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What is Deep Learning
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Deep Learning Highlights
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Figure 3 of "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks", https://arxiv.org/abs/1506.01497
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Figure 7 of "Mask R-CNN", https: //arxiv.org/abs,/1703.068
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Deep Reinforcement Learning

Deep learning has also been successfully combined with reinforcement learning.
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Figure 1 of "A Comparisonof learning algorithms on the
Arcade Learning Environment”,
__ https://arxiv.org/abs/1410.8620
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Neural networks are just a model for describing computation of outputs from given inputs.

The model:
® s strong enough to approximate any reasonable function,

® s reasonably compact,

® allows heavy parallelization during execution (GPUs, TPUs, ..).

Nearly all the time, neural networks generate a probability distribution on output:
® distributions allow small changes during training,

® during prediction, we usually take the most probable outcome (class/label/...).

When there is enough data, neural networks are currently the best performing machine learning
model, especially when the data are high-dimensional (images, videos, speech, texts, ..).
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Course Website: https://ufal.mff.cuni.cz/courses/npfl138

® Slides, recordings, assignments, exam questions

Course Repository: https://github.com/ufal/npfl138

® Templates for the assignments, slide sources.

Piazza
® Piazza will be used as a communication platform.

You can post questions or notes,
O privately to the instructors,

O publicly to everyone (signed or anonymously).
® Qther students can answer these too, which allows you to get faster response.
® However, do not include even parts of your source code in public questions.

® Please use Piazza for all communication with the instructors.

® You will get the invite link after the first lecture.

Organization 6/49


https://ufal.mff.cuni.cz/courses/npfl138
https://github.com/ufal/npfl138

https://recodex.mff.cuni.cz

® The assignments will be evaluated automatically in ReCodEx.

If you have a MFF SIS account, you should be able to create an account using your CAS
credentials and should automatically see the right group.

® QOtherwise, there will be instructions on Piazza how to get ReCodEx account (generally

you will need to send me a message with several pieces of information and | will send it to
ReCodEx administrators in batches).
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https://recodex.mff.cuni.cz/

Practicals

® There will be about 2-3 assignments a week, each with a 2-week deadline.
O There is also another week-long second deadline, but for fewer points.

® After solving the assighment, you get non-bonus points, and sometimes also bonus points.

® To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.

® |f you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you pass the exam with grade 1.

Lecture
You need to pass a written exam (or solve all the assignments).

® All questions are publicly listed on the course website.

® There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, ...).

® You need 60/75/90 points to pass with grade 3/2/1.

Organization
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® Both the lectures and the practicals are recorded.

Consultations

® Regular consultations are part of the course schedule.
O Tuesday, 15:40, S4
O However, the consultations are completely voluntary.

® The consultations are scheduled on the last day of assignment deadlines.

® The consultations are not recorded and have no predefined content.

Organization 9/49



® a,a, A, A: scalar (integer or real), vector, matrix, tensor
O ¢ - A denotes scalar multiplication, & ® y denotes element-wise multiplication, and AB

denotes matrix multiplication
O all vectors are always column vectors

O transposition changes a column vector into a row vector, so a’

IS a row vector
o we denote the dot (scalar) product of the vectors @ and b using a’' b
® we understand it as matrix multiplication

o the ||@||y or just ||al| is the Euclidean (or L?) norm
" allz = /> @]
® 3 a, A: scalar, vector, matrix random variable

* g—];: partial derivative of f with respect to x

® V.f(x): gradient of f with respect to @, i.e., (853(;:3), agg) yeee agg(;:))
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A random variable x is a result of a random process, and it can be either discrete or
continuous.

Probability Distribution

A probability distribution describes how likely are the individual values that a random variable
can take.

The notation x ~ P stands for a random variable x having a distribution P.

For discrete variables, the probability that x takes a value x is denoted as P(x) or explicitly as

P(x = x). All probabilities are nonnegative, and the sum of the probabilities of all possible
valuesof x is ) P(x=z) = 1.

For continuous variables, the probability that the value of x lies in the interval [a, b] is given by

f; p(x) dx, where p(x) is the probability density function, which is always nonnegative and
integrates to 1 over the range of all values of x.

