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Generative Models

 

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/generative-overview.png

There are several approaches how to represent a
probability distribution . Likelihood-based

models represent the probability density function
directly, often using an unnormalized probabilistic
model (also called energy-based model; i.e.,
specifying a non-zero score or density or logits):

However, estimating the normalization constant 

 is often intractable.

We can compute  by restricting the model architecture (sequence modeling, invertible

networks in normalizing flows);
we can only approximate it (using for example variational inference as in VAE);
we can use implicit generative models, which avoid representing likelihood (like GANs).

P (x)

P  (x) =θ  .
Z  θ

ef  (x)θ

Z  =θ e dx∫ f  (x)θ

Z  θ
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Generative Adversarial Networks

We have a generator , which given  generates data .

Then we have a discriminator , which given data  generates a probability whether 

 comes from real data or is generated by a generator.

The discriminator and generator play the following game:

 

https://miro.medium.com/v2/1*-ucVYsbDnwa2NM-f5qm_Yg.png

G(z; θ  )g z ∼ P (z) x

D(x; θ  )d x

x

 E  [logD(x)] +
G

min
D

max x∼P  data E  [log(1 −z∼P (z) D(G(z)))].
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Generative Adversarial Networks

 

Figure 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661

The generator and discriminator are alternately trained, the discriminator by

and the generator by

Basically, the discriminator acts as a trainable loss for the generator.

 E  [logD(x)] +
θ  d

arg max x∼P  data E  [log(1 −z∼P (z) D(G(z)))]

 E  [log(1 −
θ  g

arg min z∼P (z) D(G(z)))].
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Generative Adversarial Networks

Because  can saturate at the beginning of the training, where the

discriminator can easily distinguish real and generated samples, the generator can be trained by

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

On top of that, if you train the generator by using “real” as the gold label of the discriminator,
you naturally get the above loss (which is the negative log likelihood, contrary to the original
formulation).

log(1 − D(G(z)))

 E  [− logD(G(z))]
θ  g

arg min z∼P (z)
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Generative Adversarial Networks

 

Algorithm 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661
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Generative Adversarial Networks

 

Figure 2 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661
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Conditional GAN

 

Figure 1 of "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784

Assuming our dataset is conditional, i.e.,
the individual examples are pairs 

with  being the image class, GANs can be

easily extended to allow conditioning:

the generator gets  as an additional

input: ,

the discriminator also gets  as an

additional input: .

(x, y)
y

y

G(z, y)

y

D(x, y)
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Deep Convolutional GAN

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

 

Figure 1 of "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269
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Deep Convolutional GAN

 

Figure 1 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 3 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 4 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 8 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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GANs Training — Training Experience

 

https://miro.medium.com/max/1400/1*r8cuSIaM5oHUERP01TCTxg.jpeg
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GANs Training – Results of In-House BigGAN Training
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GANs are Problematic to Train

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem – consider the following one:

The update rules of  and  for learning rate  are

The update matrix is a rotation matrix multiplied by a constant 

so the SGD will not converge with arbitrarily small step size.

  x ⋅
x

min
y

max y.

x y α

 =[
x  n+1

y  n+1
]    .[

1
α

−α
1

] [
x  n

y  n
]

 >1 + α2 1

  =[
1
α

−α
1 ]  ⋅1 + α2

  ,[
cosφ
sinφ

− sinφ
cosφ ]
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GANs are Problematic to Train

 

Figure 1 of "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647
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GANs are Problematic to Train

GANs suffer from “mode collapse”

 

Figure 2 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

 

Figure 5 of "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446
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GANs are Problematic to Train

The training can be improved by various tricks:

If the discriminator could see the whole batch, similar samples in it would be candidates for
fake images.

Batch normalization helps a lot with this.

Unrolling the discriminator update helps generator to consider not just the current
discriminator, but also how the future versions would react to the generator outputs. (The
discriminator training is unchanged.)

 

Figure 1 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

Many others, like Wasserstein GAN, spectral normalization, progressive growing, …
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Comparison of VAEs and GANs

The Variational Autoencoders:

are theoretically-pleasing;
also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction (the VAE encoder is used in various modeling architectures);
the generated samples tend to be blurry, especially with  or  loss (because of the

sampling used in the reconstruction; patch-based discriminator with perceptual loss helps).

