NPFL138, Lecture 13

Generative Adversarial Networks,
Diffusion Models

Milan Straka

= May 13, 2024

Charles University in Prague
Faculty of Mathematics and Physics

El EAN UNION
.
LANGTECH opeatona pegamme ressaen . Institute of Formal and Applied Linguistics
ment and Education

@ c C
$9238 X
o &

o288 9

U=
o

unless otherwise stated

There are several approaches how to represent a
probability distribution P(x). Likelihood-based

models represent the probability density function
directly, often using an unnormalized probabilistic
model (also called energy-based model; i.e.,
specifying a non-zero score or density or logits):

ef0 (X)
Zg

Py(x) =

However, estimating the normalization constant
Zy = fef“’(x) dx is often intractable.

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Discriminator

D(x)

Encoder

Generator

G(2)

Decoder

94(2[x)

Flow

po(x|2)

Inverse

X s

(2

® \We can compute Zg by restricting the model architecture (sequence modeling, invertible

networks in normalizing flows);

we can only approximate it (using for example variational inference as in VAE);
® we can use implicit generative models, which avoid representing likelihood (like GANs).

GAN GANConvergence DiffusionModels N

DDPM DDIM

StableDiffusion

NCSN

Reading

2/73

Generative Adversarial Networks

We have a generator G(z

Then we have a discriminator D(x; 0,;), which given data @ generates a probability whether

x comes from real data or is generated by a generator.

The discriminator and generator play the following game:

minmax[E,.p,,

G

NPFL138, Lecture 13 GAN

D

(LLTHE
S B |

lllﬂ_xlllm 10]
SVHN training data

latent sample, z

GANConvergence

sample
(real) data

sample
(fake) data

A st/

Discriminator

;0,), which given z ~ P(z) generates data @.

fake

real

https: //miro.medium.com/v2/1*-ucVYsbDnwa2NM-fogm_Yg.png

DiffusionModels

N

DDPM

DDIM

StableDiffusion

log D(z)] + K. p()|log(1 — D(G(z2)))].

NCSN

Reading

3/73

Generative Adversarial Networks

™~ ™~ ™~
() L) L)

o~ L]

*
~ ‘.~
e-e-T -

.
\
. ’y
8 ey
Vo
\, e

Y/ Y/ N/

Figure 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661

The generator and discriminator are alternately trained, the discriminator by

argemax Ez~ Py log D(x)] + Esz(z) log(1 — D(G(z)))]

and the generator by

argemin E.p@)llog(l — D(G(2)))].

Basically, the discriminator acts as a trainable loss for the generator.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN

U=

Reading 4/73

Because log(1 — D(G(z))) can saturate at the beginning of the training, where the
discriminator can easily distinguish real and generated samples, the generator can be trained by

arg min EZNP(z) |—log D(G(2))]
09

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

On top of that, if you train the generator by using “real” as the gold label of the discriminator,
you naturally get the above loss (which is the negative log likelihood, contrary to the original

formulation).

GAN

5/73

Generative Adversarial Networks

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ... 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {cc(l), e ,a:(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" oD () +10 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

Vo, 2 tos (10 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Algorithm 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN

Generative Adversarial Networks

ANDI~=

NPFL138, Lecture 13 GAN

O

21919
t19]0]
I | 2|2
0|25

L=

VY e |
w0

GANConvergence

Figure 2 of "Generative Adversa

DiffusionModels

N

DDPM

rial Nets", https://arxiv.org/abs/1406.2661

DDIM StableDiffusion NCSN

Reading

U=
o

7/73

L

Conditional GAN Uz

Assuming our dataset is conditional, i.e., / Discriminator D(xly) @ N
the individual examples are pairs (@, y)
with y being the image class, GANs can be 90000

easily extended to allow conditioning:

® the generator gets ¥ as an additional % CY XX X) 0000 Q)

input: G(2,v),

® the discriminator also gets ¢y as an @erator G(2ly) \‘ ‘ ‘ ‘ ‘\ \

additional input: D(@,y).

_

00000 00000
. _/

Figure 1 of "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 8/73

Deep Convolutional GAN Uz

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

- N

N AN /
(a) (c)

Figure 1 of "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 9/73

Deep Convolutional GAN Uz

3
A
128
256 ——
I A 1
1024
i
‘ : 32
100 z -4 .
o= Stride 2
4 F~
Stride 2 16 .
. Stride 2
Project and reshape CONV 1
CONV 2
CONV 3 64
CONV 4 -

G(2)

Figure 1 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https: //arxiv.org/abs/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 10/73

Deep Convolutional GAN Uz

Figure 3 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 11/73

Deep Convolutional GAN =

'
Figure 4 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 12/73

Deep Convolutional GAN

smiling neutral neutral
woman woman man

Results of doing the same
arithmetic in pixel space

Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN

Deep Convolutional GAN Uz

Fl =

woman

—
H
man

man
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Ll
Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 14/73

Deep Convolutional GAN Uz

Figure 8 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/abs-/1511.06434

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 15/73

GANs Training — Training Experience

GAN output Your GAN
in paper output

(e

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion

https: //miro.medium.com/max,/1400/1*r8cuSlaM50HUERPOIT CTxg. jpeg

NCSN

Reading

U=

16/73

GANs Training — Results of In-House BigGAN Training Ukt

: -.F
el . - —n = s

g : -
v L L --I- .