Random Variables 11/49



For two random variables, a joint probability
distribution is a distribution of all possible pairs of
outputs (and analogously for more than two):

P(x = 2,y = y1)- iz

Marginal distribution is a distribution of one v| 6
(or a subset) of the random variables and can be

obtained by summing over the other variable(s): ;

3

Px=zy) = ZyP(X = 22,y = Y)-

P(yy)

X
XJ X X3 X4
|
o o ®
P(x2,y71)
o o [ ) ®
o o o o
P(x)

Conditional distribution is a distribution of one (or a subset) of the random variables, given

that another event has already occurred:

Px=uz|y=uy)=Px=a2,y=11)/Ply =v1).

If P(x=z,y=vy) = P(x=x)-P(y=y) for all ,y, random variables x,y are independent.

Random Variables
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Expectation
The expectation of a function f(x) with respect to a discrete probability distribution P(x) is

def
XNP E P

For continuous variables, the expectation is computed as:

Exp[f(2)] & / p(2)f (z) de.

Z

defined as:

If the random variable is obvious from context, we can write only Ep|z]|, E,|x], or even E|z].

Expectation is linear, i.e., for constants o, 8 € R:

Ex|laf(z) + Bg(z)] = aBx[f(x)] + BEx[g(x)].

Random Variables 13/49



Variance
Variance measures how much the values of a random variable differ from its mean E|z].

def

Var(z) = E (az — E[QB])2] , or more generally,
Var,.p(f(2) £ E |(f(2) — E[f(2))°]

It is easy to see that

Var(e) = E [o? - 22 - Ele] + (Elz])’| = E [a?) - (Ele])’,

because E |2z - E[z]| = 2(E[z])>.
Variance is connected to [E[z?], the second moment of a random variable — it is in fact a

centered second moment.

Random Variables 14/49



Common Probability Distributions UL

Bernoulli Distribution

The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter ¢ € [0, 1], which specifies the probability that the random variable is equal to 1.

P(z)=¢"(1—¢p)*
Elz] = ¢

Var(z) = ¢(1 — )

Bernoulli Variance

0.25 A
0.20 |
9
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©
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>
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0.0 0.2 0.4 0.6 0.8 1.0
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Categorical Distribution

Extension of the Bernoulli distribution to random variables taking one of K different discrete
outcomes. It is parametrized by p € [0, 1]% such that Zfiglpi = 1.

We represent outcomes as vectors € {0, 1}K in the one-hot encoding. Therefore, an outcome
x € {0,1,..., K — 1} is represented as a vector

1L, 2 (i=«)""=(0,...,0,1,0,...,0).
([Z w])z:O (, ' , . - - )

The outcome probability, mean, and variance are very similar to the Bernoulli distribution.
K-1
— L
P(z) = HizO p;
Elzi| = pi
Var(z;) = p;(1 — p;)

Random Variables 16/49



Self-Information

Self-information can be considered the amount of surprise when a random variable is sampled.

® Should be zero for events with probability 1.
® | ess likely events are more surprising.
® Independent events should have additive surprise (information).

These conditions are fulfilled by self-information I(x), also called surprise:

1
P(x)

I(z) = —log P(x) = log

Information Theory 17/49



Entropy

Amount of surprise in the whole distribution.
H(P) = Ex.p[I(z)] = —Ex.p[log P()

® for discrete P: H( ) _ Z P( )log P( ) PDF of a Normal Distribution

0.40 1 —— Low entropy

® for continuous P: H(P) = — fP z)log P(x)dx o High entropy

o

w

o
1

Because lim, o zlogz = 0, for P(z) = 0 we consider

P(z)log P(x) to be zero.

Note that in the continuous case, the continuous entropy =]
(also called differential entropy) has slightly different 0.05 ] / \
semantics, for example, it can be negative. 0.00{ —— | | | |

-4 -2 0 2 4
For binary logarithms, the entropy is measured in bits. x

However, from now on, all logarithms are natural logarithms with base e (and then the entropy
is measured in units called nats).

o

N

u
1

probability density
o o
AN
w o
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Cross-Entropy
H(P,Q) = —Eyp[log Q(z)]

Gibbs inequality states that

* H(P,Q) > H(P)
e HP)=H(P,Q)<P=Q
® Proof: Using the fact that logxz < (x — 1) with equality only for = 1, we get

ZP(CE) log ggz; < ZP(QE) (gg; — 1) = ZQ(&:) — ZP(m) = 0.

