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Refresh – Neural Networks

Neural network describes a computation, which gets an input tensor and produces an
output.

For the time being, the input tensor has a fixed size.
The input tensor is usually a vector, but it can be 2D/3D/4D tensor.

images, video, time sequences like speech, …

The output usually describes a distribution.
normal distribution for regression
Bernoulli for binary classification
categorical for multiclass classification

The basic units are nodes, composed in an acyclic graph.

The edges have weights, nodes have activation functions.

Nodes of neural networks are usually composed in layers.
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Machine Learning Basics

We usually have a training set, which is assumed to consist of examples generated
independently from a data-generating distribution.

The goal of optimization is to match the training set as well as possible.

However, the goal of machine learning is to perform well on previously unseen data, to achieve
lowest generalization error or test error. We typically estimate it using a test set of examples
independent of the training set, but generated by the same data-generating distribution.

The No free lunch theorem (Wolpert, 1996) states that averaging over all possible data
distributions, every classification algorithm achieves the same overall error when processing
unseen examples (even algorithms “always return 0” and “return the least probable class”). In a
sense, no machine learning algorithm is universally better than others. But in practice the data
distributions are not uniformly random, so some algorithms might work better in practice than
others.
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Machine Learning Basics

Challenges in machine learning:

underfitting (the model is “too weak”, bad performance even on training set)
overfitting (the model is “too strong”, learned rules are too specific and do not generalize)

 

Figure 5.2 of "Deep Learning" book, https://www.deeplearningbook.org
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Machine Learning Basics

 

https://upload.wikimedia.org/wikipedia/commons/1/19/Overfitting.svg
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Machine Learning Basics

We can control whether a model underfits or overfits by modifying its capacity.

representational capacity (what the model could represent, depends on the model size)

effective capacity (what the model actually learns, depends on training, regularization, …)

 

Figure 5.3 of "Deep Learning" book, https://www.deeplearningbook.org
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Machine Learning Basics

Overfitting usually decreases with the amount of the training data.

 

Figure 1.6 of Pattern Recognition and Machine Learning.

7/47NPFL138, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD



Machine Learning Basics

Any change in a machine learning algorithm that is designed to reduce generalization error (but
not necessarily its training error) is called regularization.

 regularization (also called weight decay) penalizes models with large weights (using

a penalty of ).

 

Figure 5.5 of "Deep Learning" book, https://www.deeplearningbook.org
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Machine Learning Basics

Hyperparameters are not adapted by a learning algorithm itself, while the model parameters
(weights, biases) are adapted by it.

Usually a development set, also called a validation set, is used to estimate the generalization
error, allowing to update hyperparameters accordingly.
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Loss Function

A model is usually trained in order to minimize the loss on the training data.

Assuming that a model computes  using parameters , the mean square error of given

 examples  is computed as

A common principle used to design loss functions is the maximum likelihood principle.

f(x; θ) θ

N (x , y ), (x , y ), … , (x , y )(1) (1) (2) (2) (N) (N)

  (f(x ; θ) −
N

1

i=1

∑
N

(i) y ) .(i)
2
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution .

We denote the empirical data distribution as , where

Let  be a family of distributions.

If the weights are fixed,  is a probability distribution.

If we instead consider the fixed training data , then

is called the likelihood. Note that even if the value of the likelihood is in range , it is

not a probability, because the likelihood is not a probability distribution.

X = {x ,x , … ,x }(1) (2) (N)

p  data

  p̂data

  (x)p̂data =def
 .

N

 {i : x = x}  

(i)

p  (x; θ)model

p  (x; θ)model

X

L(θ) = p  (X; θ) =model  p  (x ; θ)∏
i=1

N

model
(i)

[0, 1]
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution . We denote the empirical data distribution as  and let  be a

family of distributions.

The maximum likelihood estimation of  is:

X = {x ,x , … ,x }(1) (2) (N)

p  data   p̂data p  (x; θ)model

θ

=θ  MLE  p  (X; θ) =
θ

arg max model   p  (x ; θ)
θ

arg max∏
i=1

N

model
(i)

=   − log p  (x ; θ)
θ

arg min∑
i=1

N

model
(i)

=  E  [− log p  (x; θ)]
θ

arg min x∼   p̂data model

=  H(   (x), p  (x; θ))
θ

arg min p̂data model

=  D  (   (x)∥p  (x; θ)) +
θ

arg min KL p̂data model H(   (x))p̂data
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Maximum Likelihood Estimation

MLE can be easily generalized to the conditional case, where our goal is to predict  given :

where the conditional entropy is defined as  and

the conditional cross-entropy as .