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 17/73

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem — consider the following one:

min max - y.
z oy

The update rules of and y for learning rate & are
Tni1| |1 —af |z,
Ynt1 a 1] |yn]|
The update matrix is a rotation matrix multiplied by a constant v'1 + a? > 1

[1 —1a]: /71+a2.[cosg0 —singo],

Q sinp cos
so the SGD will not converge with arbitrarily small step size.

GANConvergence 18/73

GANs are Problematic to Train

0.2 A

0.1+

—0.1

—0.2 1

-0.2 -0.1

0.0 0.1
X

(a)

0.2

0.02 A

0.01 -

0.00 +

—0.01 1

—0.02 -1

It

HH

2000

4000

6000

lteration number

(b)

8000

Fig. 1: Performance of gradient method with fixed step size for Example 2. (a)
illustrates the choices of x and y as iteration processes, the red point (0.1,0.1) is

the initial value. (b) illustrates the value of zy as a function of iteration numbers.
Figure 1 of "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647

NPFL138, Lecture 13 GAN

GANConvergence

DiffusionModels

N

DDPM

DDIM

StableDiffusion

NCSN

Reading

10000

19/73

GANs are Problematic to Train

® GANSs suffer from “mode collapse”

-

NPFL138, Lecture 13 GAN

GANConvergence

Step 10k

DiffusionModels

Step 15k

Step 20k

Step 25k

Target

Figure 2 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

N

DDPM

DDIM

StableDiffusion

Figure5 of "Generating Diverse HighFide/ity Images with VQ-VAE-2", https://arxiv org//ab§:/1906. 00446

NCSN

3

Reading

20/73

The training can be improved by various tricks:

® |f the discriminator could see the whole batch, similar samples in it would be candidates for

fake images.
O Batch normalization helps a lot with this.

® Unrolling the discriminator update helps generator to consider not just the current

discriminator, but also how the future versions would react to the generator outputs. (The

discriminator training is unchanged.)

—P> Forward Pass
GD Gradients

91 9.2 0 Gradients
> P D > D
65 f0(95:6p) SGD f(65.6p) > sep— ” f,(85.0,) Unrolling
| SGD

* * * Gradients

® Many others, like Wasserstein GAN, spectral normalization, progressive growing, ..

GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading

21/73

The Variational Autoencoders:

® are theoretically-pleasing;

® also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction (the VAE encoder is used in various modeling architectures);

® the generated samples tend to be blurry, especially with L' or L? loss (because of the

sampling used in the reconstruction; patch-based discriminator with perceptual loss helps).
The Generative Adversarial Networks:

® offer high sample quality;
® are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, since 2019/2020, VAEs have shown remarkable progress (alleviating the blurriness
issue by using perceptual loss and a 2D grid of latent variables), and are being used for
generation too. Furthermore, additional approaches (normalizing flows, diffusion models) were
also being explored, with diffusion models becoming the most promising approach since Q2 of
2021, surpassing both VAEs and GANs.

GANConvergence 22/73

Diffusion Models Uz

Currently (as of May 2023), the best architecture for generating images seems to be the
diffusion models.

https://images.squarespace-cdn.com/content /v1/6213c340453c3f502425776e /0715034d-4044-4c55-9131-e4btd6dd20ca/2 _4x.png

The diffusion models are deeply connected to score-based generative models, which were
developed independently. These two approaches are in fact just different perspectives of the
same model family, and many recent papers utilize both sides of these models.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 23/73

Diffusion Models — Overview, Processes et

Original MNIST digits Noisy |magt=:5 100%

Illllmllimmmm

NPFL138, Lecture 13 GAN GANConver gence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 24/73

EOES

~ap]blsioln
HHHHHH

a2 WA E)
ENE
EREA
31417
EIQn
51017

ﬂﬂ
417
z14a
[N
913

»

Diffusion Models — Diffusion Process, Reverse Process UL

peXt1|Xt
o —E@ — O H

\-__’

F/gure 2 of Deno:smg Diffusion Probabilistic Models", https://arxiv.org/abs/ 2006 11239

Given a data point X(from a real data distribution g(x), we define a T-step diffusion process
(or the forward process) which gradually adds Gaussian noise to the input image:

axirlxo) =[] a(xilxi1).

t=1

Our goal is to reverse the forward process q(X:|X;—1), and generate an image by starting with
x1 ~ N(0,I), and then performing the forward process in reverse. We therefore learn a model

Do (X¢—1|X¢) to approximate the reverse of q(X¢|x;—1), and obtain a reverse process:

T

pe(Xo.7) = p(X1) Po (X¢—1]%¢).

