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Beyond Image Classification

 

Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

 

Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

 

Figure 7 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

Object detection
(including location)  

Image segmentation  

Human pose estimation
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Beyond Image Classification

 

https://www.implantology.or.kr/articles/xml/RvNO/
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Object Localization

 

Slide 38 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

We can perform object localization by jointly predicting the bounding box coordinates using
regression.
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R-CNN

 

Slide 48 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

 

Slide 54 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

To be able to recognize and localize several objects,
assume we were given multiple interesting regions of
the image, called regions of interest (RoI). For each
of them, we decide:

whether it contains an object;
the location of the object relative to the RoI.

In R-CNN, we start with a network pre-trained on
ImageNet (VGG-16 is used in the original paper),
and we use it to process every RoI, rescaling every
one of them to the size of .

For every RoI, two sibling heads are added:

classification head predicts either background or
one of  object types (  in total),

bounding box regression head predicts 4
bounding box parameters relative to RoI.

224 × 224

K K + 1
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R-CNN – Bounding Boxes

A bounding box is parametrized as follows. Let  be center coordinates and width

and height of the RoI respectively, and let  be parameters of the bounding box. We

represent the bounding box relative to the RoI as follows:

In Fast R-CNN, the  loss, or Huber loss, is employed for bounding box parameters:

The complete loss is then (  is used in the Fast R-CNN paper)
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R-CNN – Bounding Boxes

The described bounding box representation is usually called CXCYWH:

 

https://miro.medium.com/1*Z80D7vwD-3UwP16asY-k6A.jpeg
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R-CNN – Bounding Boxes

In the datasets, the bounding boxes are usually represented using XYXY format:

 

https://miro.medium.com/1*oZcZhzOWKb3kvBHPOHYfow.jpeg
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R-CNN – Bounding Boxes

Finally, you could also come across the XYWH format:

 

https://miro.medium.com/1*JLeFS2KIOzSTk6lUp1Ou2w.jpeg
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Fast R-CNN Architecture

The R-CNN is slow, because it needs to process every RoI by the convolutional backbone. To
speed it up, we might want to first process the whole image by the backbone and only then
extract a fixed-size representation for every RoI.

We achieve that using RoI pooling, replacing the last max-pool  VGG layer.

 

Slide 65 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

During RoI pooling, we obtain a  RoI representation by first projecting the RoI to the 

 resolution and then computing each of the  values by max-pooling the

corresponding “pixels” of the convolutional image features.

14 × 14 → 7 × 7

7 × 7
14 × 14 7 × 7
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Fast R-CNN

RoI Representation

 

https://commons.wikimedia.org/wiki/File:Tišnov,_Hajánky,_garážová_ozdoba_(6597).jpg

 

https://en.wikipedia.org/wiki/File:VGG_neural_network.png
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Fast R-CNN and R-CNN Comparison

 

Slide 61 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.
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Fast R-CNN Architecture

 

Figure 1 of "Fast R-CNN", https://arxiv.org/abs/1504.08083
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Fast R-CNN Training and Inference

Intersection over Union
For two bounding boxes (or two masks) the intersection over union (IoU) is a ratio of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing RoIs for Training
During training, we use 2 images with 64 RoIs each. The RoIs are selected so that 25% have
intersection over union (IoU) overlap of at least 0.5 with ground-truth boxes; the others are
chosen to have the IoU in range , the so-called hard examples.

Running Inference
During inference, we utilize all RoIs, but a single object can be found in several of them. To
choose the most salient prediction, we perform non-maximum suppression – we ignore
predictions which have an overlap with a higher scoring prediction of the same class, where the
overlap is computed using IoU (0.3 threshold is used in the paper). Higher scoring predictions
are the ones with higher probability from the classification head.

[0.1, 0.5)
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Object Detection Evaluation

Average Precision
Evaluation is performed using Average Precision (  or ).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has
IoU at least 50% with any ground-truth box.

 

Figure 6 of "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf

 

Figure 6 of "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf

AP AP  50
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Object Detection Evaluation – Average Precision

 

https://miro.medium.com/max/1400/1*naz02wO-XMywlwAdFzF-GA.jpeg

The general idea of AP is to compute the area under the precision/recall curve.

 

https://miro.medium.com/max/1400/1*VenTq4IgxjmIpOXWdFb-jg.png

 

 

https://miro.medium.com/max/1400/1*pmSxeb4EfdGnzT6Xa68GEQ.jpeg

We start by interpolating the precision/recall curve, so that it is always nonincreasing.