® Corollary: For a categorical distribution with n outcomes, H(P) < logn, because for
Q(z) =1/nweget HP) < H(P,Q)=—)_ P(z)logQ(x) = logn.
Note that generally H(P, Q) # H(Q, P).
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Kullback-Leibler Divergence (KL Divergence)

Sometimes also called relative entropy.
Dk (P|Q) = H(P,Q) — H(P) = Ex.p[log P(z) — log Q(z)]

® consequence of Gibbs inequality: Dkr, (P||Q) > 0, Dk (P||Q) =0 iff P = Q
® generally Dxr, (PHQ) # Dy, (QHP)
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Nonsymmetry of KL Divergence UL

¢" = argmin, Dk (p||q) ¢" = argmin Dk (q||p)

Probability Density
Probability Density

Figure 3.6 of "Deep Learning" book, https://www.deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution

Distribution over real numbers, parametrized by a mean @ and variance o
2

[ 1 (z — p)?
. 2\ —
N (z; p, %) 5oz CXP 52

For standard values & = 0 and 0 = 1 we get N'(z;0,1) = 4/ %6_7.

2.

T T T T T
0.40 |-

0.35 |-
0.30 |-
0.25 |
0.20
0.15
0.10
0.05 F 3

0.00 | | | | ! | !
-20 -15 —-10 -05 0.0 0.5 1.0 1.5 2.0

Figure 3.1 of "Deep Learning" book, https://www.deeplearningbook.org
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Central Limit Theorem

The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy

Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions on all real numbers with a given mean and variance, it can be proven
(using variational inference) that such a distribution with maximum entropy is exactly the
normal distribution.

Information Theory
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A possible definition of learning from Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

® Task T
O classification: assigning one of k categories to a given input

O regression: producing a number £ € R for a given input
O structured prediction, denoising, density estimation, ...

® Measure P
O accuracy, error rate, F-score, ..

® Experience E
O supervised: usually a dataset with desired outcomes (/abels or targets)
O unsupervised: usually data without any annotation (raw text, raw images, ..)
O reinforcement learning, semi-supervised learning, ..

Machine Learning 24/49



Name
MNIST
CIFAR-10

CIFAR-
100

ImageNet

ImageNet-

ILSVRC

COCO

Description
Images (28x28, grayscale) of handwritten digits.
Images (32x32, color) of 10 classes of objects.

Images (32x32, color) of 100 classes of objects (with 20 defined

superclasses).

Labeled object image database (labeled objects, some with bounding

boxes).

Subset of ImageNet for Large Scale Visual Recognition Challenge,
annotated with 1000 object classes and their bounding boxes.

Common Objects in Context: Complex everyday scenes with

descriptions (5) and highlighting of objects (91 types).

Machine Learning

Instances
60k
50k

50k

14.2M

1.2M

2.5M
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http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/
http://image-net.org/challenges/LSVRC/
http://cocodataset.org/

Well-known Datasets UF\RL

ImageNet-ILSVRC

person

mite container ship motor scooter

container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

7 . r

drilling platform

cherry adagascar cat

convertible | agaric dalmatian squirrel monkey

grille mushreom grape spider monkey

:[_I pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine | dead-man‘s-fingers currant howler monkey

Figure 4 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex
Krizhevsky et al. https://image-net.org/challenges/LSVRC/2014/
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Well-known Datasets

COCO

AT T

h tp-s.' / ‘/cocodataset. org/#detection-2020
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Name Description Instances

IAM-OnDB  Pen tip movements of handwritten English from 221 writers. 86k words
TIMIT Recordings of 630 speakers of 8 dialects of American English. 6.3k sents
CommonVoice | 1.6M Eng recordings from 86k people, ~2400 hours of speech. 1.6M

Penn Treebank: 2500 stories from Wall Street Journal, with POS

PTB _ 1M words
tags and parsed into trees.

PDT Prague Dependency Treebank: Czech sentences annotated on 4 1.9M
layers (word, morphological, analytical, tectogrammatical). words

UD Universal Dependencies: Treebanks of 148 languages with 259

T consistent annotation of lemmas, POS tags, morphology, syntax. treebanks

WMT Aligned parallel sentences for machine translation. gigawords

Machine Learning 28/49


http://www.fki.inf.unibe.ch/databases/iam-on-line-handwriting-database
https://catalog.ldc.upenn.edu/LDC93S1
https://voice.mozilla.org/data
https://catalog.ldc.upenn.edu/LDC99T42
https://ufal.mff.cuni.cz/prague-dependency-treebank
http://universaldependencies.org/
http://statmt.org/
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ILSVRC Image Recognition Error Rates

In summer 2017, a paper came out describing automatic generation of neural architectures
using reinforcement learning.
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Figure 5 of "Learning Transferable Architectures for Scalable Image Recognition", https://arxiv.org/abs/1707.07012
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ILSVRC Image Recognition Error Rates

Currently, one of the best architectures is EfficientNet, which combines automatic architecture
discovery, multidimensional scaling and elaborate dataset augmentation methods.
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Figure 5 of "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks",
https: //arxiv.org/abs,/1905.11946
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https: //arxiv.org/abs/1905. 11946
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ILSVRC Image Recognition Error Rates

EfficientNet was further improved by EfficientNetV2 two years later.
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Figure 5. Model Size, FLOPs, and Inference Latency — Latency is measured with batch size 16 on V100 GPU. 21k denotes pretrained
on ImageNet21k images, others are just trained on ImageNet ILSVRC2012. Our EfficientNetV2 has slightly better parameter efficiency
with EfficientNet, but runs 3x faster for inference.
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To illustrate deep neural networks improvements in other domains, consider the English— Czech
results of the international Workshop on Machine Translation. Both the automatic BLEU metric

and manual evaluation are presented.

‘ ‘ —e—TectoMT | | 1 i ‘ N ‘ ‘ —o— TectoMT
= RBMT § = RBMT
20| —e- SMT |2 ~e— SMT
o) —— Online 2 —— Online
3 Chimera g 0.5 Chimera
& -e- NMT |g -e- NMT
> .
10 |- ---- median | £ ---- median
| | | | | | | 8 0 T | | | | | | |
2006 2008 2010 2012 2014 2016 2018 2006 2008 2010 2012 2014 2016 2018
Figure 6.1: WMT English—Czech BLEU evaluation. Figure 6.2: WMT English—+Czech manual evaluation (higher=better).
® TectoMT parses the input, transfers to the other language, generates the sentence;
® RBMT is the PC-Translator software;
® SMT is statistical machine translation using the Moses system;
® Online is an online translation system (Google in 2009, Online-B since 2010);
([

NMT is the neural machine translation using deep neural networks.
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Deep Neural Network

(Pretraining)
Multi-layered m X
y

XOR Perceptron A
ADALINE (Backpropagation)
A F 3
A
Perceptron
Golden Age Dark Age (“Al Winter”)
s e >
Electronic Brain

1950 1960 1970 1980

_Hinton - R. Salakhutdinov

S. McCulloch - W. Pitts F.Rosenblatt  B. Widrow - M. Hoff
X AND Y XORY NOT X Foward Activity —fph .. ) -
.t S b
PR W N— o
41741 2 +17 4] o ‘ ‘ o 00
X/ “f \ "/ 'I’ S ‘ 4— Backward Error a7 §
* Adjustable Weights « Learnable Weights and Threshold « XOR Problem + Solution to nonlinearly separable problems  « Limitations of learning prior knowledge * Hierarchical feature Leamning
« Weights are not Learned + Big computation, local optima and overfitting + Kernel function: Human Intervention
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Assume we have an input node for every input feature. Input layer Output layer
activation a

Additionally, we have an output node for every model output.

Every input node and output node are connected with a
directed edge, and every edge has an associated weight.

