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K-Means Clustering

Input: Input points , number of clusters .

Initialize  as  random input points.

Repeat until convergence (or until patience runs out):
Compute the best possible . It is easy to see that the smallest  is achieved by

Compute the best possible . By computing a

derivative with respect to , we get
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K-Means Clustering

 

Figure 9.1 of Pattern Recognition and Machine Learning.
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Gaussian Mixture vs K-Means

It could be useful to consider that different clusters might have different radii or even be
ellipsoidal.

 

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
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Multivariate Gaussian Distribution

Recall that

For -dimensional vector , the multivariate Gaussian distribution takes the form

The biggest difference compared to the single-dimensional case is the covariance matrix ,

which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size .
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 exp −  . 
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Multivariate Gaussian Distribution

If the covariance matrix is an identity, then the multivariate Gaussian distribution simplifies to

We can rewrite the exponent in this case as

Therefore, the constant surfaces are concentric
hyperspheres (circles in 2D, spheres in 3D) centered
at the mean .

The same holds if the covariance is , only the

hyperspheres' diameter changes.
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Multivariate Gaussian Distribution

Now consider a diagonal covariance matrix . The exponent then simplifies to

The constant surfaces in this case are axis-aligned
hyperellipsoids (ellipses in 2D, ellipsoids in 3D)
centered at the mean  with the size of the axes

depending on the corresponding diagonal entries in
the covariance matrix.

Λ
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Multivariate Gaussian Distribution

In the general case of a full covariance matrix, the fact that it is positive definite implies it has
real positive eigenvalues . Considering the corresponding eigenvectors , it can be shown

that the constant surfaces are again hyperellipsoids centered at , but this time rotated so that

their axes are the eigenvectors  with sizes .

 

Figure 2.7 of Pattern Recognition and Machine Learning.
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Multivariate Gaussian Distribution

 

Figure 2.8 of Pattern Recognition and Machine Learning.

Generally, we can rewrite a positive-definite matrix  as , and

then

Therefore, when sampling from a distribution with a full covariance matrix, we can sample from
a standard multivariate , scale by the eigenvalues of the covariance matrix, rotate

according to the eigenvectors of the covariance matrix and finally shift by .

Note that different forms of covariance allow
more generality, but also require more parameters:

the  has a single parameter,

the  has  parameters,

the full covariance matrix  has 

parameters, i.e., .

Σ UΛU =T (UΛ )(UΛ )1/2 1/2 T

x ∼ N (μ,Σ) ⟺ x ∼ μ+UΛ N (0, I).1/2
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Gaussian Mixture

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Our goal is to represent the data as a Gaussian mixture, which is a combination of 

Gaussians in the form

Therefore, each cluster is parametrized as .
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Gaussian Mixture

 

Figure 9.5 of Pattern Recognition and Machine Learning.

 

Figure 2.23 of Pattern Recognition and Machine Learning.
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Gaussian Mixture

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Our goal is to represent the data as a Gaussian mixture, which is a combination of 

Gaussians in the form

Therefore, each cluster is parametrized as .

Let  be a -dimensional random variable, such that exactly one  is 1, denoting

to which cluster a training example belongs. Let the marginal distribution of  be

so that the priors  represent the “fertility” of the clusters. Then, .
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Gaussian Mixture

 

Figure 9.4
of Pattern

Recognition
and

Machine
Learning.

We can write

and the log-probability of the whole clustering is therefore

To fit a Gaussian mixture model, we utilize maximum likelihood estimation and minimize
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Gaussian Mixture

The derivative of the loss with respect to  gives

Denoting , setting the derivative equal to zero and multiplying by 

, we get

The  are usually called responsibilities and denote the probability . Note

that the responsibilities depend on , so the above equation is not an analytical solution for 

, but can be used as an iterative algorithm for converging to a local optimum.
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Gaussian Mixture

For , we again compute the derivative of the loss, which is technically complicated (we need

to compute a derivative of a matrix inverse, and also we need to differentiate a matrix
determinant) and results in an analogous equation:

To minimize the loss with respect to , we need to include the constraint , so we

form a Lagrangian , and get

Setting the derivative to zero and multiplying by , we obtain , so
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Gaussian Mixture

Input: Input points , number of clusters .

Initialize  and . It is common to start by running the K-Means algorithm to

obtain , set  and use the M step below.

Repeat until convergence (or until patience runs out):
E step. Evaluate the responsibilities as

M step. Maximize the log-likelihood by setting
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Gaussian Mixture

 

Figure 9.8 of Pattern Recognition and Machine Learning.
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EM Algorithm

The algorithm for estimating the Gaussian mixture is an example of an EM algorithm.

The EM algorithm algorithm can be used when given a joint distribution 

over observed variables  and latent (hidden, unseen) variables , parametrized by ,

we maximize

with respect to .

Usually, the latent variables  indicate membership of the data in one of the set of groups.

The main idea is to replace the computation of the logarithm of the sum over all latent variable
values by the expectation of a logarithm of the joint probability under the posterior latent
variable distribution .

p(X,Z;w)
X Z w

log p(X;w) = log  p(X,Z;w)(
Z

∑ )

w

Z

p(Z∣X;w)
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EM Algorithm

Initialize the parameters .

Repeat until convergence (or until patience runs out):

E step. Evaluate

M step. Maximize the log-likelihood by computing

wnew

w ←old wnew

Q(w∣w ) =old E  [ log p(X,Z;w)].Z∣X ,wold

w ←new
 Q(w∣w ).

w
arg max old
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EM Algorithm – Proof

The EM algorithm updates  to maximize  on every step, and we now prove

that this update of weights also causes the  to increase.

First note that for any  with nonzero probability, we can write

Computing the expectation with respect to , we get

The above equation holds for any , so also for :

w Q(w∣w )old

log p(X;w)

Z

log p(X;w) = log p(X,Z;w) − log p(Z∣X;w).

p(Z∣X,w )old

  

log p(X;w) =  p(Z∣X;w ) log p(X,Z;w) −  p(Z∣X;w ) log p(Z∣X;w)
Z

∑ old

Z

∑ old

= Q(w∣w )+ H(p(Z∣X;w ), p(Z∣X;w)).old old

w wold

log p(X;w ) =old Q(w ∣w )+old old H(p(Z∣X;w ), p(Z∣X;w )).old old
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EM Algorithm – Proof

Subtracting the second term  from the first , we obtain

Given that KL divergence is nonnegative, we get

so if  is larger than , we also increase .

To show that  actually converges to a stationary point, some additional regularity

conditions are needed (one possibility is to require  to be continuous in both  and

). For a more detailed treatment, see the 1983 paper On the Convergence Properties of the

EM Algorithm by C. F. Jeff Wu.

log p(X;w )old log p(X;w)

  

log p(X;w) − log p(X;w )old

= Q(w∣w )− Q(w ∣w )+ H(p(Z∣X;w ), p(Z∣X;w))− H(p(Z∣X;w ))old old old old old

= Q(w∣w )− Q(w ∣w )+ D  (p(Z∣X;w )  p(Z∣X;w)).old old old
KL

old

log p(X;w) − log p(X;w ) ≥old Q(w∣w )−old Q(w ∣w ),old old

arg max  Q(w∣w )w
old Q(w ∣w )old old log p(X;w)

log p(X;w)
Q(w∣w )old w

wold
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Bias-Variance Trade-off

Consider a model  solving a regression problem with MSE loss

Denoting , we can rewrite  as

When computing an expectation with respect to , we obtain

because .

y(x)

L = E  [(y(x) −x,t t) ].2

g(x) =def E  [t]t∣x (y(x) − t)
2

  

(y(x) − t)
2

= (y(x) − g(x) + g(x) − t)
2

= (y(x) − g(x)) + 2(y(x) − g(x))(g(x) − t)+ (g(x) − t) .
2 2

p  (x, t)data

  

L = E  [(y(x) − g(x)) ]+ 2E  [(y(x) − g(x))(g(x) − t)]+ E  [(g(x) − t) ]x,t
2

x,t x,t
2

= E  [(y(x) − g(x)) ]+ E  [(g(x) − t) ],x,t
2

x,t
2

E  [g(x) −t∣x t] = 0
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Bias-Variance Trade-off

We have decomposed the loss into two components, where the second is the “label noise” called
irreducible error.

We now further decompose the first component .

Assuming  is a dataset obtained from the data-generating distribution, we denote the

prediction of a model trained using this dataset as .

Note that , therefore, for a given , we have

E  [(y(x) −x,t g(x)) ]2

D

y(x; D)

  

(y(x; D) − g(x))
2

= (y(x; D) − E  [y(x; D)]+ E  [y(x; D)]− g(x))D D
2

= (y(x; D) − E  [y(x; D)])D
2

+ 2(y(x; D) − E  [y(x; D)])(E  [y(x; D)]− g(x))D D

+ (E  [y(x; D)]− g(x)) .D
2

E  [y(x; D) −D E  [y(x; D)]] =D 0 x

E  [(y(x; D) −D g(x)) ] =2 E  [(y(x; D) −D E  [y(x; D)]) ]+D
2 (E  [y(x; D)] −D g(x)) .

2
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Bias-Variance Trade-off

Putting all the parts together, we get that

This is the so-called bias-variance trade-off, showing that the expected loss decomposes into
the three above components.

For classification problems, we can use the same decomposition on the MSE of probabilities,
and it is also possible to derive an analogy using the so-called 0-1 loss (see A Unified Bias-
Variance Decomposition by P. Domingos for the exact formulation).

This decomposition has been long interpreted as:

The price to pay for achieving low bias is high variance.

  

E  [L]D = E  [E  [(y(x; D) − t) ]]D x,t
2

= E  [  +  +  ].x,t

bias2

 (E  [y(x; D)] − g(x))D
2

variance

 E  [(y(x; D) − E  [y(x; D)]) ]D D
2

irreducible error

 (g(x) − t)
2
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Bias-Variance Trade-off

 

Figure 3.5 of Pattern Recognition and Machine Learning.

 

 

Figure 3.6 of Pattern Recognition and Machine Learning.
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Bias-Variance Trade-off

 

Figure 3.2 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.

 

Figure 3.1 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.
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Bias-Variance Trade-off

For a k-NN search, when we consider an expectation over all possible labelings of a fixed
training set, the MSE decomposes as

where  is the  nearest neighbor of  and  is the irreducible error.

E[(y(x) − t(x)) ] =2 t(x) −   t(N  (x)) +(
K

1

k=1

∑
K

k )

2

 +
K

σ2

σ ,2

N  (x)k kth x σ2
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Bias-Variance Trade-off

 

Figure 3.3 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.

Quoting from Neural Networks and the Bias/Variance Decomposition by S. Geman, 1992:

The basic trend is what we expect: bias falls and variance increases with the number of
hidden units. The effects are not perfectly demonstrated (notice, for example, the dip in
variance in the experiments with the largest numbers of hidden units), presumably
because the phenomenon of overfitting is complicated by convergence issues and perhaps
also by our decision to stop the training prematurely.
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Bias-Variance Trade-off

However, in past years, neural networks with increasing capacity have performed better and
better.

 

Figure 4.1 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.
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Double Descent

 

Figure 1 of "Reconciling modern machine learning practice and the bias-variance trade-off" by M. Belkin et al.
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Double Descent – Overparametrized with Minimum L2

 

Figure 3 of "Reconciling modern machine learning practice and the bias-variance trade-off" by M. Belkin et al.

 

Figure 1 of "Minnorm training: an algorithm for training over-parameterized deep neural networks", https://arxiv.org/abs/1806.00730
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Double Descent – RFF on MNIST

 

Figure 2 of "Reconciling modern machine learning practice and the bias-variance trade-off" by M. Belkin et al.
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Double Descent – MLP and RF on MNIST

 

Figure 4 of "Reconciling modern machine learning practice and the bias-variance trade-
off" by M. Belkin et al.

 

Figure 5 of "Reconciling modern machine learning practice and the bias-variance trade-off" by M.
Belkin et al.
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Deep Double Descent

 

Figure 1 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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Deep Double Descent – Effective Model Complexity

The authors define the Effective Model Complexity (EMC) of a training procedure  with

respect to distribution  and parameter  as

where  is the mean error of a model  on the train samples .

Hypothesis: For any natural data distribution , neural-network-based training procedure ,

and small , if we consider the task of predicting labels based on  samples from , then:

Under-parametrized regime. If  is sufficiently smaller than , any

perturbation of  that increases its effective complexity will decrease the test error.

Over-parametrized regime. If  is sufficiently larger than , any perturbation

of  that increases its effective complexity will decrease the test error.

Critically parametrized regime. If , then a perturbation of  that

increases its effective complexity might decrease or increase the test error.

T

D ε > 0

EMC  (T )D,ε =def max{n  E  [Error  (T (S))] ≤S∼Dn S ε},

Error  (M)S M S

D T

ε > 0 n D

EMC  (T )D,ε n

T

EMC  (T )D,ε n

T

EMC  (T ) ≈D,ε n T
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Deep Double Descent

 

Figure 2 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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Deep Double Descent

 

Figure 4 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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