
NPFL138, Lecture 9

Structured Prediction, CTC,
Word2Vec
Milan Straka

April 15, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Structured Prediction

Structured Prediction

2/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Structured Prediction

Consider generating a sequence of given input .

Predicting each sequence element independently models the distribution .

However, there may be dependencies among the themselves, in the sense that not all

sequences of are valid; but when generating each independently, the model might not be

capable of generating only valid sequences.

y , … , y ∈1 N YN x , … ,x 1 N

P (y ∣X)i

y i

y i y i

3/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Structured Prediction – Span Labeling

Consider for example named entity recognition, whose goal is to locate named entities, which
are single words or sequences of multiple words denoting real-world objects, concepts, and
events. The most common types of named entities include:

PER: people, including names of individuals, historical figures, and even fictional characters;
ORG: organizations, incorporating companies, government agencies, educational institutions,
and others;
LOC: locations, encompassing countries, cities, geographical features, addresses.

Compared to part-of-speech tagging, locating named entities is much more challenging – named
entity mentions are generally multi-word spans, and arbitrary number of named entities can
appear in a sentence (consequently, we cannot use accuracy for evaluation; F1-score is
commonly used).

Named entity recognition is an instance of a span labeling task, where the goal is to locate
and classify spans in the input sequence.

4/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – BIO Encoding

A possible approach to a span labeling task is to classify every sequence element using a
specialized tag set. A common approach is to use the BIO encoding, which consists of

O: outside, the given element is not part of any span;

B-PER, B-ORG, B-LOC, …: beginning, the element is first in a new span;

I-PER, I-ORG, I-LOC, …: inside, a continuation element of an existing span.

In a valid sequence, the I-TYPE must follow either B-TYPE or I-TYPE.

(Formally, the described scheme is IOB-2 format; there exists quite a few other possibilities like
IOB-1, IEO, BILOU, …)

The described encoding can represent any set of continuous typed spans (when no spans
overlap, i.e., a single element can belong to at most one span).

5/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – BIO Encoding

However, when predicting each of the element tags independently, invalid sequences might be
created.

We can decide to ignore it and use heuristics capable of recovering the spans from invalid
sequences of BIO tags.

We can employ a decoding algorithm producing the most probable valid sequence of tags
during prediction.

However, during training we do not consider the BIO tags validity.

We might use a different loss enabling the model to consider only valid BIO tag sequences
also during training.

6/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – Decoding Algorithm

Let be an input sequence.

Our goal is to produce an output sequence , where each with classes.

Assume we have a model predicting , a probability that the -th output element

 is the class .

However, only some sequences are valid. We now make an assumption that the validity of a

sequence depends only on the validity of neighboring output classes. In other words, if all
neighboring pairs of output elements are valid, the whole sequence is.

The validity of neighboring pairs can be described by a transition matrix .

Such an approach allows expressing the (in)validity of a BIO tag sequence.
However, the current formulation does not enforce conditions on the first and the last
tag.

If needed (for example to disallow I-TYPE as the first tag), we can add fixed and/or

 imposing conditions on and/or , respectively.

x , … ,x 1 N

y , … , y 1 N y ∈t Y Y

p(y =t k∣X; θ) t

y t k

y

A ∈ {0, 1}Y ×Y

y 0

y N+1 y 1 y N

7/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – Decoding Algorithm

Let us denote the log probability of the most probable output sequence of elements

with the last one being .

We can compute efficiently using dynamic programming. The core idea is the following:

If we consider to be when , we can rewrite the above as

The resulting algorithm is also called the Viterbi algorithm, and it is also a search for the path
of maximum length in an acyclic graph.

α (k)t t

k

α (k)t

α (k) =t log p(y =t k∣X; θ) + max α (j).j, such that A is validj,k t−1

logA j,k −∞ A =j,k 0

α (k) =t log p(y =t k∣X; θ) + max (α (j) +j t−1 logA).j,k

8/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – Decoding Algorithm

Inputs: Input sequence of length , tag set with tags.

Inputs: Model computing , a probability that should have the class .

Inputs: Transition matrix indicating valid and invalid transitions.

Outputs: The most probable sequence consisting of valid transitions only.

Time Complexity: in the worst case.

For :

For

 logits (unnormalized log probs) can also be used

If :

The most probable sequence has the log probability , and its elements can be

recovered by traversing from downto .

N Y

p(y =t k∣X; θ) y t k

A ∈ RY ×Y

y

O(N ⋅ Y)2

t = 1, … ,N
k = 1, … ,Y :
α (k) ←t log p(y =t k∣X; θ)
t > 1
β (k) ←t arg max α (j)j, such that A is validj,k t−1

α (k) ←t α (k) +t α (β (k))t−1 t

maxα N

β t = N t = 1

9/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – Other Approaches

With deep learning models, constrained decoding is usually sufficient to deliver high
performance.