The Generative Adversarial Networks:

offer high sample quality;
are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, since 2019/2020, VAEs have shown remarkable progress (alleviating the blurriness
issue by using perceptual loss and a 2D grid of latent variables), and are being used for
generation too. Furthermore, additional approaches (normalizing flows, diffusion models) were
also being explored, with diffusion models becoming the most promising approach since Q2 of
2021, surpassing both VAEs and GANs.

L1 L2
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Diffusion Models

Currently (as of May 2023), the best architecture for generating images seems to be the
diffusion models.

 

https://images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e/0715034d-4044-4c55-9131-e4bfd6dd20ca/2_4x.png

The diffusion models are deeply connected to score-based generative models, which were
developed independently. These two approaches are in fact just different perspectives of the
same model family, and many recent papers utilize both sides of these models.
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Diffusion Models – Overview, Processes

 

https://miro.medium.com/v2/1*jKDPZ9vo2gl0BGKpw9_IKw.png
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Diffusion Models – Diffusion Process, Reverse Process

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

Given a data point  from a real data distribution , we define a -step diffusion process

(or the forward process) which gradually adds Gaussian noise to the input image:

Our goal is to reverse the forward process , and generate an image by starting with 

, and then performing the forward process in reverse. We therefore learn a model

 to approximate the reverse of , and obtain a reverse process:

x  0 q(x) T

q(x ∣x ) =1:T 0  q(x  ∣x  ).∏
t=1

T

t t−1

q(x  ∣x  )t t−1

x  ∼T N (0, I)
p  (x  ∣x  )θ t−1 t q(x  ∣x  )t t−1

p  (x  ) =θ 0:T p(x  )  p  (x  ∣x  ).T ∏
t=1

T

θ t−1 t
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Diffusion Models – The Diffusion Process

 

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/diffusion-example.png
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Diffusion Models – The Diffusion Process
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Diffusion Models – Model Overview

 

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with

Deep Language Understanding",
https://arxiv.org/abs/2205.11487

The  is commonly modelled using a UNet architecture with skip

connections.

Training

During training, we randomly sample a time step , and perform an update of

the parameters  in order for  to better approximate the reverse

of .

Sampling

In order to sample an image, we start by sampling , and then

perform  steps of the reverse process by sampling  for 

 from  down to 1.

p  (x  ∣x  )θ t−1 t

t

θ p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1

x  ∼T N (0, I)
T x  ∼t−1 p  (x  ∣x  )θ t−1 t

t T
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Normal Distribution Reminder

 

Figure 3.1 of "Deep Learning" book,
https://www.deeplearningbook.org

Normal (or Gaussian) distribution is a continuous distribution
parametrized by a mean  and variance :

For a -dimensional vector , the multivariate Gaussian distribution takes the form

The biggest difference compared to the single-dimensional case is the covariance matrix ,

which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size .

However, in this lecture we will only consider isotropic distribution, where :

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2
)

D x

N (x;μ,Σ) =def
 exp −  (x− μ) Σ (x− μ) .
 (2π) ∣Σ∣D

1
(

2
1 T −1 )

Σ

D × D

Σ = σ I2

N (x;μ,σ I) =2
 N (x  ;μ  ,σ ).∏
i

i i
2
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Normal Distribution Reminder

A normally-distributed random variable  can be written using the

reparametrization trick also as

The sum of two independent normally-distributed random variables  and 

 has normal distribution .

Therefore, if we have two standard normal random variables , then

for a standard normal random variable .

x ∼ N (μ,σ I)2

x = μ+ σe,   where  e ∼ N (0, I).

x  ∼1 N (μ  ,σ  I)1 1
2

x  ∼2 N (μ  ,σ  I)2 2
2 N(μ  +1 μ  , (σ  +2 1

2 σ  )I)2
2

e  , e  ∼1 2 N (0, I)

σ  e  +1 1 σ  e  =2 2  eσ  + σ  1
2

2
2

e ∼ N (0, I)
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DDPM – The Forward Process

We now describe Denoising Diffusion Probabilistic Models (DDPM).

