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Covariance

Given a collection of random variables , we know that

But how about ?
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Covariance

We define covariance of two random variables  as

Then,

Note that  and that we can write covariance as

x, y

Cov(x, y) = E[(x − E[x])(y − E[y])].

Var  x  =(∑
i

i)   Cov(x  , x  ).
i

∑
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∑ i j

Cov(x, x) = Var(x)

  

Cov(x, y) = E[(x − E[x])(y − E[y])]

= E[xy − xE[y] − E[x]y + E[x]E[y]]

= E[xy]− E[x]E[y].
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Correlation

Two random variables  are uncorrelated if ; otherwise, they are correlated.

Note that two independent random variables are uncorrelated, because

However, dependent random variables can be uncorrelated – random uniform  on  and 

 are not independent (  is completely determined by ), but they are uncorrelated.
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Pearson correlation coefficient

There are several ways to measure correlation of random variables .

Pearson correlation coefficient, denoted as  or , is defined as

where:

 is used when the full expectation is computed (population Pearson correlation coefficient);

 is used when estimating the coefficient from data (sample Pearson correlation coefficient);

 and  are sample estimates of the respective means.
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ρ

r

x̄  ȳ
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Pearson correlation coefficient

The value of Pearson correlation coefficient is in fact normalized covariance, because its
value is always bounded by  (and the same holds for ).

The bound can be derived from

which yields .

Alternatively, the desired inequality can be obtained by applying the Cauchy-Schwarz inequality 

 on .
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Pearson correlation coefficient

Pearson correlation coefficient quantifies linear dependence of the two random variables.

 

https://upload.wikimedia.org/wikipedia/commons/3/34/Correlation_coefficient.png
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Pearson correlation coefficient

Pearson correlation coefficient quantifies linear dependence of the two random variables.
1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

 

https://upload.wikimedia.org/wikipedia/commons/d/d4/Correlation_examples2.svg
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Pearson correlation coefficient

The four displayed variables have the same mean 7.5, variance 4.12, Pearson correlation
coefficient 0.816 and regression line .

 

https://upload.wikimedia.org/wikipedia/commons/e/ec/Anscombe%27s_quartet_3.svg

3 +  x2
1
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Nonlinear Correlation – Spearman's ρ

To measure also nonlinear correlation, two coefficients are commonly used.

Spearman's rank correlation coefficient 

Spearman's  is Pearson correlation coefficient measured on ranks of the original data, where a

rank of an element is its index in sorted ascending order.

 

https://upload.wikimedia.org/wikipedia/commons/4/4e/Spearman_fig{1,2,3,5,4}.svg

ρ

ρ
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Nonlinear Correlation – Kendall's τ

Kendall rank correlation coefficient 

Kendall's  measures the amount of concordant pairs (pairs where  increases/decreases when 

 does), minus the discordant pairs (where  increases/decreases when  does the opposite):

There is no clear consensus whether to use Spearman's  or Kendall's . When there are

no/few ties in the data, Kendall's  offers two minor advantages –  can be interpreted as a

probability of a concordant pair, and Kendall's  converges to a normal distribution faster.

As defined, the range of Kendall's . However, if there are ties, its range is smaller –

therefore, several corrections (not discussed here) exist to adjust its value in case of ties.
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Usage of Correlation in Machine Learning

In the machine learning area, correlation is commonly used to measure “agreement” between:

several human annotations;

automatic metric and gold annotation;

 

Figure 4.4 of diploma thesis "Adaptive Handwritten Text Recognition", https://hdl.handle.net/20.500.11956/147680

automatic metric and human evaluation.
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Model Combination aka Ensembling

The goal of ensembling is to combine several models in order to reach higher performance.

The simplest approach is to train several independent models and then to combine their
predictions by averaging or voting.

The terminology varies, but for classification:

voting (or hard voting) usually means predicting the class predicted most often by the
individual models,
averaging (or soft voting) denotes averaging the returned model distributions and predicting
the class with the highest probability.

The main idea behind ensembling is that if models have uncorrelated errors, then by averaging
model predictions the errors will cancel out.
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Visualization of Ensembling Performance

Consider ensembling predictions generated uniformly on a planar disc:
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Model Combination aka Ensembling

If we denote the prediction of a model  on a training example  as ,

so that  is the model error on example , the mean square error of the model is

Considering  models, we analogously get that the mean square error of the ensemble is

Finally, assuming that the individual errors  have zero mean and are uncorrelated, we get that 

 for , and therefore,

so the average error of the ensemble is  times the average error of the individual models.
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Bagging – Bootstrap Aggregation

 

Figure 7.5 of "Deep Learning" book, https://www.deeplearningbook.org

For neural network models, training models with independent random initialization is usually
enough, given that the loss has many local minima, so the models tend to be quite independent
just when using different random initialization.

