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Sequence-to-Sequence is a name for an architecture allowing to produce an arbitrary output
sequence Y1, ..., Yy from an input sequence ®1,...,LyN.

Unlike span labeling/CTC, no assumptions are necessary and we condition each output sequence
element on all input sequence elements and all already generated output sequence elements:
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Sequence-to-Sequence Architecture
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Figure 1 of "Sequence to Sequence Learning with Neural Networks", https://arxiv.org/abs/1409.0473
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Sequence-to-Sequence Architecture

Decoder

X1 X2 Xt

Encoder

Figure 1 of "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation", https://arxiv.org/abs/1406.1078
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Training
The so-called teacher forcing is used during

training — the gold outputs are used as inputs  scquence
. . . representation
during training.

EOS

Inference

During inference, the network processes its own
predictions — such an approach is called

. . sequence
autoregI‘ESSIve deCOdlng. representation

Usually, the generated logits are processed by EOS
an arg max, the chosen word embedded and

used as next input.
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In the decoder, we both:

® embed the previous prediction, using a matrix of size RV D,
where V' is the vocabulary size and D is the embedding size;

® classify the hidden state into current prediction, using a matrix
of size RP*V

Both these matrices have similar meaning — they represent words in
the embedding space (the first explicitly represents words by the
embeddings, the second produces logits by computing weighted
cosine similarity of the inputs and columns of the weight matrix).

Therefore, it makes sense to tie these matrices, i.e., to represent
one of them as a transposition of the other.

® However, while the embedding matrix should usually have
constant variance per dimension, the output layer should keep
the variance of the RNN output; therefore, the output layer
matrix is usually the embedding matrix divided by v/D.
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As another input during decoding, we add context vector ¢;:

We compute the context vector as a weighted combination of

S; — f(si—h Yi1s Cz)

source sentence encoded outputs:

The weights «;; are softmax of e;; over j,

with e;; being

€ij = v' tanh(th + Ws; 1+ b)

C, — Zaijhj
J

a; = softmax(e;),
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Bahdanau Attention Implementation
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In the described Bahdanau (or additive) attention, we performed
€ij = v' tanh(th +Ws;_1+ b)

There are however other methods how V' h; and W's;_; can be combined, most notably the
Luong (or dot-product) attention, which uses just a dot product:

T
€ij — (th) (WSz'_l).
The latter is easier to implement, but may sometimes be more difficult to train (scaling helps a

bit, wait for the Transformer self-attention description); both approaches are used in quite a few
papers.
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Translate subword units instead of words. The subword units can be generated in several ways,
the most commonly used are:

® BPE: Using the byte pair encoding algorithm. Start with individual characters plus a special
end-of-word symbol . Then, merge the most occurring symbol pair A, B by a new symbol

AB, with the symbol pair never crossing word boundary (so that the end-of-word symbol
cannot be inside a subword).
Considering text with words low, lowest, newer, wider, a possible sequence of merges:
T e —Te
[ o—lo
lo w— low

e r*e —ere

The BPE algorithm is executed on the training data, and it generates the resulting
dictionary, merging rules, and training data encoded using this dictionary.
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® Wordpieces: Given a text divided into subwords, we can compute unigram probability of
every subword, and then get the likelihood of the text under a unigram language model by
multiplying the probabilities of the subwords in the text.

When we have only a text and a subword dictionary, we divide the text in a greedy fashion,
iteratively choosing the longest existing subword.

When constructing the subwords, we again start with individual characters (compared to
BPE, we have a start-of-word character instead of an end-of-word character), and then
repeatedly join such a pair of subwords that increases the unigram language model
likelihood the most.

O In the original implementation, the input data were once in a while “reparsed”
(retokenized) in a greedy fashion with the up-to-date dictionary. However, the recent
implementations do not seem to do it — but they retokenize the training data with the
final dictionary, contrary to the BPE approach.

For both approaches, usually quite little subword units are used (32k-64k), often generated on

the union of the two vocabularies of the source and target languages (the so-called joint BPE or
shared wordpieces).
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Both the BPE and the WordPieces give very similar results; the biggest difference is that during
the inference:

® for BPE, the sequence of merges must be performed in the same order as during the
construction of the BPE (because we use the output of BPE as training data),

® for Wordpieces, it is enough to find longest matches from the subword dictionary (because
we reprocessed the training data with the final dictionary);

® note that the above difference is mostly artificial — if we reparsed the training data in the
BPE approach, we could also perform “greedy tokenization”.

Of course, the two algorithms also differ in the way how they choose the pair of subwords to
merge.