t=1

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 25/73

Diffusion Models — The Diffusion Process =

t=20

2 2
The forward trajectory
-
q(XO'T) ot . ol b
: .
-2 - -2
-2 0 2 -2 2
2 - 2
The reverse trajectory
pB(XO:T) of ,] ol |
»
_2 1 _2 1
-2 0 2 -2 0 2
2 2
«4vYvYVYY L T LN
.:‘:;“::"' N .
» ;» i ’I’ Yyvv - - PV
Y i V. Adddd s - J oA A AAA I
w gy ‘:vb Vvv 4 s\ S AAAAAD NN m
The drifting term Vb | (44 Fo-sViaaassy-rrrs
A:<<v V\ ;- | (42 ﬁ11<'47A \‘Ab\'((Fe=AN D ABMMII)
0 11444‘A' A-!ii‘ >t441‘lq' (4&—111 0_"“‘})““' rrrr--2
DlAAA'lkL 4/11111 »144<~".’ 4~reaa o mhay) aks A
“0 xt t _x-t b«AAA"\tbvd/'Ytkl D\I‘!"4vvv~>’70\\ e mAay pnas
? Y AAd NN L mEmrr L . L R R R R L L /o
VA AA L R R R R /o
LA N B I)
B AT PYPYPYYTSLL A Fre =NV D b ~-
< ~ryvwwwo W A T I R B I R R s
d4a- - ~ eV o AV VNS~ -
L N i -
-2 -2 L -
2 —

0 2 -2 0 2 2 0 2
https://lilianweng.github.io/posts,/2021-07-11-diffusion-models /diffusion-example.png
NPFL1 Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 26/73

Diffusion Models — The Diffusion Process

rgence DiffusionModels N Reading 27/73

Diffusion Models — Model Overview ezt

The pg(x:—1|x:) is commonly modelled using a UNet architecture with skip |
connections.
v
Tra i n i n g ‘ DBloclj 256x }7
. . . . ‘ DBlock 128x }7
During training, we randomly sample a time step £, and perform an update of T T
the parameters @ in order for pg(X;_1|X;) to better approximate the reverse =~ .0 ..
v
Of q(xt |xt_1) " ‘ DBlocj(16x ‘
. ‘ UBlocj{ 16x ‘
Sampling [i
In order to sample an image, we start by sampling x7 ~ N (0, I), and then ook stz —
perform T steps of the reverse process by sampling x;_1 ~ pg(x;_1|x;) for e =
t from 1" down to 1. -
|
2562 Image

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with
Deep Language Understanding”,
https: //arxiv.org/abs/2205.11487

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 28/73

Normal (or Gaussian) distribution is a continuous distribution op
parametrized by a mean u and variance o

2 . 0.30 |-

0.25 |-

Maximum at = g

Inflection points at
T = o

Z 0.20 | =p

0.15 |-

1 (:,B _ M)z 0.10:
. 2 _ 0.05
N(x’ N’ 0-) — 27.‘_0_2 eXp (_ 20_2 [)'[)32.[) 7‘1') 7‘1.(] 7[‘).5 [)I.() ()IAS l‘.(] 1.5 2.0
For a D-dimensional vector @, the multivariate Gaussian distribution takes the form
d_ef].]. T _]_
N ®) £ e (5@ WS @)

The biggest difference compared to the single-dimensional case is the covariance matrix 33,

which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size D X D.

However, in this lecture we will only consider isotropic distribution, where 3 = oI

N(@;p,0°I) = | [M(ais i, 0?).
N

29/73

* A normally-distributed random variable x ~ A (p, 02I) can be written using the
reparametrization trick also as

x = p + oe, where e ~ N (0,I).

® The sum of two independent normally-distributed random variables x; ~ N([.Ll, O'%I) and
x2 ~ N (py, 051) has normal distribution N (p; + py, (07 + 03)I).

Therefore, if we have two standard normal random variables e, e ~ N (0, I), then

01€1 + 02€2 = 4/ O'% +a§e

for a standard normal random variable € ~ A(0, I).

N 30/73

DDPM - The Forward Process Uzt

We now describe Denoising Diffusion Probabilistic Models (DDPM).

pext1|Xt)
g O Oz)

F/gure 2of ! Denmsmg Diffusion robab///st/c Models", https://arxiv.org/abs/ 2006 11239

Given a data point X from a real data distribution g(x), we define a T-step diffusion process

(or the forward process) which gradually adds Gaussian noise according to some variance

schedule By, ..., Or:
T

q(x1.7[%0) = H q(xt|xt-1),

q(x¢|x¢-1) = N(xe5/1 — Bexe—1, Bed),
= /1—6x;_1 + \/Ee for e ~ N(0, I).

More noise gets gradually added to the original image Xq, converging to pure Gaussian noise.
NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 31/73

Let oy = 1 — B¢ and &y = szl a;. Then we have
X = v/ouXe1 + V1 — ey
= Vo (\/at_lxt_z + \/1 — Oét—1et—1) + 1 — aze;
= Jogor 1% 2 + Vo (1 —ap 1) + (1 — oy)e
= Joroy_1Xt-2 + /1 — apay 181

— \/atat—lat—2xt—3 + \/1 — O O_104_2€¢_2

= Varxg + v1— e
for standard normal random variables e; and e;.
In other words, we have shown that q(x;|xg) = /\/‘(\/&txo, (1— c_vt)I).