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

Given a data point  from a real data distribution , we define a -step diffusion process

(or the forward process) which gradually adds Gaussian noise according to some variance
schedule :

More noise gets gradually added to the original image , converging to pure Gaussian noise.

x  0 q(x) T

β  , … , β  1 T

=q(x  ∣x  )1:T 0  q(x  ∣x  ),
t=1

∏
T

t t−1

=q(x  ∣x  )t t−1 N (x  ;  x  , β  I),t 1 − β  t t−1 t

=  x  +1 − βt t−1  e  for  e ∼β  t N (0, I).

x  0
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DDPM – The Forward Process

Let  and . Then we have

for standard normal random variables  and .

In other words, we have shown that .

Therefore, if  as , the  converges to  as .

α  =t 1 − β  t  =ᾱt  α  ∏i=1
t

i

=x  t  x  +α  t t−1  e  1 − α  t t

=  (  x  +α  t α  t−1 t−2  e  )+1 − α  t−1 t−1  e  1 − α  t t

=  x  +α  α  t t−1 t−2   α  (1 − α  ) + (1 − α  )t t−1 t ēt−1

=  x  +α  α  t t−1 t−2   1 − α  α  t t−1 ēt−1

=  x  +α  α  α  t t−1 t−2 t−3   1 − α  α  α  t t−1 t−2 ēt−2

= …

=  x  + ᾱt 0   1 −  ᾱt ē0

e  i  ēi
q(x  ∣x  ) =t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt

 →ᾱt 0 t → ∞ x  t N (0, I) t → ∞
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DDPM – The Forward Process

 

CVPR 2022 tutorial https://cvpr2022-tutorial-diffusion-models.github.io/
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DDPM – Noise Schedule

 

Figure 5 of "Improved Denoising Diffusion Probabilistic Models",
https://arxiv.org/abs/2102.09672

Originally, linearly increasing sequence of noise
variations  was

used.

However, the resulting sequence  was not

ideal (nearly the whole second half of the
diffusion process was mostly just random
noise), so later a cosine schedule was proposed:

and now it is dominantly used.

In practice, we want to avoid both the values of 0 and 1, and keep  in  range.

β  =1 0.0001, … , β  =T 0.04

 ᾱt

 =ᾱt  ( cos(t/T ⋅
2
1

π) + 1),

α  t [ε, 1 − ε]
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DDPM – Noise Schedule

 

https://i.imgur.com/JW9W0fA.gif

We assume the images  have zero mean and unit variance (we normalize them to achieve

that). Then every

has also zero mean and unit variance.

The  and  can be considered as the signal rate and

the noise rate.

Because , the signal rate and the noise rate

form a circular arc. The proposed cosine schedule

corresponds to an uniform movement on this arc.

x  0

q(x  ∣x  ) =t 0  x  +ᾱt 0  e1 −  ᾱt

 ᾱt  1 −  ᾱt

 +ᾱt
2

 =1 −  ᾱt
2

1

  

  ᾱt

 1 −  ᾱt

= cos(t/T ⋅ π/2),

= sin(t/T ⋅ π/2),
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DDPM – The Reverse Process

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

In order to be able to generate images, we therefore learn a model  to approximate

the reverse of .

When  is small, this reverse is nearly Gaussian, so we represent  as

for some fixed sequence of .

The whole reverse process is then

p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1

β  t p  θ

p  (x  ∣x  ) =θ t−1 t N(x  ;μ  (x  , t),σ  I)t−1 θ t t
2

σ  , … ,σ  1 T

p  (x  ) =θ 0:T p(x  )  p  (x  ∣x  ).T ∏
t=1

T

θ t−1 t
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DDPM – Loss

We now want to derive the loss. First note that the reverse of  is actually tractable

when conditioning on :

We present the proof on the next slide for completeness.

q(x  ∣x  )t t−1

x  0

=q(x  ∣x  ,x  )t−1 t 0 N(x  ;   (x  ,x  ),   I),t−1 μ
~
t t 0 β

~
t

=  (x  ,x  )μ~t t 0  x  +
1 −  ᾱt

 β   ᾱt−1 t
0  x  ,

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

=  β
~
t  β  .