Finally, the average precision for a single class is
an average of precision at recall 

.

The final AP is a mean of average precision of
all classes.

0.0, 0.1, 0.2, … , 1.0
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Object Detection Evaluation – Average Precision

For the COCO dataset, the AP is computed slightly differently. First, it is an average over 101
recall points .

In the original metric, IoU of 50% is enough to consider a prediction valid. We can generalize
the definition to , where an object prediction is considered valid if IoU is at least %.

The main COCO metric, denoted just , is the mean of .

Metric Description

Mean of 

AP at IoU 50%

AP at IoU 75%

AP for small objects: 

AP for medium objects: 

AP for large objects: 

0.00, 0.01, 0.02, … , 1.00

AP  t t

AP AP  ,AP  ,AP  , … ,AP  50 55 60 95

AP AP  ,AP  ,AP  ,AP  , … ,AP  50 55 60 65 95

AP  50

AP  75

AP  S area < 322

AP  M 32 <2 area < 962

AP  L 96 <2 area
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Faster R-CNN

 

Slide 76 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

 

Figure 2 of "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks",

https://arxiv.org/abs/1506.01497

Even if Fast R-CNN is much faster then R-CNN, it can
still be improved, considering that the most problematic
and time consuming part is generating the RoIs.  

Faster R-CNN extends Fast R-CNN by including a region
proposal network (RPN), whose goal is to generate the RoIs
automatically.

The regional proposal network produces the so-called region
proposals, which then play the role of RoIs in the rest of the
pipeline (i.e., the Fast R-CNN).

The region proposals are generated similarly to how predictions are
generated in Fast R-CNN. We start with several anchors and from
each anchor we generate either a single region proposal or nothing.
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Faster R-CNN – Anchors

If we consider the  VGG backbone output, each “pixel” corresponds to a region of size 

 in the original image.

 

Adapted from slide 65 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.

We can therefore interpret each value in the  output as a representation of a part of the

image centered in the corresponding image region, and try predicting a region proposal from
every one of them.

We call the dense grid of image regions from which we are predicting the proposals the
anchors. They have fixed size, and in practice we use several anchors per position.

14 × 14
16 × 16

14 × 14
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Faster R-CNN

 

Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks",
https://arxiv.org/abs/1506.01497

For every anchor, we classify it in two classes (background, object) and also predict the region
proposal bounding box relatively to the anchor, exactly as in (Fast) R-CNN.

We perform the classification and the
bounding box regression by first running
a  convolution followed by ReLU

on the  VGG output, and then

attaching the two heads. Assuming
there are  anchors on every position:

the classification head generates 

outputs, performing  on

every 2 of them;
the regression head generates 

region proposal coordinates.

The authors consider 3 scales  and 3 aspect ratios .

3 × 3
14 × 14

A

2A
softmax

4A

(128 , 256 , 512 )2 2 2 (1 : 1, 1 : 2, 2 : 1)
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Faster R-CNN

During training, we generate

positive training examples for every anchor that has the highest IoU with a ground-truth
box;
furthermore, a positive example is also any anchor with IoU at least 0.7 for any ground-
truth box;
negative training examples for every anchor that has IoU at most 0.3 with all ground-truth
boxes;
the positive and negative examples are generated with a ratio up to 1:1 (less, if there are
not enough positive examples; each minibatch consits of a single image and 256 anchors).

During inference, we consider all predicted non-background regions, run non-maximum
suppression on them using a 0.7 IoU threshold, and then take  top-scored regions (i.e., the

ones with the highest probability from the classification head) – the paper uses 300 proposals,
compared to 2000 in the Fast R-CNN.

N
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Faster R-CNN

 

Tables 3 and 4 of "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", https://arxiv.org/abs/1506.01497

23/54NPFL138, Lecture 6 FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm



Two-stage Detectors

The Faster R-CNN is a so-called two-stage detector, where the regions are refined twice – once
in the region proposal network, and then in the final bounding box regressor.

Several single-stage detector architectures have been proposed, mainly because they are faster
and smaller, but until circa 2017 the two-stage detectors achieved better results.
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Mask R-CNN

Straightforward extension of Faster R-CNN able to produce image segmentation (i.e., masks for
every object).

 

Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Mask R-CNN – Architecture

 

Figure 1 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Mask R-CNN – RoIAlign

More precise alignment is required for the RoI in order to predict the masks. Instead of
quantization and max-pooling in RoI pooling, RoIAlign uses bilinear interpolation of features at
four regularly sampled locations in each RoI bin and averages them.