However, algorithms with convex loss functions usually converge to the same optimum
independent of randomization.

In these cases, we can use bagging, which stands for bootstrap aggregation.

In bagging, we construct a different dataset for
every model to be trained. We construct it
using bootstrapping – we sample as many
training instances as the original dataset has,
but with replacement.

Such dataset is sampled using the same
empirical data distribution and has the same
size, but is not identical.
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Decision Trees

The idea of decision trees is to partition the input space into usually cuboid regions and solving
each region with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, …

 

Figure 14.6 of Pattern Recognition and Machine Learning.

 

 

Figure 14.5 of Pattern Recognition and Machine Learning.
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Regression Decision Trees

Assume we have an input dataset , . At the beginning, the decision tree is

just a single node and all input examples belong to this node. We denote  the set of training

example indices belonging to a node .

For each leaf (a node without children), our model predicts the average of the training examples
belonging to that leaf, .

We use a criterion  telling us how uniform or homogeneous the training examples of a node 

 are – for regression, we employ the sum of squares error between the examples belonging to

the node and the predicted value in that node; this is proportional to the variance of the
training examples belonging to the node , multiplied by the number of the examples. Note

that even if it is not mean squared error, it is sometimes denoted as MSE.
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1 ∑i∈I  T
i

c  T

T

T

c  (T )SE =
def

 (t  −
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Tree Construction

To split a node, the goal is to find a feature and its value such that when splitting a node 

into  and , the resulting regions decrease the overall criterion value the most, i.e., the

difference  is the lowest.

We usually employ several constraints, the most common ones are:

maximum tree depth: we do not split nodes with this depth;

minimum examples to split: we only split nodes with this many training examples;

maximum number of leaf nodes: we split until we reach the given number of leaves.

The tree is usually built in one of two ways:

if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner,
recursively splitting every leaf until one of the above constraints is invalidated;
if the maximum number of leaf nodes is given, we usually split such leaf  where the

criterion difference  is the lowest.
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Pruning

To control overfitting, the previously-mentioned constraints can be used.

Additionally, pruning can also be used. After training, we might decide that some
subtrees are not necessary, and prune them (replacing them with a leaf). Pruning can be
used both as a regularization or model compression.

There are many heuristics to prune a decision tree; Scikit-learn implements minimal cost-
complexity pruning:

we extend the criterion to cost-complexity criterion as
for a leaf, ,

for a subtree with a root , ;

generally a criterion in a node  is greater or equal to the sum of criteria of its leaves;

 for a node  is the value of  such that the two mentioned cost-complexity quantities (

 computed as if  is a leaf, and ) are equal

;

we then prune the nodes in the order of increasing .

c  (T ) =α c(T ) + α

t c  (t) =α  c  (T ) =∑T ∈leaves α  c(T ) +∑T ∈leaves α∣leaves∣

t

α  eff t α

c  (T )α t c  (t)α

α  =eff (c(T ) − c(t))/(∣leaves  under  t∣ − 1)

α  eff
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Classification Decision Trees

For multi-class classification, we predict the class which is the most frequent in the training
examples belonging to a leaf .

To define the criteria, let us denote the average probability for class  in a region  as .

For classification trees, one of the following two criteria is usually used:

Gini index, also called Gini impurity, measuring how often a randomly chosen element
would be incorrectly labeled if it was randomly labeled according to :

Entropy Criterion

T

k T p  (k)T
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c  (T )entropy =def ∣I  ∣ ⋅T H(p  ) =T −∣I  ∣ p  (k) log p  (k).T

k
p  (k)=0T 
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Binary Gini as (M)SE Loss

Recall that  denotes the set of training example indices belonging to a leaf node , let 

 be the number of examples with target value 0,  be the number of examples with

target value 1, and let .

Consider sum of squares loss .

By setting the derivative of the loss to zero, we get that the  minimizing the loss fulfills 

, i.e., .

The value of the loss is then
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Entropy as NLL Loss

Again let  denote the set of training example indices belonging to a leaf node , let 

be the number of examples with target value , and let .

Consider a distribution  on  classes and non-averaged NLL loss .

By setting the derivative of the loss with respect to  to zero (using a Lagrangian with

constraint ), we get that the  minimizing the loss fulfills .

The value of the loss with respect to  is then
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Random Forests

Bagging of data combined with a random subset of features (sometimes called feature bagging).

 

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz
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Random Forests

Bagging
Every decision tree is trained using bagging (on a bootstrapped dataset).

Random Subset of Features
During each node split, only a random subset of features is considered when finding the best
split. A fresh random subset is used for every node.

Extra Trees
The so-called extra trees are even more randomized, not finding the best possible feature value
when choosing a split, but considering uniformly random samples from a feature's empirical
range (minimum and maximum in the training data).

Demo
https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html
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