1 −  ᾱt

1 −  ᾱt−1
t
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Forward Process Reverse Derivation

Starting with the Bayes' rule, we get

From this formulation, we can derive that  for

=q(x  ∣x  ,x  )t−1 t 0 q(x  ∣x  ,x  )  t t−1 0
q(x  ∣x  )t 0

q(x  ∣x  )t−1 0

∝ exp( −  (  +
2
1

β  t

(x  −  x  )t α  t t−1
2

 −
1 −  ᾱt−1

(x  −  x  )t−1  ᾱt−1 0
2

 ))
1 −  ᾱt

(x  −  x  )t  ᾱt 0
2

= exp( −  (  +
2
1

β  t

x  −2  x  x  +α  x  t
2 α  t t t−1 t t−1

2

 +1−  ᾱt−1

x  −2  x  x  +  x  t−1
2

 ᾱt−1 t−1 0 ᾱt−1 0
2

…))

= exp( −  ((  +
2
1

β  t

α  t
 )x  −1−  ᾱt−1

1
t−1
2 2(  x  +

β  t

 αt
t  x  )x  +1−  ᾱt−1

  ᾱt−1
0 t−1 …))

q(x  ∣x  ,x  ) =t−1 t 0 N(x  ;   (x  ,x  ),   I)t−1 μ
~
t t 0 β

~
t

=  β
~
t 1/(  +

β  t

α  t
 ) =1−  ᾱt−1

1 1/(  ) =
β  (1−  )t ᾱt−1

α  (1−  )+β  t ᾱt−1 t 1/(  ) =
β  (1−  )t ᾱt−1

α  +β  −  t t ᾱt
 β  ,

1 −  ᾱt

1 −  ᾱt−1
t

=  (x  ,x  )μ~t t 0 (  x  +β  t

 α  t

t  x  )  β  =1−  ᾱt−1

  ᾱt−1
0 1−  ᾱt

1−  ᾱt−1
t  x  +

1 −  ᾱt

 β   ᾱt−1 t
0  x  .

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t
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DDPM – Deriving Loss using Jensen's Inequality

−E  [ log p  (x  )] =q(x  )0 θ 0 −E  [ logE  [p  (x  ∣x  )]]q(x  )0 p  (x  )θ 1:T θ 0 1:T

= −E  [ logE  [  ]]q(x  )0 q(x  ∣x  )1:T 0 q(x  ∣x  )1:T 0

p  (x  )θ 0:T

≤ −E  [ log  ] =q(x  )0:T q(x  ∣x  )1:T 0

p  (x  )θ 0:T E  [ log  ]q(x  )0:T p  (x  )θ 0:T

q(x  ∣x  )1:T 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log  +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log(   ) +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0

q(x  ∣x  )t−1 0

q(x  ∣x  )t 0 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log  +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0 log  +
q(x  ∣x  )1 0

q(x  ∣x  )T 0 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ log  +q(x  )0:T p  (x  )θ T

q(x  ∣x  )T 0
 log  −∑

t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0 log p  (x  ∣x  )]θ 0 1

= E  [  +q(x  )0:T

L  T

 D  (q(x  ∣x  )∥p  (x  ))KL T 0 θ T    ]∑
t=2

T

L  t

 D  (q(x  ∣x  , x  )∥p  (x  ∣x  )KL t−1 t 0 θ t−1 t

L  0

 − log p  (x  ∣x  )θ 0 1
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DDPM – Deriving Loss using Jensen's Inequality

The whole loss is therefore composed of the following components:

 is constant with respect to  and can be ignored,

 is KL divergence between two Gaussians, so it

can be computed explicitly as

 can be used to generate discrete  from the continuous ; we

will ignore it in the slides for simplicity.

L  =T D  (q(x  ∣x  )∥p  (x  ))KL T 0 θ T θ

L  =t D  (q(x  ∣x  ,x  )∥p  (x  ∣x  ))KL t−1 t 0 θ t−1 t

L  =t E[  (x ,x  ) −
2∥σ I∥t

2

1
μ~t t 0 μ  (x  , t)  ],θ t

2

L  =0 − log p  (x  ∣x  )θ 0 1 x  0 x  1
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DDPM – Reparametrizing Model Prediction

Recall that  for

Because , we get .