 

Figure 3 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

TorchVision provides torchvision.ops.roi_align and torchvision.ops.roi_pool.
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Mask R-CNN

Masks are predicted in a third branch of the object detector.

Higher resolution of the mask is usually needed (at least , or even more).

The masks are predicted for each class separately.
The masks are predicted using convolutions instead of fully connected layers (the upscaling
convolutions are  with stride 2).

 

Figure 4 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

Improvements from Nov 2021: all convs (except for the output layer) are followed by BN, the
class&bbox head uses 4 convs instead of 2 MLPs, RPN contains two convs instead of one.

14 × 14

2 × 2
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Mask R-CNN

 

Table 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Mask R-CNN – Human Pose Estimation

 

Figure 7 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

Testing applicability of Mask R-CNN architecture.

Keypoints (e.g., left shoulder, right elbow, …) are detected as independent one-hot masks of
size  with  output function.

 

Table 4 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

56 × 56 softmax
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Feature Pyramid Networks

 

Figure 1 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144
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Feature Pyramid Networks

 

Figure 2 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144
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Feature Pyramid Networks

 

Figure 3 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144
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Feature Pyramid Networks

We employ FPN as a backbone in Faster R-CNN.

Assuming ResNet-like network with  input, we denote  the image

features of the last convolutional layer of size  (i.e.,  indicates a

downscaling of ). The FPN representations incorporating the smaller resolution features are

denoted as , each consisting of 256 channels; the classification heads are shared.

In both the RPN and the Fast R-CNN, authors utilize the  representations,

considering single-size anchors for every  (of size , respectively).

However, three aspect ratios  are still used.

 

Table 4 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144

224 × 224 C ,C  , … ,C  2 3 5

56 × 56, 28 × 28, … , 7 × 7 C  i

2i

P  , … ,P  2 5

P  , … ,P  2 5

P  i 32 , 64 , 128 , 2562 2 2 2

(1 : 1, 1 : 2, 2 : 1)
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Focal Loss

RoI Representation

 

https://commons.wikimedia.org/wiki/File:Tišnov,_Hajánky,_garážová_ozdoba_(6597).jpg

 

Figure 1 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

For single-stage object detection architectures, class
imbalance has been identified as the main issue
preventing obtaining performance comparable to
two-stage detectors. In a single-stage detector,
there can be tens of thousands of anchors, with
only dozens of useful training examples.

Cross-entropy loss is computed as

Focal-loss (loss focused on hard examples) is
proposed as

L  =cross-entropy − log p  (y∣x).model

L  =focal-loss −(1 − p  (y∣x)) ⋅model
γ log p  (y∣x).model
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Focal Loss

For , focal loss is equal to cross-entropy loss.

Authors reported that  worked best for them for training a single-stage detector.

 

Figure 4 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

γ = 0

γ = 2
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Focal Loss and Class Imbalance

Focal loss is connected to another solution to class imbalance – we might introduce weighting
factor  for one class and  for the other class, arriving at

The weight  might be set to the inverse class frequency or treated as a hyperparameter.

Even if weighting focuses more on low-frequent class, it does not distinguish between easy and
hard examples, contrary to focal loss.

In practice, the focal loss is usually used together with class weighting:

For example, authors report that  (weight of the rare class) works best with .

α ∈ (0, 1) 1 − α

−α  ⋅y log p  (y∣x).model

α

−α  ⋅y (1 − p  (y∣x)) ⋅model
γ log p  (y∣x).model

α = 0.25 γ = 2
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RetinaNet

RetinaNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels  through , with each  having

256 channels and resolution  times lower than the input. On each pyramid level , we

consider 9 anchors for every position, with 3 different aspect ratios ( , , ) and with 3

different sizes .

Note that ResNet provides only  to  features.  is computed using a  convolution

with stride 2 on , and  is obtained by applying ReLU followed by another  stride-2

convolution. The  and  are included to improve large object detection.

P  3 P  7 P  l

2l P  l

1 1 : 2 2 : 1
({2 , 2 , 2 } ⋅0 1/3 2/3 4 ⋅ 2 )l 2

C  3 C  5 C  6 3 × 3
C  5 C  7 3 × 3
C  6 C  7
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RetinaNet – Architecture

The classification head and the boundary regression heads are fully convolutional and do not
share parameters (but classification heads are shared across levels, and so are the boundary
regression heads), generating  sigmoids and  bounding boxes per

position.