Therefore, if @; — 0 as t — 0o, the x; converges to N (0, I) as t — oo.

GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 32/73

DDPM - The Forward Process

Data

\

NPFL138, Lecture 13 GAN

UEL

Forward diffusion process (fixed)

X9

X3

/

GANConvergence

DiffusionModels

N

A
Noise
Xy cee X7
CVPR 2022 tutorial https://cvpr2022-tutorial-diffusion-models.github.io/
DDIM StableDiffusion NCSN Reading 33/73

DDPM

Originally, linearly increasing sequence of noise 101 — linear

variations 41 = 0.0001, ..., 87 = 0.04 was - cosine

used.
0.6

a:

However, the resulting sequence &; was not

ideal (nearly the whole second half of the
diffusion process was mostly just random
noise), so later a cosine schedule was proposed: 0.0

Q= %(cos(t/T—w) + 1),

0.4

0.2 A1

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Figure 5. & throughout diffusion in the linear schedule and our
proposed cosine schedule.
and now it is dominantly used.

In practice, we want to avoid both the values of 0 and 1, and keep oy in [e,1 — &] range.

DDPM 34/73

DDPM — Noise Schedule

We assume the images Xy have zero mean and unit variance (we normalize them to achieve

that). Then every
q(x¢|x0) = v aixo + V1 — ase

has also zero mean and unit variance.

The y/&; and /1 — &y can be considered as the signal rate and
the noise rate.

—2 —2 : :
Because \/a; + +/1 — a; = 1, the signal rate and the noise rate 1

form a circular arc. The proposed cosine schedule oy

Vay = cos(t/T - /2),

signal-to-noise power ratio\

ignal power = 1

noisq rate}oise power

V]. - at — SiIl(t/T ¢ 7.‘-/2), diffusiontime:(]:z

e

signal rate 1

signal power

corresponds to an uniform movement on this arc.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion

https://i.imgur.com/JWIWOFA. gif

NCSN Reading 35/73

DDPM - The Reverse Process Uzt

peXt1|Xt
o —E@ — O H

‘-_—’

F/gure 2of ' Deno:smg Diffusion Probab///st/c Models", https://arxiv. org/abs/2006 11239

In order to be able to generate images, we therefore learn a model pg (xt_1|xt) to approximate

the reverse of q(x¢|X¢—1).

When (3, is small, this reverse is nearly Gaussian, so we represent pg as
Do (X¢—1|%¢) :N(xt 15 g (Xt 1), 0 I)

for some fixed sequence of 01,...,07T.

The whole reverse process is then
T
Po (XO:T) — P(XT) thl Do (Xt—l |Xt)-

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 36/73

DDPM - Loss UL

We now want to derive the loss. First note that the reverse of q(x;|x;_1) is actually tractable
when conditioning on Xg:

q(X:1|%X¢,X0) = N(xt—ﬁﬁ't(xtaXO)aBtI)a
V104 Vor(l —ay 1)

ﬁt(XhXO) — 1— a, X0 + 1— &y Xty
1 — a1
1—a

B

We present the proof on the next slide for completeness.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 37/73

Forward Process Reverse Derivation ezt

Starting with the Bayes' rule, we get
q(x¢—1|%0)

Q(xt—1|xt7x0) — Q(Xt‘xt—bXO)

Q(Xt|xo)
(1 ((Xt — \/atxt—l)Z (Xt—l — 4/ @t—1X0)2 (Xt — 4/ @txo)z))

xexp| — = + - _ -

2 By 1 -y 1 — &y

]- x2— X :x2 :x2 — o X o x2
—exp (g (R e e)

1 Ja
=exp| — = (%+1_é_)x§1—2(*/_x + = _“xo) + ...

2 Bt -1 Bt

From this formulation, we can derive that q(x¢_1|X¢,Xg) = N(xt_l; B (Xt,X0), BtI) for
- l—a&
_ ai(l—ay_1)+p +8 . t—1
IBt o 1/(% 1— Oy 1) o 1/(tﬂt 1 tOé;l 1 t) o 1/(/5?1 tat 1) o /8t7

. JE a, V104 Vvai(l— at—l)
(e, %0) = (5% + L5 %0) 8 B = —a 0T 1 %

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 38/73

—Ey(x,) [logpo(%0)| = —Eq(x,) | 108 Epy (x,) [Po (X0 |2 1.7)]]
_ [(x :T)
T _EQ(XO) |: log Eq(xliT ‘XO) qz())ecl:TO‘ X()) :| i|

Pe(XOT)] (X1T|X0)

< —Eyxyn) [log 2Carix) | = Baxor) [10% po(X—OT)]

_ | (%% 1) q(x1]%0)
= Ey(x01) - log pe(x1) + thz log ;O(Xt_1|Xt) + log pe(xo,fl)}

i T
_ (xe—1|x¢,%0) _g(x¢|%0)
- EQ(XO:T) - 1ng0 XT ™ Z log (qpe(xlt1|xt()) Q%thb(lo)) +log

q(x¢—1|x¢,%0) (x7|%0)
ssor) |~ 0gPo(xr) + 3, log T6) - log 2 log

po (%o|x1)