Historically, there have been also other approaches:

Maximum Entropy Markov Models

We might model the dependencies by explicitly conditioning on the previous label:

Then, each label is predicted by a softmax from a hidden state and a previous label.

The decoding can still be performed by a dynamic programming algorithm.

P (y ∣X, y).i i−1

10/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Span Labeling – Other Approaches

Conditional Random Fields (CRF)

In the simplest variant, Linear-chain CRF, usually abbreviated only to CRF, can be
considered an extension of softmax – instead of a sequence of independent softmaxes, it is a
sentence-level softmax, with additional weights for neighboring sequence elements.

We start by defining a score of a label sequence as

and define the probability of a label sequence using :

The probability can be efficiently computed using dynamic programming in

a differentiable way, so it can be used in NLL computation.

For more details, see Lecture 8 of NPFL114 2022/23 slides.

y

s(X,y; θ,A) = f(y ∣X; θ) +1 (A +∑
i=2

N

y ,y i−1 i
f(y ∣X; θ)),i

y softmax

p(y∣X) = softmax (s(X, z)) .z∈Y N
y

log p(y ∣X)gold

11/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

https://ufal.mff.cuni.cz/~straka/courses/npfl114/2223/slides/?08

Connectionist Temporal Classification

Let us again consider generating a sequence of given input , but this

time , and there is no explicit alignment of and in the gold data.

Figure 7.1 of "Supervised Sequence Labelling with Recurrent Neural Networks" dissertation by Alex Graves

y , … , y 1 M x , … ,x 1 N

M ≤ N x y

12/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Connectionist Temporal Classification

We enlarge the set of the output labels by a – (blank), and perform a classification for every
input element to produce an extended labeling (in contrast to the original regular labeling).
We then post-process it by the following rules (denoted as):

1. We collapse multiple neighboring occurrences of the same symbol into one.
2. We remove the blank –.

Because the explicit alignment of inputs and labels is not known, we consider all possible
alignments.

Denoting the probability of label at time as , we define

You can have a look at https://distill.pub/2017/ctc/ for a nice and detailed description.

B

l t p l
t

α (s)t =def
 p .

extended
labelings π:
B(π)=y 1:t 1:s

∑
i=1

∏
t

π i

i

13/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

https://distill.pub/2017/ctc/

Connectionist Temporal Classification

Computation
When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

and compute as .

α (s)−
t

α (s)∗
t

 p =def

extended
labelings π:

B(π)=y ,π =−1:t 1:s t

∑
i=1

∏
t

π i

i

 p =def

extended
labelings π:

B(π)=y ,π =−1:t 1:s t

∑
i=1

∏
t

π i

i

α (s)t α (s) +−
t α (s)∗

t

14/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Connectionist Temporal Classification

Figure 7.3 of "Supervised Sequence Labelling with Recurrent
Neural Networks" dissertation by Alex Graves

Computation – Initialization
We initialize as follows:

all other to zeros

Computation – Induction Step
We then proceed recurrently according to:

We can write the update as .

α1

α (0) ←−
1 p −

1

α (1) ←∗
1 p y 1

1

α1

α (s) ←−
t p (α (s) +−

t
∗
t−1 α (s))−

t−1

α (s) ←∗
t

 {
p (α (s) + α (s− 1) + α (s− 1)), if y = y y s

t
∗
t−1

−
t−1

∗
t−1

s  s−1

p (α (s) + α (s− 1) +), if y = y y s

t
∗
t−1

−
t−1 α (s− 1)∗

t−1
s s−1

p (α (s) +y s

t
∗
t−1 α (s−−

t−1 1) + [y =s  y] ⋅s−1 α (s−∗
t−1 1))

15/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

CTC Decoding

Unlike BIO-tag structured prediction, nobody knows how to perform CTC decoding optimally in
polynomial time.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a greater length, the same does not apply to a regular labeling. The problem is that
regular labeling corresponds to many extended labelings, which are modified each in a different
way during an extension of the regular labeling.

Figure 7.5 of "Supervised Sequence Labelling with Recurrent Neural Networks" dissertation by Alex Graves

16/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

CTC Decoding

Beam Search
To perform a beam search, we keep best regular (non-extended) labelings. Specifically, for

each regular labeling we keep both and , which are probabilities of all (modulo

beam search) extended labelings of length which produce the regular labeling ; we therefore

keep regular labelings with the highest .