The resulting loss function is called negative log-likelihood (NLL), or cross-entropy, or
Kullback-Leibler divergence.

y x

  

θ  MLE =  p  (Y∣X; θ) =   − log p  (y ∣x ; θ)
θ

arg max model
θ

arg min∑
i=1

N

model
(i) (i)

=   − log p  (y ∣x ; θ)
θ

arg min∑
i=1

N

model
(i) (i)

=  E  [− log p  (y∣x; θ)]
θ

arg min (x,y)∼   p̂data model

=  H( (y∣x), p  (y∣x; θ))
θ

arg min p̂data model

=  D  (   (y∣x)∥p  (y∣x; θ)) + H(   (y∣x))
θ

arg min KL p̂data model p̂data

H(   ) =p̂data E  [− log(   (y∣x))](x,y)∼   p̂data p̂data

H(   , p  ) =p̂data model E  [− log(p  (y∣x; θ))](x,y)∼   p̂data model

13/47NPFL138, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD



Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of
some random value(s). For example, we might estimate mean of a random variable by sampling
a value according to its probability distribution.

The bias of an estimator is the difference of the expected value of the estimator and the true
value being estimated. If the bias is zero, we call the estimator unbiased, otherwise biased.

If we have a sequence of estimates, it might also happen that the bias converges to zero.
Consider the well-known sample estimate of variance. Given independent and identically
distributed random variables , we might estimate the mean and the variance as

Such a mean estimate is unbiased, but the estimate of the variance is biased, because 

; however, the bias of this estimate converges to zero for increasing .

Also, an unbiased estimator does not necessarily have a small variance – in some cases, it can
have a large variance, so a biased estimator with a smaller variance might be preferred.

x  , … , x  1 N

 =μ̂   x  ,    =
N

1
∑

i
i σ̂2

  (x  −
N

1
∑

i
i  ) .μ̂ 2

E[ ] =σ̂2

(1 −  )σ
N
1 2 N
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Properties of Maximum Likelihood Estimation

Assume that the true data-generating distribution  lies within the model family 

, and assume there exists a unique  such that .

MLE is a consistent estimator. If we denote  to be the parameters found by MLE for a

training set with  examples generated by the data-generating distribution, then 

converges in probability to .

Formally, for any ,  as .

MLE is in a sense the most statistically efficient. For any consistent estimator, let us
consider the average distance of  and : .  

It can be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean
squared error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.

p  data

p  (•; θ)model θ  p  data p  =data p  (•; θ  )model p  data

θ  m

m θ  m

θ  p  data

ε > 0 P (∥θ  −m θ  ∥ >p  data ε) → 0 m → ∞

θ  m θ  p  data E  [∥θ  −x  ,…,x  ∼p  1 m data m θ  ∥ ]p  data
2
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Mean Square Error as MLE

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance  – the most general such a distribution is the normal distribution.

 

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg

σ2
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Mean Square Error as MLE

Let  be the output of our model, which we assume to be the mean of .

We define  as  for some fixed . The MLE then results in

f(x; θ) y

p(y∣x; θ) N (y; f(x; θ),σ )2 σ2

 

https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2465539/

= p(Y∣X; θ)
θ

arg max   − log p(y ∣x ; θ)
θ

arg min
i=1

∑
N

(i) (i)

=  −  log e
θ

arg min
i=1

∑
N

 

2πσ2

1 −  2σ2
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=  −N log(2πσ ) −
θ

arg min 2 −1/2
 −  

i=1

∑
N

2σ2
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∑
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∑
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17/47NPFL138, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD



Gradient Descent

 

Figure 4.1 of "Deep Learning" book, https://www.deeplearningbook.org

Let  be a model with parameters . For a given per-example loss function , denote

Assuming we are minimizing a loss function

we may use gradient descent:

The constant  is called a learning rate

and specifies the “length” of a step we
perform in every iteration of the gradient
descent.

f(x; θ) θ L

E(θ) = E  L(f(x; θ), y).(x,y)∼   p̂data

 E(θ),
θ

arg min

θ ← θ − α∇  E(θ).θ

α
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Gradient Descent Variants

The gradient of the loss function  can be computed as

(Standard/Batch) Gradient Descent: We use all training data to compute .