+Zt , pjt;t"ft‘;:‘;) logpe(Xc)\xl)]

pe(xo \Xl)

a(xo) DKL< (xr[x0) 2o (xr)) +Z D (g(xc-1 131, o) [po(x1-1|x:) — logpe(x()IxQ]

LT L,

DDPM

39/73

The whole loss is therefore composed of the following components:

o Ly = Dkr(g(xr|%0)|lpe(xr)) is constant with respect to 8 and can be ignored,

o L; = Dy (q(x:—1]%¢,%0)||po(x¢—1|%)) is KL divergence between two Gaussians, so it
can be computed explicitly as

1 2
L, =FE (L, (X, X0) — X¢, t H
=B g o m0) —)|
[y = —logpe(xg|x1) can be used to generate discrete Xg from the continuous Xj; we

will ignore it in the slides for simplicity.

DDPM 40/73

DDPM — Reparametrizing Model Prediction

Recall that q(x;_1|x¢, X0)

L (Xta XO)

~

Br =

Because x; =

\/Oft 1515 Vor(l —ayq

i

)

1l — &y
].—O{t 1

1 a, B
v orXg + /1 — arer, we get Xg =

Substituting X to ft,, we get

73 (xtv XO)

_ B + oy (1 — C_Vt—l)xt B (

Vo161 <Xt_\/1_7&tet)_|_\/07t(1—07t—1)

1—at %

— N(Xt—l; ﬁt(xt7x0)7 /étI) for

Xt

\ﬁ(xt — 1 - éztet).

— Xt
]_—Oﬁt

1—a /& 1—a

t

B

1— a,

(1 —ae)y/ou

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels

N

1
m\/a—t)et - ﬁ("t N

DDPM DDIM StableDiffusion

- (\/mm - + Ve _at_l))xt — (@@s V1—ay

V& Je

V31— oy

NCSN Reading

].—Oft)
€: .

U=

41/73

We change our model to predict €g(x¢, t) instead of ptg(X¢,t). The loss L; then becomes
1
| 2[|o I

1 1 1 — oy 1

:E_ZHGtIH2 \/cTt<Xt_ met) @<Xt— mee(t))H2]

L =K

2
i (v) — g,)| |

(-’ 2

et
Ban(l = ap) o d]E I~ St

_E| (1= o)’ e; — €9 (vauxo + V1 — aye t)H2
| 204(1 — &y)l|o I ||? t 0 e .

The authors found that training without the weighting term performs better, so the final loss is
impl — — 2
Li’lmp C = Ete{l..T},xo,et [Het — &9 (\/ aixg +v1— ey, t) H]

Note that both losses have the same optimum if we used independent g, for every ¢.

GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 42/73

Algorithm 1 Training Algorithm 2 Sampling

1 repeat I: x7 ~ N(0,1)
2: XONQ(,XO) 2: fort=T,...,1do
ot %1(1301;)“({1’ > T}) 3.z~ N(0,1)ift > 1,elsez =0
- e ’ . 1 l—«
5: Take gradient descent step on doXe-1 = (Xt — /i—a; € (Xtat)> T 0z
Vo HG—EQ(\/@txo—I—\/l—@te,t)HQ 5: end for
6: until converged 6: return xg

In practice, instead of discrete, t may be continuous in the [0, 1] range. Note that sampling
using the proposed algorithm is slow — it is common to use T' = 1000 steps during sampling.

The value of 0,52 is chosen to be either B; or B, or any value in between (it can be proven that
these values correspond to upper and lower bounds on the reverse process entropy).

Both of these issues will be alleviated later, when we present DDIM providing an updated
sampling algorithm, which runs in several tens of steps and does not use at2.

DDPM 43/73

DDPM - Diffusion Models Architecture UL

The DDPM models the noise prediction €g(X¢,t) using a UNet architecture with pre-activated
ResNet blocks.

® The current (discrete/continuous) time step is represented using the Transformer sinusoidal
embeddings and added “in the middle” of every residual block (after the first convolution).

® Additionally, on several lower-resolution levels, a self-attention block (an adaptation of the
Transformer self-attention, which considers the 2D grid of features as a sequence of feature
vectors) is commonly used.

f(x)

franspose attention
convolution IxIcony ‘
feature maps (x) map
—jﬂ Qb softmax . self-attention
B [e® _TJI_\ feature maps (0)
T u ® |_| V(X) B]
Ix1conv T :I_I >
‘ Ixlconv 1
hx) [+

Ix1conv

Figure 2 of "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 44 /73

Diffusion Models Architecture — ImaGen Urzt

|

Conv
kernel_size=3X3
channels=128

v

DBlock 256x

2

DBlock 128x

)

DBlock 64x

v

DBlock 32x

v

DBlock 16x

v

|
|
|
|
|
’ UBlock 16x
|
|
|
|

v

UBlock 32x

v

UBlock 64x

2

UBlock 128x

)