 

Figure 3 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

anchors ⋅ classes anchors
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RetinaNet

During training, anchors are assigned to ground-truth object boxes if IoU is at least 0.5; to
background if IoU with any ground-truth region is at most 0.4 (the rest of anchors is ignored
during training). The classification head is trained using focal loss with  and 

(but according to the paper, all values of  in  range work well); the boundary

regression head is trained using  loss as in Fast(er) R-CNN.

During inference, at most 1000 objects with at least 5% probability from all pyramid levels are
considered, and all of them are combined using non-maximum suppression with a threshold of
0.5. Fixed-size training and testing is used, with sizes 400, 500, …, 800 pixels.

 

Table 2 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002

 

Figure 2 of "Focal Loss for Dense Object Detection",
https://arxiv.org/abs/1708.02002

γ = 2 α = 0.25
γ [0.5, 5]

smooth  L  1
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RetinaNet – Ablations

Ablations use ResNet-50-FPN backbone trained and tested with 600-pixel images.

 

Table 1 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002
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EfficientDet – Architecture

EfficientDet builds up on EfficientNet, and it delivered state-of-the-art performance in Nov 2019
with minimum time and space requirements (however, its performance has already been
surpassed significantly). It is a single-scale detector similar to RetinaNet, which:

uses EfficientNet as a backbone;
employs compound scaling;
uses a newly proposed BiFPN, “efficient bidirectional cross-scale connections and weighted
feature fusion”.

 

Figure 3 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070
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EfficientDet – BiFPN

In multi-scale fusion in FPN, information flows only from the pyramid levels with smaller
resolution to the levels with higher resolution.

 

Figure 2 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

BiFPN consists of several rounds of bidirectional flows. Each bidirectional flow employs residual
connections and does not include nodes that have only one input edge with no feature fusion.
All operations are  separable convolutions with batch normalization and ReLU, upsampling

is done by repeating rows and columns and downsampling by max-pooling.

3 × 3
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EfficientDet – Weighted BiFPN

When combining features with different resolutions, it is common to resize them to the same
resolution and sum them – therefore, all set of features are considered to be of the same
importance. The authors however argue that features from different resolution contribute to the
final result unequally and propose to combine them with trainable weighs.

Softmax-based fusion: In each BiFPN node, we create a trainable weight  for every

input  and the final combination (after resize, before a convolution) is

Fast normalized fusion: Authors propose a simpler alternative of weighting:

It uses  for stability and is up to 30% faster on a GPU.

w  i

I  i

  I .
i

∑
 e∑j
w  j

ew  i

i

  I .
i

∑
ε+  ReLU(w  )∑j j

ReLU(w  )i
i

ε = 0.0001
44/54NPFL138, Lecture 6 FastR-CNN FasterR-CNN MaskR-CNN FPN FocalLoss RetinaNet EfficientDet GroupNorm



EfficientDet – Compound Scaling

Similar to EfficientNet, authors propose to scale various dimensions of the network, using a
single compound coefficient .

After performing a grid search:

the width of BiFPN is scaled as 

the depth of BiFPN is scaled as 

the box/class predictor has the same width as BiFPN and depth 

input image resolution increases according to 

 

Table 1 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

ϕ

W  =BiFPN 64 ⋅ 1.35 ,ϕ

D  =BiFPN 3 + ϕ,
D  =class 3 + ⌊ϕ/3⌋,

R  =image 512 + 128 ⋅ ϕ.
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EfficientDet – Results

 

Figure 1 of "EfficientDet: Scalable and Efficient Object Detection",
https://arxiv.org/abs/1911.09070

 

Figure 4 of "EfficientDet: Scalable and Efficient Object Detection",
https://arxiv.org/abs/1911.09070
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EfficientDet – Results

 

Table 2 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070
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EfficientDet – Inference Latencies

 

Figure 4 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070
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EfficientDet – Ablations

Given that EfficientDet employs both a powerful backbone and new BiFPN, authors quantify
the improvement of the individual components.

 

Table 4 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070

The comparison with previously used cross-scale fusion architectures is also provided:

 

Table 5 of "EfficientDet: Scalable and Efficient Object Detection", https://arxiv.org/abs/1911.09070
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EfficientDet-D0 Example

 

https://github.com/google/automl/blob/master/efficientdet/g3doc/street.jpg
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Normalization

Batch Normalization
Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization
Neuron value is normalized across the layer.

 

Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in
groups (by default, ).

 

Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494

 

Figure 1 of "Group Normalization", https://arxiv.org/abs/1803.08494

G = 32
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Group Normalization

 

Figures 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494
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Group Normalization

 

Tables 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494
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