Substituting  to , we get

q(x  ∣x  ,x  ) =t−1 t 0 N(x  ;   (x  ,x  ),   I)t−1 μ
~
t t 0 β

~
t

=  (x  ,x  )μ~t t 0  x  +
1 −  ᾱt

 β   ᾱt−1 t
0  x  ,

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

=  β
~
t  β  .

1 −  ᾱt

1 −  ᾱt−1
t

x  =t  x  + ᾱt 0  e  1 − ᾱt t x  =0  (x  −
  ᾱt

1
t  e  )1 −  ᾱt t

x  0   μ~t

=  (x  ,x  )μ~t t 0   (x  −
1 −  ᾱt

 β   ᾱt−1 t

 ᾱt

1
t  e  ) +1 −  ᾱt t  x  

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

= (   +
1 −  ᾱt

 β   ᾱt−1 t

 ᾱt

1
 )x  −

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t (   )e  

1 −  ᾱt

 β   ᾱt−1 t

  ᾱt

 1 −  ᾱt
t

=  x  −
(1 −  )  ᾱt α  t

β  + α  (1 −  )t t ᾱt−1
t (  )e  =

  1 −  ᾱt α  t

β  t
t  (x  −

 α  t

1
t e  ).

1 −  ᾱt

1 − α  t
t
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DDPM – Reparametrizing Model Prediction

We change our model to predict  instead of . The loss  then becomes

The authors found that training without the weighting term performs better, so the final loss is

Note that both losses have the same optimum if we used independent  for every .

ε  (x  , t)θ t μ  (x  , t)θ t L  t

=L  t E[     (x  ,x  ) −
2∥σ  I∥t

2

1
μ~t t 0 μ  (x  , t)  ]θ t

2

= E[    (x  −
2∥σ  I∥t

2

1
 α  t

1
t  e  ) −

 1 −  ᾱt

1 − α  t
t  (x  −

 α  t

1
t  ε  (x  , t))  ]

 1 −  ᾱt

1 − α  t
θ t

2

= E[   e  −
2α  (1 −  )∥σ  I∥t ᾱt t

2

(1 − α  )t 2

t ε  (x  , t)  ]θ t

2

= E[   e  −
2α  (1 −  )∥σ  I∥t ᾱt t

2

(1 − α  )t 2

t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

L  =t
simple E  [  e  −t∈{1..T },x  ,e  0 t t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

ε  θ  t
t
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DDPM – Training and Sampling Algorithms

 

Algorithms 1, 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

In practice, instead of discrete,  may be continuous in the  range. Note that sampling

using the proposed algorithm is slow – it is common to use  steps during sampling.

The value of  is chosen to be either  or , or any value in between (it can be proven that

these values correspond to upper and lower bounds on the reverse process entropy).

Both of these issues will be alleviated later, when we present DDIM providing an updated
sampling algorithm, which runs in several tens of steps and does not use .

t [0, 1]
T = 1000

σ  t
2 β  t   β

~
t

σ  t
2
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DDPM – Diffusion Models Architecture

The DDPM models the noise prediction  using a UNet architecture with pre-activated

ResNet blocks.

The current (discrete/continuous) time step is represented using the Transformer sinusoidal
embeddings and added “in the middle” of every residual block (after the first convolution).

Additionally, on several lower-resolution levels, a self-attention block (an adaptation of the
Transformer self-attention, which considers the 2D grid of features as a sequence of feature
vectors) is commonly used.

 

Figure 2 of "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318

ε  (x  , t)θ t
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Diffusion Models Architecture – ImaGen

 

Figure A.30 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

 

 

Figure A.27 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487
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Diffusion Models Architecture – ImaGen

 

Figure A.28 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

 

 

Figure A.29 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

There are just minor differences in the ImaGen architecture – for example the place where the
time sinusoidal embeddings are added.
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Conditional Models, Classifier-Free Guidance

In many cases we want the generative model to be conditional. We have already seen how to
condition it on the current time step. Additionally, we might consider also conditioning on

an image (e.g., for super-resolution): the image is then resized and concatenated with the
input noised image (and optionally in other places, like after every resolution change);

a text: the usual approach is to encode the text using some pre-trained encoder, and then to
introduce an “image-text” attention layer (usually after the self-attention layers).