To compute the best regular labelings for a longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

adding a blank symbol, i.e., contributing to both from and ;

adding a non-blank symbol, i.e., contributing to from and contributing to a

possibly different from .

Finally, we merge the resulting candidates according to their regular labeling, and keep only the

 best.

k

y α (y)−
t α (y)∗

t

t y

k α (y) +−
t α (y)∗

t

α (y)−
t+1 α (y)−

t α (y)∗
t

α (•)∗
t+1 α (y)−

t

α (•)∗
t+1 α (y)∗

t

k

17/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Unsupervised Word Embeddings

The embeddings can be trained for each task separately.

However, a method of precomputing word embeddings have been proposed, based on
distributional hypothesis:

Words that are used in the same contexts tend to have similar meanings.

The distributional hypothesis is usually attributed to Firth (1957):

You shall know a word by a company it keeps.

18/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Word2Vec

Mikolov et al. (2013) proposed two very simple architectures for precomputing word
embeddings, together with a C multi-threaded implementation word2vec.

19/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Word2Vec

Table 8 of "Efficient Estimation of Word Representations in Vector Space", https://arxiv.org/abs/1301.3781

20/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Word2Vec – SkipGram Model

Considering input word and output , the Skip-gram model defines

After training, the final embeddings are the rows of the matrix.

w i w o

p(w ∣w)o i =def
 .

e∑w
V W w i

⊤
w

eV W w i

⊤
w o

V
21/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Word2Vec – Hierarchical Softmax

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier
for each node.

If word corresponds to a path , we definew n ,n , … ,n 1 2 L

p (w∣w)HS i =def
 σ([+1 if n is right child else -1] ⋅

j=1

∏
L−1

j+1 V W).w i

⊤
n j

22/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Word2Vec – Negative Sampling

Instead of a large softmax, we could train individual sigmoids for all words.

We could also only sample several negative examples. This gives rise to the following negative
sampling objective (instead of just summing all the sigmoidal losses):

The usual value of negative samples is 5, but it can be even 2 for extremely large corpora.

Each expectation in the loss is estimated using a single sample.

For , both uniform and unigram distribution work, but

outperforms them significantly (this fact has been reported in several papers by different
authors).

l (w ,w)NEG o i =def − log σ(V W) −w i

⊤
w o

 E log (1 −
j=1

∑
k

w ∼P (w)j
σ(V W)).w i

⊤
w j

k

P (w) U(w)

U(w)3/4

23/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Recurrent Character-level WEs

Table 2 of "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation", https://arxiv.org/abs/1508.02096

24/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Convolutional Character-level WEs

Table 6 of "Character-Aware Neural Language Models", https://arxiv.org/abs/1508.06615

25/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Character N-grams

Another simple idea appeared simultaneously in three nearly simultaneous publications as
Charagram, Subword Information or SubGram.

A word embedding is a sum of the word embedding plus embeddings of its character n-grams.
Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

dictionary based: only some number of frequent character n-grams is kept;
hash-based: character n-grams are hashed into buckets (usually is used).K K ∼ 106

26/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

https://arxiv.org/abs/1607.02789
https://arxiv.org/abs/1607.04606
http://link.springer.com/chapter/10.1007/978-3-319-45510-5_21

Charagram WEs

Table 7 of "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606

27/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

Charagram WEs

Figure 2 of "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606

28/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

FastText

The word2vec enriched with subword embeddings is implemented in publicly available
fastText library https://fasttext.cc/.

Pre-trained embeddings for 157 languages (including Czech) trained on Wikipedia and
CommonCrawl are also available at https://fasttext.cc/docs/en/crawl-vectors.html.

29/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

https://fasttext.cc/
https://fasttext.cc/docs/en/crawl-vectors.html

ELMo

At the end of 2017, a new type of deep contextualized word representations was proposed by
Peters et al., called ELMo, Embeddings from Language Models.

The ELMo embeddings were based on a two-layer pre-trained LSTM language model, where a
language model predicts following word based on a sentence prefix. Specifically, two such
models were used, one for the forward direction and the other one for the backward direction.

http://jalammar.github.io/images/Bert-language-
modeling.png

http://jalammar.github.io/images/elmo-forward-backward-language-model-embedding.png

30/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

ELMo

To compute an embedding of a word in a sentence, the concatenation of the two language
model's hidden states is used.

http://jalammar.github.io/images/elmo-embedding.png

To be exact, the authors propose to take a (trainable) weighted combination of the input
embeddings and outputs on the first and second LSTM layers.

31/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

ELMo Results

Pre-trained ELMo embeddings substantially improved several NLP tasks.

Table 1 of "Deep contextualized word representations", https://arxiv.org/abs/1802.05365

32/32NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo

