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Linear Algebra Refresh – Eigenvalues and Eigenvectors

Let  be an  matrix.

A vector  is a (right) eigenvector, if there exists an eigenvalue , such that

If  is a real symmetric matrix, then it has  real eigenvalues and  real

eigenvectors, which can be chosen to be orthonormal, and we can express  using the

eigenvalue decomposition

where:
 is a matrix, whose columns are the eigenvectors ;

 is a diagonal matrix with the eigenvalues  on the diagonal.

A ∈ CN×N N × N

v ∈ CN λ ∈ C

Av = λv.

A ∈ RN×N N N

A

A = V ΛV ,T

V v  ,v  , … ,v  1 2 N

Λ λ  ,λ  , … ,λ  1 2 N
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Linear Algebra Refresh – Positive Definiteness

Let  be a real symmetric matrix. Then if for all :

, the matrix is called positive definite.

Note that this condition is equivalent to all eigenvalues being positive.

, the matrix is called positive semi-definite.

This condition is equivalent to all eigenvalues being nonnegative.

, the matrix is called negative definite.

This condition is equivalent to all eigenvalues being negative.

, the matrix is called negative semi-definite.

This condition is equivalent to all eigenvalues being nonpositive.

Note that we can compute a “square root” of a positive (semi-)definite matrix, because if 

, then for  we get

A ∈ RN×N x = 0

x Ax >T 0

x Ax ≥T 0

x Ax <T 0

x Ax ≤T 0

A =
V ΛV T Λ V1/2 T

(Λ V ) Λ V =1/2 T T 1/2 T V Λ Λ V =1/2 1/2 T V ΛV =T A.
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Principal Component Analysis

The principal component analysis, PCA, is a linear transformation used for

dimensionality reduction,
feature extraction,
whitening,
data visualization.

To motivate the dimensionality reduction, consider a dataset consisting of a randomly translated
and rotated image.

 

Figure 12.1 of Pattern Recognition and Machine Learning.

Every member of the dataset can be described just by three quantities – horizontal and vertical
offsets and a rotation. We usually say that the data lie on a manifold of dimension three.
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Principal Component Analysis

 

Figure 12.2 of Pattern Recognition and Machine Learning.

We start by defining the PCA in two ways.

Maximum Variance Formulation
Given data  with , the goal is to

project them to a space with dimensionality , so

that the variance of their projection is maximal.

We start by considering a projection to one-dimensional
space. Such a projection is defined by a vector , and

because only the direction of  matters, we assume that

.

The projection of  to  is given by ,

because the vectors  and  are

orthogonal:

x  , … ,x  1 N x  ∈i RD
M < D

u  1

u  1

u  u  =1
T

1 1

x  i u  1 (u  x  )u  1
T

i 1

u  1 x  −i (u  x  )u  1
T

i 1

u  (x  −1
T

i (u  x  )u  ) =1
T

i 1 u  x  −1
T

i (u  x  )u  u  =1
T

i 1
T

1 0.
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Principal Component Analysis

We therefore use  as the projection of . If we define , the mean of the

projected data is , and the variance is given by

where  is the data covariance matrix defined as

We can write the data covariance matrix in matrix form as .

If the original data is centered (it has zero mean), then , which we have already

encountered.

u  x  1
T

i x  i =x̄  x  /N∑i i

u  1
T x̄

  (u  x  −
N

1

i=1

∑
N

1
T

i u  ) =1
T x̄

2
u  Su  ,1
T

1

S

S =   (x  −
N

1

i=1

∑
N

i )(x  −x̄ i ) .x̄ T

S =  (X −
N
1 ) (X −x̄

T
)x̄

S =  X X
N
1 T
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Principal Component Analysis

To maximize , we need to include the constraint  by introducing a Lagrange

multiplier  for the constraint  and then maximizing the Lagrangian

By computing a derivative with respect to , we get

Therefore,  must be an eigenvector of  corresponding to eigenvalue .

Because the value to maximize  is then , the maximum is

attained for eigenvector  corresponding to the largest eigenvalue .

The eigenvector  is known as the first principal component.

For a given , the principal components are eigenvectors corresponding to  largest

eigenvalues, and maximize the variance of the projected data.

u  Su  1
T

1 u  u  1
T

1

λ  1 u  u  −1
T

1 1 = 0

L = u  Su  −1
T

1 λ  (u  u  −1 1
T

1 1).

u  1

Su  =1 λ  u  .1 1

u  1 S λ  1

u  Su  1
T

1 u  λ  u  =1
T

1 1 λ  u  u  =1 1
T

1 λ  1

u  1 λ  1

u  1

M M
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Principal Component Analysis

Minimum Error Formulation
Assume  is some orthonormal set of vectors, therefore, .

Every  can be then expressed using this basis as

using a similar argument as the one we used to derive the orthogonal projection.

Because we want to eventually represent the data using  dimensions, we approximate the

data by the first  basis vectors:

u  , … ,u  1 D u  u  =i
T

j [i = j] = δ  i,j

x  i

x =i  (x  u  )u  ,
j

∑ i
T

j j

M

M

 =x~i  z  u  +
j=1

∑
M

i,j j  b  u  .
j=M+1

∑
D

j j
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Principal Component Analysis

We now choose the vectors , coordinates  and biases  to minimize the approximation

error, which we measure as a loss

To minimize the error, we compute the derivative of  with respect to  and , and utilizing

the orthogonality, we obtain

Therefore, we can rewrite the loss as

Analogously, we can minimize  by choosing the eigenvectors of  smallest eigenvalues.

u  j z  i,j b  j

L =   ∥x  −
N

1
∑

i=1

N

i  ∥ .x~i 2

L z  i,j b  j

z  =i,j x u ,     b  =i
T

j j u  .x̄T j

L =    (x  u  −
N

1

i=1

∑
N

j=M+1

∑
D

i
T

j u  ) =x̄T j
2

 u  Su  .
j=M+1

∑
D

j
T

j

L D − M
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PCA Applications – Data Compression

We can represent the data  by the approximations 

 

Figure 12.5 of Pattern Recognition and Machine Learning.

x  i  x~i

 =x~i  (x  u  )u  +
j=1

∑
M

i
T

j j  ( u  )u  =
j=M+1

∑
D

x̄T j j +x̄  (x  u  −
j=1

∑
M

i
T

j u  )u  .x̄T j j
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PCA Applications – Data Compression

 

Figure 12.4 of Pattern Recognition and Machine Learning.

 

Figure 12.3 of Pattern Recognition and Machine Learning.
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PCA Applications – Whitening aka Sphering

The PCA formula allows us to perform whitening aka sphering, which is a linear
transformation of the given data so that the resulting dataset has zero mean and an identity
covariance matrix.

Notably, if  are the eigenvectors of  and  is the diagonal matrix of the corresponding

eigenvalues (i.e., ), we can define the transformed data as

Then, the mean of  is zero and the covariance is given by

U S Λ
SU = UΛ

z  i =def Λ U (x  −−1/2 T
i ).x̄

z  i

  

  z  z  

N

1

i

∑ i i
T =   Λ U (x  − )(x  − ) UΛ

N

1

i

∑ −1/2 T
i x̄ i x̄ T −1/2

= Λ U SUΛ = Λ ΛΛ = I.−1/2 T −1/2 −1/2 −1/2
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PCA Applications – Whitening or Sphering

 

Figure 12.6 of Pattern Recognition and Machine Learning.
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PCA versus Supervised ML

Note that PCA does not have access to supervised labels, so it may not give a solution
favorable for further classification.

 

Figure 12.7 of Pattern Recognition and Machine Learning.
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Principal Component Analysis and MLPs

 

Figure 12.8 of Pattern Recognition and Machine Learning.

It can be proven that if we construct an MLP autoencoder, which is a model trying to
reconstruct input as close as possible, then even if the hidden layer uses nonlinear activation, the
solution to an MSE loss is a projection onto the -dimensional subspace defined by the first 

 principal components (but is not necessary orthonormal or orthogonal).

M

M

16/29NPFL129, Lecture 11 LinearAlgebra PCA Whitening PCA-SVD PowerIteration Clustering KMeans



Principal Component Analysis and MLPs

However, nonlinear PCA can be achieved, if both the encoder and the decoder are nonlinear.

 

Figure 12.9 of Pattern Recognition and Machine Learning.
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Computing PCA

There are two frequently used algorithms for performing PCA.

If we want to compute all (or many) principal components, we can directly compute the
eigenvectors and the eigenvalues of the covariance matrix.

We can even avoid computing the covariance matrix. If we instead compute the singular value
decomposition of , it holds that

Therefore,

which means that  are the eigenvectors of  and therefore of the data

covariance matrix . The eigenvalues of  are the squares of the singular values of 

divided by .

(X − ) =x̄ UDV T

(X − ) (X −x̄
T

) =x̄ V DU UDV =T T V D V .2 T

(X − ) (X −x̄
T

)V =x̄ V D ,2

V (X − ) (X −x̄ T )x̄
S S (X − )x̄

N
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Computing PCA — The Power Iteration Algorithm

If we want only the first (or several first) principal components, we might use the power

iteration algorithm.

The power iteration algorithm can be used to find a dominant eigenvalue (an eigenvalue with
an absolute value strictly larger than absolute values of all other eigenvalues) and the
corresponding eigenvector (it is used for example to compute PageRank). It works as follows:

Input: Real symmetric matrix  with a dominant eigenvalue. 

Output: The dominant eigenvalue  and the corresponding eigenvector , with probability

close to 1.

Initialize  randomly (for example each component from ).

Repeat until convergence (or for a fixed number of iterations):

If the algorithm converges, then , so  is an eigenvector with eigenvalue .

A

λ v

v U [−1, 1]

v ← Av

λ ← ∥v∥
v ← v/λ

v = Av/λ v λ
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Computing PCA — The Power Iteration Algorithm

In order to analyze the convergence, let  be the eigenvalues of , in the

descending order of absolute values, so , where the strict

equality is the consequence of the dominant eigenvalue assumption.

If we express the vector  in the basis of the eigenvectors as , then  is

in the basis of the eigenvectors:

Therefore, all but the first coordinates decreased by at least a factor of .

If the initial  had a nonzero first coordinate  (which has probability very close to 1), then

repeated multiplication with  converges to the eigenvector corresponding to .

(λ  ,λ  ,λ  , …)1 2 3 A

∣λ  ∣ >1 ∣λ  ∣ ≥2 ∣λ  ∣ ≥3 …

v (a  , a  , a  , …)1 2 3 Av/λ  1

 =
λ  1

Av
 a  ,  a  ,  a  , … =(

λ  1

λ  1
1
λ  1

λ  2
2
λ  1

λ  3
3 ) a  ,  a  ,  a  , … .( 1

λ  1

λ  2
2
λ  1

λ  3
3 )

∣λ  /λ  ∣2 1

v a  1

A λ  1
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Computing PCA — The Power Iteration Algorithm

After we get the largest eigenvalue  and its eigenvector , we can modify the matrix  to

“remove the eigenvalue ”. Consider :

multiplying it by  returns zero:

multiplying it by other eigenvectors  gives the same result as multiplying :

Therefore,  has the same set of eigenvectors and eigenvalues, except for , which

now has eigenvalue 0.

λ  1 v  1 A

λ  1 A− λ  v  v  1 1 1
T

v  1

(A− λ  v  v  )v  =1 1 1
T

1 λ  v  −1 1 λ  v =1 1

1

v  v  1
T

1 0,

v  i A

(A− λ  v  v  )v  =1 1 1
T

i Av  −i λ  v   =1 1

0

 v  v  1
T

i Av  .i

A− λ  v  v  1 1 1
T v  1
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Computing PCA — The Power Iteration Algorithm

We are now ready to formulate the complete algorithm for computing the PCA.

Input: Matrix , desired number of dimensions .

Compute the mean  of the examples (the rows of ).

Compute the covariance matrix .

for  in :

Initialize  randomly.

Repeat until convergence (or for a fixed number of iterations):

Return , where the columns of  are .

X M

μ X

S ←  (X −N
1 μ) (X −

T
μ)

i {1, 2, … ,M}
v  i

v  ←i Sv  i

λ  ←i ∥v  ∥i
v  ←i v  /λ  i i

S ← S − λ  v  v  i i i
T

XV V v ,v  , … ,v  1 2 M
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Clustering

Clustering is an unsupervised machine learning technique, which given input data tries to divide
them into some number of groups, or clusters.

The number of clusters might be given in advance, or we should infer it.

When clustering documents, we usually normalize TF-IDF so that each feature vector has
length 1 (i.e., L2 normalization), because then

1 − cosine similarity(x,y) =  ∥x−
2
1

y∥ .2
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K-Means Clustering

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Let  be binary indicator variables describing whether an input example  is

assigned to cluster , and let each cluster be specified by a point , usually called

the cluster center.

Our objective function , which we aim to minimize, is

x  ,x  , … ,x  1 2 N N D

x  ∈i RD K

z  ∈i,k {0, 1} x  i

k μ  , … ,μ  1 K

J

J =   z  ∥x  −
i=1

∑
N

k=1

∑
K

i,k i μ  ∥ .k
2

24/29NPFL129, Lecture 11 LinearAlgebra PCA Whitening PCA-SVD PowerIteration Clustering KMeans



K-Means Clustering

Input: Input points , number of clusters .

Initialize  as  random input points.

Repeat until convergence (or until patience runs out):
Compute the best possible . It is easy to see that the smallest  is achieved by

Compute the best possible . By computing a

derivative with respect to , we get

x  , … ,x  1 N K

μ  , … ,μ  1 K K

z  i,k J

z  =i,k   {
1
0

  if k = arg min  ∥x  − μ  ∥ ,j i j
2

  otherwise.

μ  =k arg min   z  ∥x  −μ∑i i,k i μ∥2

μ

μ  =k  .
 z  ∑i i,k

 z  x  ∑i i,k i
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K-Means Clustering

 

Figure 9.1 of Pattern Recognition and Machine Learning.
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K-Means Clustering

 

Figure 9.2 of Pattern Recognition and Machine Learning.

It is easy to see that:

updating the cluster assignment 

decreases the loss  or keeps it the

same;
updating the cluster centers again
decreases the loss  or keeps it the

same.

K-Means clustering therefore converges
to a local optimum. However, it is quite sensitive to the starting initialization:

It is common practice to run K-Means algorithm multiple times with different initialization
and use the result with the lowest  (scikit-learn uses n_init=10 by default).

Instead of using random initialization, k-means++ initialization scheme might be used,
where the first cluster center is chosen randomly and others are chosen proportionally to the
square of their distance to the nearest cluster center. It can be proven that with this
initialization, the solution has  approximation ratio in expectation.

z  i,k

J

J

J

O(logK)
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K-Means Clustering

 

Figure 9.3 of Pattern Recognition and Machine Learning.
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Gaussian Mixture vs K-Means

It could be useful to consider that different clusters might have different radii or even be
ellipsoidal.

 

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
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