To make the effect of conditioning stronger during sampling, we might also employ classifier-
free guidance:

During training, we sometimes train  with the conditioning , and sometimes we

train  without the conditioning.

During sampling, we pronounce the effect of the conditioning by taking the unconditioned
noise and adding the difference between conditioned and unconditioned noise weighted by
the weight  (Stable Diffusion uses ):

ε  (x  , t, y)θ t y

ε  (x  , t,∅)θ t

w w = 7.5

ε  (x  , t,∅) +θ t w(ε  (x  , t, y) −θ t ε (x , t,∅)).θ t
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Denoising Diffusion Implicit Models

We now describe Denoising Diffusion Implicit Models (DDIM), which utilize a different forward
process.

This forward process is designed to:

allow faster sampling,

have the same “marginals” .

The second condition will allow us to use the same loss as in DDPM – therefore, the training
algorithm is exactly identical do DDPM, only the sampling algorithm is different.

Note that in the slides, only a special case of DDIM is described; the original paper describes a
more general forward process. However, the special case presented here is almost exclusively
used.

q(x  ∣x  ) =t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt
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Denoising Diffusion Implicit Models – The Forward Process

The forward process of DDIM can be described using

where

,

.

With these definitions, we can prove by induction that :

.

The real “forward”  can be expressed using Bayes' theorem using the above

definition, but we do not actually need it.

q  (x  ∣x  ) =0 1:T 0 q  (x  ∣x  )  q  (x  ∣x  ,x  ),0 T 0 ∏
t=2

T

0 t−1 t 0

q  (x  ∣x  ) =0 T 0 N(  x  , (1 − ᾱT 0  )I)ᾱT

q  (x  ∣x  ,x  ) =0 t−1 t 0 N(  x  + ᾱt−1 0  (  ), 0 ⋅1 −  ᾱt−1
 1−  ᾱt

x  −  x  t  ᾱt 0 I)

q  (x  ∣x  ) =0 t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt

=x  t−1  x  + ᾱt−1 0  (  )1 −  ᾱt−1
 1−  ᾱt

x  −  x  t  ᾱt 0

=  x  + ᾱt−1 0  (  ) =1 −  ᾱt−1
 1−  ᾱt

 x  +  e  −  x   ᾱt 0 1−  ᾱt t  ᾱt 0
 x  + ᾱt−1 0  e  1 −  ᾱt−1 t

q  (x  ∣x  ,x  )0 t t−1 0
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Denoising Diffusion Implicit Models – The Reverse Process

The definition of  provides us also with a sampling algorithm – after sampling

the initial noise , we perform the following for  from  down to 1:

An important property of  is that it can also model several steps at once:

 

Figure 2 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

q  (x  ∣x  ,x  )0 t−1 t 0

x  ∼T N (0, I) t T

  

x  t−1 =  x  +  ε  (x  , t) ᾱt−1 0 1 −  ᾱt−1 θ t

=  (  ) +  ε  (x  , t). ᾱt−1
  ᾱt

x  −  ε  (x  ,t)t 1−  ᾱt θ t 1 −  ᾱt−1 θ t

q  0

q  (x  ∣x  ,x  ) =0 t′ t 0 N(  x  + ᾱt′ 0  (  ),0).1 −  ᾱt′
 1−  ᾱt

x  −  x  t  ᾱt 0
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Denoising Diffusion Implicit Models – Accelerated Sampling

We base our accelerated sampling algorithm on the “multistep” .