Stochastic (or Online) Gradient Descent: We estimate  using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: Trade-off between gradient descent and SGD – the expectation in 

 is estimated using  random independent examples from the training data.

E(θ)

∇  E(θ) =θ E  ∇  L(f(x; θ), y).(x,y)∼   p̂data θ

∇  E(θ)θ

∇  E(θ)θ

∇  E(θ) ≈θ ∇  L(f(x; θ), y)  for a randomly chosen  (x, y)  from     .θ p̂data

∇  E(θ)θ m

∇  E(θ) ≈θ   ∇  L(f(x ; θ), y )  for randomly chosen  (x , y )  from     .
m

1

i=1

∑
m

θ
(i) (i) (i) (i) p̂data
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Stochastic Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate  of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique optimum
almost surely if the sequence of learning rates  fulfills the following conditions:

Note that the second condition implies that .

For nonconvex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding the global minimum of even a boolean function is at least NP-hard.

α  i

J(θ) ∇  E(θ)θ

θ  ←i+1 θ  −i α  J(θ  ).i i

α  i

 α  =
i

∑ i ∞,     α  <
i

∑ i
2 ∞.

α  →i 0
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Stochastic Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for  and real ,

 

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

 

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function of a single variable is convex iff its second derivative is always
nonnegative. (For functions of multiple variables, the Hessian must be positive semi-definite.)

A local minimum of a convex function is always a global minimum.

Well-known examples of convex functions are , , , MSE, +NLL, +NLL.

u,v 0 ≤ t ≤ 1

f(tu+ (1 − t)v) ≤ tf(u) + (1 − t)f(v).

x2 ex − log x σ softmax
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Loss Function Visualization

Visualization of loss function of ResNet-56 (0.85 million parameters) with/without skip connections:

 

Figure 1 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913
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Loss Function Visualization

Visualization of loss function of ResNet-110 without skip connections and DenseNet-121:

 

Figure 4 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913
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Backpropagation

Assume we want to compute partial derivatives of a given loss function .

 

The gradient computation is based on the chain rule of derivatives: .

 

L

 =
∂x  i

∂L
  

∂y
∂L

∂x  i

∂y
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Backpropagation Algorithm

Forward Propagation

Input: Network with nodes  numbered in topological order. 

Each node's value is computed as  for  being a set of values of the

predecessors  of .  

Output: Value of .

For :

Return 

u ,u , … ,u(1) (2) (n)

u =(i) f (A )(i) (i) A(i)

P (u )(i) u(i)

u(n)

i = 1, … ,n
A ←(i) {u ∣j ∈(j) P (u )}(i)

u ←(i) f (A )(i) (i)

u(n)
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Backpropagation Algorithm

Simple Variant of Backpropagation

Input: The network as in the Forward propagation algorithm. 

Output: Partial derivatives  of  with respect to all .

Run forward propagation to compute all 

For :

Return 

In practice, we do not usually represent networks as collections of scalar nodes; instead we
represent them as collections of tensor functions – most usually functions . Then 

 is a Jacobian matrix. However, the backpropagation algorithm is analogous.

g =(i)
 ∂u(i)

∂u(n)
u(n) u(i)

u(i)

g =(n) 1
i = n − 1, … , 1
g ←(i)

 g  ∑j:i∈P (u )(j)
(j)

∂u(i)
∂u(j)

(g , g , … , g )(1) (2) (n)

f : R →n Rm

 ∂x
∂f (x)
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Neural Network Activation Functions

Hidden Layers Derivatives
:

:

ReLU:

σ

 =
∂x

∂σ(x)
σ(x) ⋅ (1 − σ(x))

tanh

 =
∂x

∂ tanh(x)
1 − tanh(x)2

 =
∂x

∂ ReLU(x)
    

⎩
⎨
⎧ 1

NaN
0

if x > 0
if x = 0
if x < 0⎭

⎬
⎫

 assuming   (0)=0∂x
∂ ReLU(x)

[x > 0] = [ReLU(x) > 0]
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) Algorithm

Input: NN computing function  with initial value of parameters . 