UBlock 256x

v

Dense

channels=3

(=T}

l

2562 Tmage

Figure A.30 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https: //arxiv.org/abs/2205.11487

NPFL138, Lecture 13 GAN GANConvergence

DiffusionModels

N

\4

GroupNorm

swish

Conv

kernel_size=3X3

channels=channels

Conv
kernel_size=1Xx1
GI'OUPNOI'm channels=channels
swish
Conv

kernel_size=3X3

channels=channels

\{

Figure A.27 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https://arxiv.org/abs/2205.11487

DDPM DDIM StableDiffusion NCSN Reading 45/73

Diffusion Models Architecture — ImaGen

Previous DBlock

Conv
kernel_size=3X3
strides=stride
channels=channels

Conditional Embeddings
(e.g., Time, Pooled Text Embeddings)

CombineEmbs

ResNetBlock

channels=channels

Full Contextual Text Embeddings —

[—

Figure A.28 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https://arxiv.org/abs/2205.11487

SelfAttention
attention_heads=8

hidden_size=2Xchannels

output_size=channels

X numResNetBlocksPerBlock

Previous UBlock

l

Skip Connection from DBlock

Conditional Embeddings —{

CombineEmbs

ResNetBlock

channels=channels

Figure A.29 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https://arxiv.org/abs/2205.11487

Conv
kernel_size=3X3
strides=stride
channels=channels

X numResNetBlocksPerBlock

There are just minor differences in the ImaGen architecture — for example the place where the
time sinusoidal embeddings are added.

NPFL138, Lecture 13 GAN

GANConvergence

DiffusionModels N

DDPM DDIM

StableDiffusion

NCSN

Reading

==

7

46/73

In many cases we want the generative model to be conditional. We have already seen how to
condition it on the current time step. Additionally, we might consider also conditioning on

® an image (e.g., for super-resolution): the image is then resized and concatenated with the
input noised image (and optionally in other places, like after every resolution change);

® 3 text: the usual approach is to encode the text using some pre-trained encoder, and then to
introduce an “image-text” attention layer (usually after the self-attention layers).

To make the effect of conditioning stronger during sampling, we might also employ classifier-
free guidance:

® During training, we sometimes train €¢(X¢, t,y) with the conditioning ¥, and sometimes we
train €¢(X¢, t, @) without the conditioning.

® During sampling, we pronounce the effect of the conditioning by taking the unconditioned
noise and adding the difference between conditioned and unconditioned noise weighted by
the weight w (Stable Diffusion uses w = 7.5):

ee(xtatv @) T w(ee(xtvta y) T 69(Xt,t, @))

DDPM 47/73

We now describe Denoising Diffusion Implicit Models (DDIM), which utilize a different forward
process.

This forward process is designed to:

® allow faster sampling,

® have the same “marginals” g(x¢|xo) = N (v/&xo, (1 — a;)I).
The second condition will allow us to use the same loss as in DDPM — therefore, the training
algorithm is exactly identical do DDPM, only the sampling algorithm is different.

Note that in the slides, only a special case of DDIM is described; the original paper describes a

more general forward process. However, the special case presented here is almost exclusively
used.

DDIM 48/73

The forward process of DDIM can be described using

T

o (X1:7|%0) = qo (X7 |%0) H qo (X¢—1X¢, Xp),

t=2
where
* q(xr|xo) =N (Varxo, (1 — ar)l),
® qo(x¢_1|x¢t,%0) = N(Mxo + 1 — s 1 (Xt\;[%xo), 0- I).
With these definitions, we can prove by induction that go(x;|%xo) = N (v/@& X0, (1 — a;)I):
X1 = v/ Q1%0 + /1 — &1 (xif%x“)
= as_ 1%+ /1 — a1 (\/O_Ttxﬁ\/\}l_zétet_@xo) = Vay_1X9 + /1 — a;_1e;.

The real “forward” qo(x¢|x:—1,X0) can be expressed using Bayes' theorem using the above

definition, but we do not actually need it.

DDIM

49/73

Denoising Diffusion Implicit Models — The Reverse Process Ukt

The definition of go(X¢—1|X¢t,Xg) provides us also with a sampling algorithm — after sampling
the initial noise x7 ~ N (0, I), we perform the following for ¢ from T' down to 1:

T 1 =/ Q- 1X0 + \/1 — 160 (t, t)
X1 (wt\/l%eo(wt,t)) + \/1 _ C_Vt—lse(wt,t)-

An important property of qg is that it can also model several steps at once:

‘@/._*‘@%

g\ oLy
(iL'3|£B 330) 1(2| (

Figure 2 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

o (x¢ |X¢,%0) = N(\/o‘z_t,xo +v1—ay (%), O).

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 50/73

We base our accelerated sampling algorithm on the “multistep” qo (xt/ |xt, xo).