Both algorithms are implemented in quite a few libraries, most notably the sentencepiece
library and the Hugging Face tokenizers package.
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Figure 1 of "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation”,
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Figure 6 of "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation", https://arxiv.org/abs/1609.08144
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Beyond one Language Pair

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
on a ramp. ; frisbee. .

motorcycle on a dirt road.

A group of young people Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
playing a game of frisbee fighting over the puck. food and drinks.

A herd of eiehants walking

A close up of a cat laying
across a dry grass field.

A red motorcycle parked on the A yellow school bus parked
on a couch.

side of the road. ~Te=====in a parking lot.

I oasnen it minoremors 1 somewnat retatedtotheimage NN

Fig. 5. A selection of evaluation results, grouped by human rating.
Figure 5 of "Show and Tell: Lessons learned from the 2015 MSCOCO...", https://arxiv.org/abs/1609.06647
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Beyond one Language Pair

NPFL138, Lecture 10 Seq2seq

What vegetable is the dog  What kind of dog is this?

What kind of flooring does

chewing on? MCB: husky the room have?
MCB: carrot GT: husky MCB: carpet
GT: carrot GT: carpet
®
i
Lt d'
s
J -

What color is the traffic
light?

MCB: green

GT: green

Is this an urban area?

MCB: yes
GT: yes

Where are the buildings?
MCB: in background
GT: on left

Figure 6 of "Multimodal Compact Bilinear Pooling for VQA and Visual Grounding”, https://arxiv.org/abs/1606.01847
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Many attempts at multilingual translation.

® |[ndividual encoders and decoders, shared attention.

® Shared encoders and decoders.

Surprisingly, even unsupervised translation is attempted lately. By unsupervised we understand
settings where we have access to large monolingual corpora, but no parallel data.

In 2019, the best unsupervised systems were on par with the best 2014 supervised systems.

WMT-14
fr-en en-fr de-en en-de
Unsupervised Proposed system 335 362 27.0 225
SUPCIVISE detok. SacreBLEU* 332 33.6 264 212
WMT best™ 35,0 35.8 29.0 206
Supervised Vaswani et al. (2017) - 41.0 - 28.4
Edunov et al. (2018) - 45.6 - 35.0

Table 3: Results of the proposed method in comparison to different supervised systems (BLEU).

GNMT
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For some sequence processing tasks, sequential processing (as performed by recurrent neural
networks) of its elements might be too restrictive.

Instead, we may want to be able to combine sequence elements independently on their distance.

Such processing is allowed in the Transformer architecture, originally proposed for neural
machine translation in 2017 in Attention is All You Need paper.
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Figure 1 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762
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Transformer
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http://jalammar.github.io/images/t/The_transformer_encoder_decoder_stack.png
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Transformer
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Assume that we have a sequence of n words represented using a matrix X € R?*¢,

The attention module for queries Q € R™*%  keys K € R™% and values V' € R™*% s
defined as:

QK'
Vdy,

Attention(Q, K, V') = softmax V.

The queries, keys and values are computed from the input word representations X using a
linear transformation as

Q=XWwW®
K=Xwk
V=XWwWV

for trainable weight matrices W, W& ¢ R¥¥d and WV € Réxdv,

SelfAttention
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Transformer — Self-Attention UL
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http://jalammar.github.io/images/t /transformer_self_attention_vectors.png
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Transformer — Self-Attention
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Transformer — Self-Attention FaL
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Transformer — Self-Attention UL

wa Q

- ) softmax( - ) ) -

V4

WV V'

http://jalammar.github.io/images/t/self-attention-matrix-calculation-2.png
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Multihead attention is used in practice. Instead of using one huge attention, we split queries,
keys and values to several groups (similar to how ResNeXt works), compute the attention in
each of the groups separately, concatenate the results and multiply them by a matrix w©.

Scaled Dot-Product Attention Multi-Head Attention
1
4 Linear
MatMul )
1 Concat
SoftMax V)
1 c
Mask (opt.) Scaled Dot-Product "
4 Attention
Scale 1 I | LI
( - r~
MatMul Linear _] Linear L] Linear J
Voo [ [ r
V K Q
Seq2seq Tying Attention SubWords GNMT Transformer SelfAttention PosEmbed Training
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Transformer — Multihead Attention =
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Transformer — Multihead Attention Urzt
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http://jalammar.github.io/images/t/transformer_attention_heads_z.png

http://jalammar.github.io/images/t/transformer_attention_heads_weight_matrix_o.png
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http://jalammar.github.io/images/t /transformer_multi-headed__self-attention-recap.png
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)
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Feed Forward Networks

The self-attention is complemented with FFN layers, which is a fully connected RelLU layer with
four times as many hidden units as inputs, followed by another fully connected layer without

activation.
Original “Post-LN” configuration

!