Input: Learning rate . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

in theory, we could sample each minibatch independently;
however, almost everytime we want to process all training instances before
repeating them, which can be implemented by generating a random permutation
and then splitting it into minibatch-sized chunks

one pass through the data is called an epoch

f(x; θ) θ

α

θ

m (x , y )(i) (i)

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

θ ← θ − αg
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SGD With Momentum

 

Figure 8.5 of "Deep Learning" book, https://www.deeplearningbook.org

SGD With Momentum

Input: NN computing function  with initial

value of parameters . 

Input: Learning rate , momentum . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

A nice writeup about momentum can be found on https://distill.pub/2017/momentum/.

f(x; θ)
θ

α β

θ

v ← 0

m

(x , y )(i) (i)

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

v ← βv − αg

θ ← θ + v
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SGD With Nesterov Momentum

 

https://github.com/cs231n/cs231n.github.io/blob/master/assets/nn3/nesterov.jpeg

SGD With Nesterov Momentum

Input: NN computing function 

with initial value of parameters . 

Input: Learning rate , momentum . 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

f(x; θ)
θ

α β

θ

v ← 0

m (x , y )(i) (i)

θ ← θ + βv

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

v ← βv − αg

θ ← θ − αg
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Algorithms with Adaptive Learning Rates

AdaGrad (2011)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate , constant  (usually ). 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

The  and  are computed element-wise, i.e., . It might be better to

write , but it is not done in the papers, so we are keeping the usual notation.

f(x; θ) θ

α ε 10−7

θ

r ← 0

m (x , y )(i) (i)

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

r ← r + g2

θ ← θ −  g
 +εr
α

g2
 g

 +εr
α g =2 g ⊙ g

 ⊙
 +εr
α g
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Algorithms with Adaptive Learning Rates

AdaGrad has favourable convergence properties (being faster than regular SGD) for convex loss
landscapes. In this settings, gradients converge to zero reasonably fast.

However, for nonconvex losses, gradients can stay quite large for a long time. In that case, the
algorithm behaves as if decreasing learning rate by a factor of , because if each

then after  steps

and therefore

1/  t

g ≈ g  ,0

t

r ≈ t ⋅ g  ,0
2

 ≈
 + εr

α
 .

 + ε/  g  0
2 t

α/  t
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Algorithms with Adaptive Learning Rates

RMSProp (2012)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate , momentum  (usually ), constant  (usually ). 

Output: Updated parameters .

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

However, after first step, , which for default  is

so  is a biased estimate of  (but the bias converges to zero exponentially fast).

f(x; θ) θ

α β 0.9 ε 10−7

θ

r ← 0

m (x , y )(i) (i)

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

r ← βr + (1 − β)g2

θ ← θ −  g
 +εr
α

r = (1 − β)g2 β = 0.9

r = 0.1g ,2

r E[g ]2
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Algorithms with Adaptive Learning Rates

Adam (2014)

Input: NN computing function  with initial value of parameters . 

Input: Learning rate  (default 0.001), constant  (usually ). 

Input: Momentum  (default 0.9), momentum  (default 0.999). 

Output: Updated parameters .

, , 

Repeat until stopping criterion is met:
Sample a minibatch of  training examples 

               (biased first moment estimate)

              (biased second moment estimate)

,     (unbiased estimates of the moments)

f(x; θ) θ

α ε 10−7

β  1 β  2

θ

s ← 0 r ← 0 t ← 0

m (x , y )(i) (i)

g ←   ∇  L(f(x ; θ), y )
m
1 ∑i θ

(i) (i)

t ← t+ 1
s ← β  s+1 (1 − β  )g1

r ← β  r +2 (1 − β  )g2
2

←ŝ s/(1 − β  )1
t ←r̂ r/(1 − β  )2

t

θ ← θ −  

 +εr̂

α ŝ
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Adam Bias Correction

To allow analysis, we add indices to the update

with .

After  steps, we have

Because ,  is computed as a weighted average of infinitely many elements.

s  ←t β s +1 t−1 (1 − β  )g  ,1 t

s  ←0 0

t

s  =t (1 − β  )  β  g  .1
i=1

∑
t

1
t−i

i

 β  =∑i=0
∞

1
i

 1−β  1

1 s  ∞
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Adam Bias Correction

However, for , the sum of weights in the

computation of  does not sum to one.