Let t¢g =T,ts_1,...,t; be a subsequence of the process steps (usually, a uniform
subsequence of T', ..., 1 is used), and let t; = 0. Starting from initial noise x7 ~ N (0, I),
we perform S sampling steps for ¢ from S down to 1:

s (B T e (o),

wti_l <— Q.

x(estimate

The sampling procedure can be described in words as follows:

® using the current time step t;, we compute the estimated noise g (&, t;);
® by utilizing the current signal rate y/&, and noise rate /1 — @, , we estimate Xg;

® we obtain @; , by combining the estimated signal X, and noise g9 (@, ,t;) using the signal

and noise rates of the time step ¢;_1.

DDIM

51/73

Denoising Diffusion Implicit Models — Accelerated Sampling

For comparison, we show both the original DD PM and the new DDIM sampling algorithms:
* sample &7 from N(0, I)

® lett¢g =T,tg_1,...,t1 = 1 be a subsequence of the process steps
o DDPM: the original sequence 7', ..., 1 is usually used

o DDIM: S regularly-spaced steps 7', Sng, S§2T, ..., 1 are usually used
O additionally, we define tg = 0

® fore=235,...,1:

].—Oét-
DDPM : Ly, | 4/ alti (azti — meg(wti,ti)) + O+ Z¢

. —a/1—0ay. ¢t ti
DDIM : @, « +/au | ("” V-G cel@y)) + /1= ay_ eq(as,, t;)

NS

A J
~

xo estimate

® return @,

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading

U=

52/73

DDIM - Accelerated Sampling Examples Uzt

dim(T) 1 .

dim(T) =100]
"-. ' -

sample timesteps sample timesteps

Figure 5 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 53/73

DDIM - Samples from Model Trained in Practicals

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels DDPM DDIM StableDiffusion NCSN Reading 54/73

e] .‘.
o -
i
"
[w
) y
"
! K

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading

Stable Diffusion — Semantic and Perceptual Compression Ukt

Semantic Compression

~ 80 = —

0 — Generative Model:

5 60 Latent Diffusion Model (LDM)

: N —

'é = Perceptual Compression

-g 20 v — Autoencoder+GAN
0 .\] ® o ® ‘ o

0 0.5 .0
Rate (bits/dim)

Figure 2 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 56/73

Stable Diffusion — Architecture

U=

FX
.— E Diffusion Process emantq
J Ma
P (Denoising U-Net €g Text
(T — 1) Repres
\| ﬂ entations
B &
z <T—1]
Elxel Spacs 3
: ' N
KV
denoising step crossattention switch skip connection concat
Figure 3 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 57/73

Recall that loglikelihood-based models explicit represent the density function, commonly
using an unnormalized probabilistic model

efe (X)
Zo '

po(x) =

and it is troublesome to ensure the tractability of the normalization constant Zg.

One way how to avoid the normalization is to avoid the explicit density pg(x), and represent a
score function instead, where the score function is the gradient of the log density:

se(x) = Vy log pg(x),

because

ef9 (X)

SB(X) — V:x 1ng0(x) — Vx log — fo@(x) o Yx 10g ZBJ — fog(x)-

0

0

NCSN 58/73

When we have a score function V log pg(x), we can use it to perform sampling from
the distribution pg(x) by using Langevin dynamics, which is an algorithm akin to SGD,
but performing sampling instead of optimum finding. Starting with xXg, we iteratively set

X;11 < X; + €Vy, logpe(x;) + V2¢z;, where z; ~ N(0,I).

. . PR TR A T T TR TR L M TR T AT v Tt
When € — 0 and K — o0, XK obtained by the Langevm 'h“g_;‘:_h.'_—_;_}:__'_.'1 Lot o
dynamics converges to a sample from the distribution pg(x). = =) IR S
BT s oo
=
B S AN A
A D A A B S O
l.l.lI.J'.ﬂ"..-’.’....f.lll.j.[.ll..ll
Rt f""’f"'{"r'i'r'ﬁ'n
ih-i-lr-l'-.-’-..-':';-"-llf--il--
AN
RN :[:"l'.:ﬁ
RISIE-S RSN 000N "'\'\ﬁ

GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 59/73

Score-Based Generative Modeling Urst

NATEASATATA A R R A A A 4y

l... :'. ~ \ e e S e e R T T »
- . .2. “ \ h‘“ﬂ-ﬂ-*‘hk - e s . . . - - A
e == M. —————— e e e e -
it | 'v?i.s:._‘ ° \ ¥ t - e -
..: J.':'.. ". \ ‘ ‘ - T v v - - -
... . ohd ::ttt*‘.”"'("ll“‘
> F ¥ ¥ ¥ 4 Ay Y
an SERRET DS SASEEREIN
e A A4 4 A4 kb hrN
- NN A I I I IS SN —
Y YY Y R L .
. score ,,,,4““::: Langevm
. . A A A A A A A A A -
oo matching - - - “““"'Hi“ dynamics
.. - """'11““*“—"—“‘-‘ ‘\
vrl--ht'!“““"‘-"—"—‘-‘l-ﬂl-—\\\
E v
- . A A L T e . B T T i e i \

!

L A T T R R R 2 T T T o e e

Data samples Scores New samples

{X17X2a e :XN} £ p(X) SG(X) ~ Vx logp(x)

https://yang-song.net /assets/img/score/smld. jpg

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 60/73

Noise Conditional Score Network

However, estimating the score function from data is inaccurate in low-density regions.