Layer normalization

Fully connected layer

?

ReLLU

?

Fully connected layer

f///////////"

Improved “Pre-LN* configuration since 2020

Fully connected layer

f

ReLU

f

Fully connected layer

f

Layer normalization

f///////////'

SelfAttention
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Transformer — Post-LN Configuration including Residuals
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ransformer Encoder Layer
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Transformer — Decoder
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Masked Self-Attention

During decoding, the self-attention must attend only to earlier
positions in the output sequence.

This is achieved by masking future positions, i.e., zeroing their
weights out, which is usually implemented by setting them to —o0

before the softmax calculation.

Encoder-Decoder Attention

In the encoder-decoder attentions, the queries comes from the
decoder, while the keys and the values originate from the encoder.
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Transformer — Positional Embedding
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Positional Embeddings

We need to encode positional information (which was implicit in RNNs).
® | earned embeddings for every position.
® Sinusoids of different frequencies:
PE (pos,2i) = sin (pos/10000*/¢)
PE(pos2i+1) = COS (pos/lOOOOzi/d)

This choice of functions should allow the model to attend to relative positions, since for any
fixed k, PE,osk is a linear function of PE,,,, because

PE (051420 = sin ((pos + k)/10000%/)
= sin (pos/10000*/?) - cos (k/10000%/¢) + cos (pos/10000*/?) - sin (k/10000%/¢)
= offset2:) - PE(pos2i) + offsety2i11) - PE(pos2it1)-
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Transformer — Positional Embeddings

Positional embeddings, 16 tokens, dimension 512
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Transformer — Positional Embeddings

Positional embeddings, 64 tokens, dimension 512
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Transformer — Positional Embeddings

Positional embeddings, 512 tokens, dimension 512
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Regularization
The network is regularized by:

® dropout of input embeddings,

® dropout of each sub-layer, just before it is added to the residual connection (and then
normalized),

® |abel smoothing.

Default dropout rate and also label smoothing weight is 0.1.

Parallel Execution
Because of the masked attention, training can be performed in parallel.

However, inference is still sequential.

Training 46/50



Optimizer
Adam optimizer (with 82 = 0.98, smaller than the default value of 0.999) is used during

training, with the learning rate decreasing proportionally to inverse square root of the step
number.

Warmup
Furthermore, during the first warmup_steps updates, the learning rate is increased linearly
from zero to its target value.

l , ; 1 _ 1 step_num 1
earning_rate = ——— min : :
7 vV dmodel \/ step_num’ warmup_steps \/ warmup_steps

In the original paper, 4000 warmup steps were proposed.

Note that the goal of warmup is mostly to prevent divergence early in training; the Pre-LN
configuration usually trains well even without warmup.
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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.775
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3.-1019  1.4.102
ConvS2S [9] 25.16  40.46 9.6-10% 1.5.102Y
MoE [32] 26.03  40.56 2.0-10 1.2.10%Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 102V
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%°  1.1-10%!
ConvS2S Ensemble [9] 26.36 41.29 7.7-1019  1.2.102%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3.10"

Wordpieces were constructed using BPE with a shared vocabulary of about 37k tokens.
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Transformers Ablations on En—De newtest2014 Dev Ut

train | PPL  BLEU params
N dmodel dsr h dy, d, P drop  €ls steps | (dev) (dev) x 106
base | 6 512 2048 8 64 64 0.1 0.1 100K | 492 258 65
1 512 512 5.29 24.9
(A) 4 128 128 5.00 255
16 32 32 491 25.8
32 16 16 5.01 254
(B) 16 5.16 25.1 58
32 5.01 25.4 60
2 6.11 23.7 36
4 5.19 253 50
8 4.88 25.5 80
(©) 256 32 32 5.75 24.5 28
1024 128 128 4.66 26.0 168
1024 512 254 53
4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
D) 0.0 467 253
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 4.33 26.4 213
Table 4 of "Attention Is All You Need", https://arxiv.org/abs/1706.03762
The PPL is perplexity per wordpiece, where perplexity is e(P) je. €% in our case.
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Main Takeaway

Generally, Transformer provides more powerful sequence-to-sequence architecture and also
sequence element representation architecture than RNNs, but requires substantially more data.

3D Visualization of a Decoder-only Model

On https://bbycroft.net/lim you can find a 3D visualization with the description of the
Transformer computation steps of several GPT models. The GPT models are language models
(they estimate conditional probability of a word given its previous context), and therefore
consist purely of the decoder part of a Transformer (so they do not contain neither an encoder
nor encoder-decoder attention; consequently, all their self-attentions are masked).
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