To obtain an unbiased estimate, we therefore
need to account for the “missing” elements; in
other words, we need to scale the weights so
that they sum to one.

The sum of weights after  steps is

so we obtain an unbiased estimate by dividing  with , and analogously for the

correction of .

t < ∞
s  t

t

(1 − β  )  β  =1
i=1

∑
t

1
t−i

 β  −
i=1

∑
t

1
t−i

 β  =
i=0

∑
t−1

1
t−i 1 − β  ,1

t

s  t (1 − β  )1
t

r
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Adaptive Optimizers Animations

 

http://2.bp.blogspot.com/-q6l20Vs4P_w/VPmIC7sEhnI/AAAAAAAACC4/g3UOUX2r_yA/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

 

http://2.bp.blogspot.com/-L98w-SBmF58/VPmICIjKEKI/AAAAAAAACCs/rrFz3VetYmM/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Adaptive Optimizers Animations

 

http://3.bp.blogspot.com/-nrtJPrdBWuE/VPmIB46F2aI/AAAAAAAACCw/vaE_B0SVy5k/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

39/47NPFL138, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD



Adaptive Optimizers Animations

 

http://1.bp.blogspot.com/-K_X-yud8nj8/VPmIBxwGlsI/AAAAAAAACC0/JS-h1fa09EQ/s400/ found at http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Learning Rate Schedules

Even if RMSProp and Adam are adaptive, they still usually require carefully tuned decreasing
learning rate for top-notch performance.

Polynomial decay: learning rate is multiplied by some
polynomial of the current update number .

Linear decay uses  and

has theoretical guarantees of convergence, but is usually
too fast for deep neural networks.
Inverse square root decay uses  and

is currently used by best machine translation models.

Exponential decay: learning rate is multiplied by a constant
each minibatch/epoch/several epochs.

Often used for convolutional networks (image recognition
etc.).

t

α  =t α  ⋅initial (1 −  )max steps
t

α  =t α  ⋅initial  

 t
1

α  =t α  ⋅initial ct
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Learning Rate Schedules

Cosine decay: The cosine decay has became quite popular
in the past years, both for training and finetuning.

Cyclic restarts, warmup, …

The keras.optimizers.schedules offers several such learning rate schedules, which can be
passed to any Keras optimizer directly as a learning rate.

keras.optimizers.schedules.PiecewiseConstantDecay

keras.optimizers.schedules.PolynomialDecay

keras.optimizers.schedules.ExponentialDecay

keras.optimizers.schedules.CosineDecay

  

α  t = α  ⋅  (1 + cos(π ⋅  ))initial 2
1

max steps
t

= α  ⋅ cos (  ⋅  )initial
2

2
π

max steps
t
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Why do Neural Networks Generalize so Well – Double Descent

 

Figure 1 of "Reconciling modern machine learning practice and the bias-variance trade-off", https://arxiv.org/abs/1812.11118

43/47NPFL138, Lecture 2 ML Basics MLE Gradient Descent Backpropagation SGDs Adaptive LR LR Schedules DoubleD



Deep Double Descent

 

Figure 1 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292
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Deep Double Descent – Effective Model Complexity

The authors define the Effective Model Complexity (EMC) of a training procedure  with

respect to distribution  and parameter  as

where  is the mean error of a model  on the train samples .

Hypothesis: For any natural data distribution , neural-network-based training procedure ,

and small , if we consider the task of predicting labels based on  samples from , then:

Under-parametrized regime. If  is sufficiently smaller than , any

perturbation of  that increases its effective complexity will decrease the test error.

Over-parametrized regime. If  is sufficiently larger than , any perturbation

of  that increases its effective complexity will decrease the test error.

Critically parametrized regime. If , then a perturbation of  that

increases its effective complexity might decrease or increase the test error.

T

D ε > 0

EMC  (T )D,ε =def max{n  E  [Error  (T (S))] ≤S∼Dn S ε},

Error  (M)S M S

D T

ε > 0 n D

EMC  (T )D,ε n

T

EMC  (T )D,ε n

T

EMC  (T ) ≈D,ε n T
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Why do Neural Networks Generalize so Well

 

Figure 2 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292
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Why do Neural Networks Generalize so Well

 

Figure 4 of "Deep Double Descent: Where Bigger Models and More Data Hurt", https://arxiv.org/abs/1912.02292
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