Data scores Estimated scores

Data density

https://yang-song.net/assets/img/score/pitfalls. jpg

In order to accurately estimate the score function in low-density regions, we perturb the data
distribution by isotropic Gaussian noise with various noise rates oy:

Qo (i) = EXNp(X) [N(ia X, JtzI)])

where the noise distribution g, (X|x) = N (X;x,02I) as analogous to the forward process in

the diffusion models.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 61/73

To train the score function sg(x,0:) = V log q,, (x), we need to minimize the
following objective:

[t 2~ q,, [”30 (X,0:) — Vi log g, (X) Hz} '

It can be shown (see P. Vincent: A connection between score matching and denoising
autoencoders) that it is equivalent to minimize the denoising score matching objective:

By eepta) g (0 |80 (% 00) = Va log g (%)]

“lx-x|t . x-x

2 2
2at o

normal random variable € ~ A (0, I), we can rewrite the objective to

In our case, Vxloggq,, (X|x) = Vx . Because X = x + o€ for standard

]Et,XNp(X),eNN(O,I) [HSH (X. + o€, Jt) _ ;_—te Hﬂ ’

so the score function basically estimates the noise given a noised image.

NCSN 62/73

Noise Conditional Score Network

Once we have trained the score function for various noise rates o;, we can sample using
annealed Langevin dynamics, where we utilize using gradually smaller noise rates ;.

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}F ¢ T.
1: Initialize x
e - — 2: fori < 1to L do
oo P : o — 3; ;< €-02/02 > «; is the step size.
LR . ' . 4: fort<+ 1toT do
: L : 5: Draw z; ~ N (0,)
6: Xt ¢ Xp—1 + %Se(it—la 0i) + 05z
7
8
9:

end for

X ¢ X7
end for
return X,

Algorithm 1 of "Generative Modeling by Estimating Gradients of the Data
Distribution”, https://arxiv.org/abs/1907.05600

,,,,,

https://yang-song.net/assets/img/score/multi_scale. jpg

Such a procedure is reminiscent to the reverse diffusion process sampling.

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 63/73

Martin Arjovsky, Soumith Chintala, Léon Bottou: Wasserstein GAN
https://arxiv.org/abs/1701.07875

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville:
Improved Training of Wasserstein GANSs https://arxiv.org/abs/1704.00028

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs
for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral
Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957
Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in
Generative Adversarial Nets https://arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High
Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for
Generative Adversarial Networks https://arxiv.org/abs/1812.04948

Reading 64/73

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1807.00751
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1812.04948

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 65/73

BigGAN Upt

VAL | PR g | R
) R) R o A

Figure 7 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 66/73

Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation
Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images
with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Bjorn Ommer: Taming Transformers for High-Resolution
Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, llya Sutskever: Zero-Shot Text-to-lmage Generation
https://arxiv.org/abs/2102.12092

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer: High-
Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752

Reading 67/73

https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752

Yang Song, Stefano Ermon: Generative Modeling by Estimating Gradients of the Data
Distribution https://arxiv.org/abs/1907.05600

Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models
https://arxiv.org /abs/2006.11239

Jiaming Song, Chenlin Meng, Stefano Ermon: Denoising Diffusion Implicit Models
https://arxiv.org/abs/2010.02502

Alex Nichol, Prafulla Dhariwal: Improved Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2102.09672

Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis
https://arxiv.org/abs/2105.05233

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer: High-
Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752

Reading 68/73

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2112.10752

® Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, M. Norouzi:
Image Super-Resolution via Iterative Refinement https://arxiv.org/abs/2104.07636

GAN GANConvergence DiffusionModels N DDIM StableDiffusion NCSN Reading 69/73

https://arxiv.org/abs/2104.07636

Diffusion-Based Text-Conditional Image Generation

® Alex Nichol et al.: GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models https://arxiv.org/abs/2112.10741

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”

Figure 1 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 70/73

https://arxiv.org/abs/2112.10741

Diffusion-Based Text-Conditional Image Generation Vet

“zebras roaming in the field”

“a man with red hair” “a vase of flowers”

“an old car in a snowy forest” “a man wearing a white hat”

Figure 2 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 71/73

Diffusion-Based Text-Conditional Image Generation

® Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, et al.: Photorealistic
Text-to-lmage Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487

bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

Figure 1 of "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, https://arxiv.org/abs/2205.11487

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading 72/73

https://arxiv.org/abs/2205.11487

Normalizing Flows

® [aurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent
Components Estimation https://arxiv.org/abs/1410.8516

® [aurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP
https: //arxiv.org/abs/1605.08803

® Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1
Convolutions https://arxiv.org/abs/1807.03039

Figure 1 of "Glow: Generative Flowwith Invertible 1x1 Convolutions”, https://arxiv.org/abs/1807.03039

NPFL138, Lecture 13 GAN GANConvergence DiffusionModels N DDPM DDIM StableDiffusion NCSN Reading

U\’L

73/73

https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1807.03039