Let  be a subsequence of the process steps (usually, a uniform

subsequence of  is used), and let . Starting from initial noise ,

we perform  sampling steps for  from  down to 1:

The sampling procedure can be described in words as follows:

using the current time step , we compute the estimated noise ;

by utilizing the current signal rate  and noise rate , we estimate ;

we obtain  by combining the estimated signal  and noise  using the signal

and noise rates of the time step .

q  (x  ∣x  ,x  )0 t′ t 0

t  =S T , t  , … , t  S−1 1

T , … , 1 t  =0 0 x  ∼T N (0, I)
S i S

x  ←t  i−1  (  ) + ᾱt  i−1

x   estimate0

  

  ᾱt  i

x  −  ε  (x  ,t  )t  i
1−  ᾱt  i θ t  i i

 ε  (x  , t  ).1 −  ᾱt  i−1 θ t  i i

t  i ε  (x  , t  )θ t  i i

 ᾱt  i
 1 −  ᾱt  i

x  0

x  t  i−1 x  0 ε  (x  , t  )θ t  i i

t  i−1
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Denoising Diffusion Implicit Models – Accelerated Sampling

For comparison, we show both the original  and the new  sampling algorithms:

sample  from 

let  be a subsequence of the process steps

: the original sequence  is usually used

:  regularly-spaced steps  are usually used

additionally, we define 

for :

return 

DDPM DDIM

x  T N (0, I)

t  =S T , t  , … , t  =S−1 1 1
DDPM T , … , 1
DDIM S T ,  T ,  T , … , 1

S
S−1

S
S−2

t  =0 0

i = S, … , 1

  

DDPM :

DDIM :

x  ←  (x  −  ε  (x  , t  )) + σ  z  t  i−1  

α  t  i

1
t  i

 1−  ᾱt  i

1−α  t  i
θ t  i i t t

x  ←  (  ) +  ε  (x  , t  )t  i−1  ᾱt  i−1

x   estimate0

  

  ᾱt  i

x  −  ε  (x  ,t  )t  i
1−  ᾱt  i θ t  i i

1 −  ᾱt  i−1 θ t  i i

x  0
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DDIM – Accelerated Sampling Examples

 

Figure 3 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

 

Figure 5 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502
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DDIM – Samples from Model Trained in Practicals
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DDIM – Conditional Samples from Model Trained in Practicals
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Stable Diffusion – Semantic and Perceptual Compression

 

Figure 2 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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Stable Diffusion – Architecture

 

Figure 3 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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Score Matching

Recall that loglikelihood-based models explicit represent the density function, commonly
using an unnormalized probabilistic model

and it is troublesome to ensure the tractability of the normalization constant .

One way how to avoid the normalization is to avoid the explicit density , and represent a

score function instead, where the score function is the gradient of the log density:

because

p  (x) =θ  ,
Z  θ

ef  (x)θ

Z  θ

p  (x)θ

s  (x) =θ ∇  log p  (x),x θ

s  (x) =θ ∇  log p  (x) =x θ ∇  log  =x
Z  θ

ef  (x)θ

∇  f  (x) −x θ  =

0

 ∇  logZ  x θ ∇  f  (x).x θ
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Langevin Dynamics

 

https://yang-song.net/assets/img/score/langevin.gif

When we have a score function , we can use it to perform sampling from

the distribution  by using Langevin dynamics, which is an algorithm akin to SGD,

but performing sampling instead of optimum finding. Starting with , we iteratively set

When  and ,  obtained by the Langevin

dynamics converges to a sample from the distribution .

∇  log p  (x)x θ

p  (x)θ

x  0

x  ←i+1 x  +i ε∇  log p  (x  ) +x  i θ i  z  ,   where  z  ∼2ε i i N (0, I).

ε → 0 K → ∞ x  K

p  (x)θ
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Score-Based Generative Modeling

 

https://yang-song.net/assets/img/score/smld.jpg

60/73NPFL138, Lecture 13 GAN GANConvergence DiffusionModels DDPM DDIM StableDiffusion NCSN ReadingN



Noise Conditional Score Network

However, estimating the score function from data is inaccurate in low-density regions.

 

https://yang-song.net/assets/img/score/pitfalls.jpg

In order to accurately estimate the score function in low-density regions, we perturb the data
distribution by isotropic Gaussian noise with various noise rates :

where the noise distribution  as analogous to the forward process in

the diffusion models.