Value of every (output) node is computed by summing the
values of predecessors multiplied by the corresponding weights,

added to a bias of this node, and finally passed through an Q °

activation function a:

y=a (ZJ T W, +b)

or in vector form y = a(®Xw + b), or for a batch of examples Q
X, y=a(Xw-+Db).
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Perceptron — Linearly Separable and Nonseparable Data Uz

Data projected to R™2 (nhonseparable)
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https: //miro.medium.com/v2/1*JVZ4FXVRIrloN-4ffq_kNQ.png
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The computation is performed analogously to the perceptron

hi=f (Zy a:jwj(-f;) + b,gh)) :
Y = a (Z] hj'wj(-:f/i) + bgy)) :
or in matrix form
h = f(a:TW(h) + b<h>),

y = a(hTW(y) 4+ b(y)),

or for a whole batch of inputs H = f(XW(h) + b(h)) and Y = a(HW(y) + b(y)).

The WP ¢ Rlinputl-|hidden] 5 5 matrix of weights and b\P) ¢ RIhidden| 5 yector of biases of
the first layer, and wW ¢ [R|hidden|-| output| blY) c Rloutrut] 4o parameters of the second
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Output Layers

® none (linear regression if there are no hidden layers);

® o (sigmoid; logistic regression if there are no hidden layers)

def ]-

o(z)

T 1qe

Plot of the Sigmoid Function a(x)

1.00
0.75

x ]

Z 050
0.25

0.00 -

—— Sigmoid
Derivative of Sigmoid

-3 =2

-1 0 1 2 3

is used to model a Bernoulli distribution, i.e., the probability ¢ of one of the outcomes;
O the input of the sigmoid is called a logit, and it has a value of log &

® softmax (maximum entropy model if there are no hidden layers)

softmax(x) x e”,

softmax(x);

def

e’

== —ZJ emj

is used to model probability distribution p; its input is called a logit, log(p) + c.
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Neural Network Activation Functions

Hidden Layers

U=

® none: does not help, composition of linear/affine mapping is a linear/affine mapping

® o: does not work great — nonsymmetrical, repeated application converges to the fixed point

z = o(z) ~ 0.659, and % (0) = 1/4

e tanh

O result of making o symmetrical and making the derivative in zero 1

o tanh(z) = 20(22) — 1

® RelLU: max(0, )
NPFL138, Lecture 1 TL:DR
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From Sigmoid Function o(x) to Tanh

a(x)

20(x)

20(x) -1

20(2x) - 1 = tanh(x)
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Let o(x) : R — R be a nonconstant, bounded and nondecreasing continuous function.
(Later a proof was given also for ¢ = ReLU and even for any nonpolynomial function.)

For any € > 0 and any continuous function f : [0,1]° — R, there exists H € N, v € R¥,
bcRY and W € RP*H  such that if we denote

H
F(z) = v p(x?W 4 b) = Zvigo(azTW*,z- +b;),
i=1

where @ is applied element-wise, then for all & € [0, 1]°:

F(x) — f(z)| <e.

One Possible Interpretation

It is always possible to create features using just a single linear layer followed by a nonlinearity,
such that the resulting dataset is always linearly separable.
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Universal Approximation Theorem for RelLUs

Sketch of the proof:

® |f a function is continuous on a closed interval, it can be approximated by a sequence of
lines to arbitrary precision.

i ny(x) = Relu(—5x — 7.7)
na(x) = Relu(—1.2z — 1.3)
n3(r) = Relu(l.2x + 1)
ng(r) = Relu(l.2z — .2)
ns(x) = Relu(2x — 1.1)

/- : / ne(r) = Relu(bx —5)
\ Z(x) = —ni(x) — na(x) — ng(x)

/ + na(x) + ns(z) + ne(x)

https: //miro.medium.com/max/844/1*lihbPNQgl7oKjp CsmzPDKw.png

® However, we can create a sequence of k linear segments as a sum of k RelLU units — on

every endpoint a new RelU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tangent and the tangent of the
approximation until this point.
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Evolving ReLU Approximation Uz

0.1
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function () (i.e., nonconstant, bounded and
nondecreasing continuous function like sigmoid):

® \We can prove @ can be arbitrarily close to a hard threshold by compressing it horizontally.
= ; _ 1
/ y T 1_|_e—(wT:c+b)

b

D i WiTi

https://hackernoon.com/hn-images/1*N7dfPwbiX C-Kk4TCbfRerA.png

® Then we approximate the original function using a series of straight line segments

https: //hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJh|_fomg.png
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How Good is Current Deep Learning U

® DL has seen amazing progress in the last ten years.
® |s it enough to get a bigger brain (datasets, models, computer power)?

