for

example the Transformer architecture: (me oy

tokens)

O' « Process(Z") = Transformer(Z").

The output is computed using a linear output

Token Summariser

r=16
tokens

head on the O° tokens: input:

n = 3076 tokens
per step /

def

Processing Unit
(Transformer
layers)

Yt <— Output (Ot) — ﬂatten(ot ) W 0~ Figure 2. TTM Read. Note how it greatly reduces the computation
of the subsequent processing module by summarising the input

sequence as well.

Figure 2 of "Token Turing Machines", https://arxiv.org/abs/2211.09119

NPFL138, Lecture 14 WaveNet GLUs ParallelWaveNet Tacotron NTM MANN

DNC

TT™

54/57



Write Operation

The write operation is another summarization
operation summarizing 7 input cells, m input

memory cells, and 7 output cells into a new
memory of n cells:

M« Write(M*, I', O") =

def

= S (M| 0°).

NPFL138, Lecture 14 WaveNet GLUs ParallelWaveNet Tacotron
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New memory
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Figure 3. TTM Write, formulated as the token summarisation.
Figure 3 of "Token Turing Machines", https://arxiv.org/abs/2211.09119
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Method Setting modality mAP
I3D + super-events [57] offline | RGB + Flow | 19.41
I3D + super-events + TGM [53] offline | RGB + Flow | 22.30
I3D + STGCN [28] offline | RGB + Flow | 19.09
I3D + biGRU + VS-ST-MPNN [4&] | offline | RGB + Object | 23.7
Coarse-Fine (w/ X3D) [40] offline RGB 25.1
I3D + CTRN [16] offline RGB 25.3
I3D + MS-TCT [17] offline RGB 25.4
I3D + PDAN [ 18] offline | RGB + Flow 26.5
I3D + CTRN [16] offline | RGB + Flow 27.8
I3D [10] online | RGB + Flow | 17.22
X3D [26] online RGB 18.87
ViViT-B [3] online RGB 23.18
ViViT-B + TTM (ours) online RGB 26.34
ViViT-L [3] online RGB 26.01
ViViT-L + TTM (ours) online RGB 28.79

Table 1. Comparison with the state-of-the-art methods on Charades

temporal activity detection.

TT™
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Method | mAP  GFLOPS Architecture | mAP  GFLOPS

ViViT only | 23.18 - MLP 2334 0.689
Alternative temporal models MLPMixer 26.14 0.704
Temporal MLPMixer (tokens=96) 24.41 0.382 Transformer | 26.34 0.842
Causal Transformer (tokens=96) 25.85 0.523

Temporal Transformer (tokens=96) 2561 1269 Table 3. Using different processing unit architectures in TTMs.
Temporal MLPMixer (tokens=3360) 24.26 13.317

Causal Transformer (tokens=3360) 25.88 29.695 Method ‘ mAP  GFLOPS
Temporal Transformer (tokens=3360) 25.53 112.836

Alternative recurrent networks Pooling 25.75 0.206
LSTM 2396  0.107 MLP 2634 0.842
Recurrent Transformer (tokens=16+16) 25.97 0.410 Latent query | 26.75 8.537

Recurrent Transformer (tokens=3136+16) | 25.97 17.10

Token Turing Machines Table 4. Different Token Summarisation

TTM-Mixer (n = 16) 25.83 0.089
TTM-Transformer (n = 16) 26.24 0.228 Method | mAP  GFLOPS
TTM-Mixer (n = 3136) 26.14 0.704 Concatenate (Memorizing Transformer-style) | 20.97 0.920
TTM-Transformer (n = 3136) 26.34 0.842 Erase and Add (NTM-style write) 25.86 0.423
TTM without memory } 22.65 0.842
Table 2. TTM vs. different sequence modeling methods. ViViT- TT™ 26.34 0.842
B was used as the backbone. TTM-Transformer means we use
Transformer as the processing unit, and TTM-Mixer means we use Table 5. TTM vs. different history/memory update. They all use
MLPMixer as the processing unit. FLOP measure is for computa- Transformer processing units, and MLP-based token summarisa-
tion in addition to the backbone. tions. The number of input tokens per step, n = 3176.
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