σ  t

q  ( )σ  t
x~ =def E  [N ( ;x,σ  I)],x∼p(x) x~ t

2

q  ( ∣x) =σ  t
x~ N ( ;x,σ  I)x~ t

2
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Noise Conditional Score Network

To train the score function , we need to minimize the

following objective:

It can be shown (see P. Vincent: A connection between score matching and denoising
autoencoders) that it is equivalent to minimize the denoising score matching objective:

In our case, . Because  for standard

normal random variable , we can rewrite the objective to

so the score function basically estimates the noise given a noised image.

s  (x,σ  ) =θ t ∇  log q  (x)x σ  t

E  [  s  ( ,σ  ) −t, ∼q  x~ σ  t θ x~ t ∇  log q  ( )  ].x~ σ  t
x~ 2

E  [  s  ( ,σ  ) −t,x∼p(x), ∼q  ( ∣x)x~ σ  t
x~ θ x~ t ∇  log q  ( ∣x)  ].x~ σ  t

x~ 2

∇  log q  ( ∣x) =x~ σ  t
x~ ∇  =x~ 2σ  t

2
−∥ −x∥x~ 2

−
σ  t

2
−xx~ =x~ x+ σ  et

e ∼ N (0, I)

E  [  s  (x+t,x∼p(x),e∼N (0,I) θ σ  e,σ  ) −t t   ],
σ  t

−e 2
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Noise Conditional Score Network

Once we have trained the score function for various noise rates , we can sample using

annealed Langevin dynamics, where we utilize using gradually smaller noise rates .

 

https://yang-song.net/assets/img/score/multi_scale.jpg

 

Algorithm 1 of "Generative Modeling by Estimating Gradients of the Data
Distribution", https://arxiv.org/abs/1907.05600

Such a procedure is reminiscent to the reverse diffusion process sampling.

σ  t

σ  t
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Development of GANs

Martin Arjovsky, Soumith Chintala, Léon Bottou: Wasserstein GAN

https://arxiv.org/abs/1701.07875
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville:
Improved Training of Wasserstein GANs https://arxiv.org/abs/1704.00028
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs

for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral

Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957
Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in

Generative Adversarial Nets https://arxiv.org/abs/1807.00751
Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High

Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096
Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for

Generative Adversarial Networks https://arxiv.org/abs/1812.04948
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BigGAN

 

Figure 1 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096

 

Figure 2 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096
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BigGAN

 

Figure 7 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096
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Development of VAEs

Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation

Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images

with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Björn Ommer: Taming Transformers for High-Resolution

Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, Ilya Sutskever: Zero-Shot Text-to-Image Generation

https://arxiv.org/abs/2102.12092

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer: High-

Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/abs/2112.10752
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Development of Diffusion Models

Yang Song, Stefano Ermon: Generative Modeling by Estimating Gradients of the Data

Distribution https://arxiv.org/abs/1907.05600

Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models

https://arxiv.org/abs/2006.11239

Jiaming Song, Chenlin Meng, Stefano Ermon: Denoising Diffusion Implicit Models

https://arxiv.org/abs/2010.02502

Alex Nichol, Prafulla Dhariwal: Improved Denoising Diffusion Probabilistic Models

https://arxiv.org/abs/2102.09672

Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis

https://arxiv.org/abs/2105.05233

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer: High-

Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/abs/2112.10752
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SR3 Super-Resolution via Diffusion

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, M. Norouzi:
Image Super-Resolution via Iterative Refinement https://arxiv.org/abs/2104.07636
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Diffusion-Based Text-Conditional Image Generation

Alex Nichol et al.: GLIDE: Towards Photorealistic Image Generation and Editing with

Text-Guided Diffusion Models https://arxiv.org/abs/2112.10741

 

Figure 1 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation

 

Figure 2 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, et al.: Photorealistic

Text-to-Image Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487

 

Figure 1 of "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", https://arxiv.org/abs/2205.11487

72/73NPFL138, Lecture 13 GAN GANConvergence DiffusionModels DDPM DDIM StableDiffusion NCSN ReadingN

https://arxiv.org/abs/2205.11487


Normalizing Flows

Laurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent

Components Estimation https://arxiv.org/abs/1410.8516

Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP

https://arxiv.org/abs/1605.08803

Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1

Convolutions https://arxiv.org/abs/1807.03039

 

Figure 1 of "Glow: Generative Flowwith Invertible 1×1 Convolutions", https://arxiv.org/abs/1807.03039
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