® Problems compared to Human learning:
O Sample efficiency
O Human-provided labels
O Robustness to data distribution change
O Stupid errors

SRR G A
://intl.startrek.com/sites/default /files /styles/content__full /public /images/2019-
07 /c8ffe9a587b126152ed3d89a146b 445, jpg
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How Good is Current Deep Learning

s llya Sutskever
@ilyasut

it may be that today's large neural networks are slightly

conscious

Prelozit Tweet

12:27 dop. - 10. 2. 2022 - Twitter Web App
https: //twitter.com/ilyasut /status/1491554478243258368

Yann LeCun
@ylecun

Odpovéd uzivateli @ilyasut

Nope.
Not even for true for small values of "slightly

conscious" and large values of "large neural nets".

| think you would need a particular kind of macro-
architecture that none of the current networks
possess.

Prelozit Tweet

10:02 odp. - 12. 2. 2022 - Twitter for Android

. #4a.  Murray Shanahan
@mpshanahan
Odpoveéd uzivateli @ilyasut

... in the same sense that it may be that a large field of
wheat is slightly pasta
PreloZit Tweet
11:08 dop. - 10. 2. 2022 - Twitter Web App
https: //twitter.com/mpshanahan /status/1491715721289678848

https: //twitter.com/ylecun /status/1492604977260412928

Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck
Eric Horvitz Ece Kamar
Harsha Nori

Varun Chandrasekaran
Peter Lee
Hamid Palangi

Ronen Eldan Johannes Gehrke
Yin Tat Lee Yuanzhi Li Scott Lundberg
Marco Tulio Ribeiro Yi Zhang

Microsoft Research
Paper "Sparks of Artificial General Intelligence: Early experiments with GPT-4", https://arxiv.org/abs/2303.12712
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How Good is Current Deep Learning Uz

r/singularity + 7 mo. ago
[deleted]

Is GPT-4, overall, more intelligent than a dog?
LA

We know they exist in different realms of reality, and their way of processing is somewhat different, also they each have
at least one modality that the other one has not. Plus one is frozen in time while the other one is continuously updating
itself. But just for the sake of it, if you had to answer with one word:

Is GPT-4 more intelligent than a dog?

Closed - 386 total votes
263 Yes
123 No

Voting closed 7 months ago

https: //www.reddit.com/r/singularity /comments/14xyn6n /is_gpt4_overall_more_intelligent_than_a_dog/

i Gah_Duma - 7mo ago i M0Onch11d3 - 7mo ago
Bro it's smarter than at least half of all humans Let's look at some aspects of intelligence to see:
https: //WWW reddit.com/r/singularity/comments/14xyn6n/ Adaptability: The ability to learn and adapt to new situations. Dog wins. Al is pretrained. To adapt requires outside

is_gpt4_overall_more_intelligent_than_a_dog/ intervention.

Problem-solving: The ability to identify and solve problems. Al wins some, dog wins some.

Reasoning: The ability to use logic and reasoning to reach conclusions. Al wins some, Dog wins some
Creativity: The ability to generate new ideas and solutions. Dog wins

Communication: The ability to understand and use language. Dog wins. Al does not understand anything.
Social skills: The ability to interact effectively with others. Al wins in textual interactions. Dog wins all else.

So, no. GPT4 is not more intelligent than a dog.

https://www.reddit.com/r/singularity/comments/14xyn6n,/
is_gpt4_overall_more_intelligent_than_a_ dog/
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Curse of Dimensionality Uz

Figure 5.9 of "Deep Learning" book, https://www.deeplearningbook.org
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Machine and Representation Learning

NPFL138, Lecture 1 TL;DR

Figure 1.5 of "Deep Learning" book, https://www.deeplearningbook.org
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