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Document Representation

We already know how to represent images and categorical variables (classes, letters, words, …).

Now consider the problem of representing a whole document.

An elementary approach is to represent a document as a bag of words – we create a feature
space with a dimension for every unique word (or for character sequences), called a term.

However, there are many ways in which the values of the terms can be set.
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Term Frequency – Inverse Document Frequency

Commonly used ways of setting the term values:

binary indicators: 1/0 depending on whether a term is present in a document or not;

term frequency (TF): relative frequency of a term in a document;

inverse document frequency (IDF): we could also represent a term using self-information
of a probability of a random document containing it (therefore, terms with lower document
probability have higher weights);

TF-IDF: empirically, product  is a feature reflecting quite well how important a

term is to a document in a corpus (used by 83% text-based recommender systems in 2015).

TF(t; d) =  

number of terms in the document d
number of occurrences of t in the document d

IDF(t) = log  =
number of documents containing t (optionally + 1)

number of documents
I(P (d ∋ t))

TF ⋅ IDF
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Mutual Information

Consider two random variables  and  with distributions  and .

The conditional entropy  can be naturally considered an expectation of a self-

information of , so in the discrete case,

In order to assess the amount of information shared between the two random variables, we
might consider the difference

We can interpret this value as

How many bits of information will we learn about  when we find out ?

x y x ∼ X y ∼ Y

H(Y ∣X)
Y ∣X

H(Y ∣X) = E  [I(y∣x)] =x,y −  P (x, y) logP (y∣x).
x,y

∑

H(Y ) − H(Y ∣X) = E  [−x,y logP (y)]− E  [−x,y logP (y∣x)] = E  log  .x,y [
P (x)P (y)
P (x, y)

]

Y X
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Mutual Information

 

https://commons.wikimedia.org/wiki/File:Entropy-
mutual-information-relative-entropy-relation-

diagram.svg

Let us denote this quantity as the mutual information :

The mutual information is symmetrical, so

It is easy to verify that

Therefore,
,

 iff  iff the random variables are independent.

I(X;Y )

I(X;Y ) = E  log  .x,y [
P (x)P (y)
P (x, y)

]

I(X;Y ) = I(Y ;X) = H(Y ) − H(Y ∣X) = H(X) − H(X∣Y ).

I(X;Y ) = D  (P (X,Y )∥P (X)P (Y )).KL

I(X;Y ) ≥ 0
I(X;Y ) = 0 P (X,Y ) = P (X)P (Y )
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TF-IDF as Mutual Information

Let  be a collection of documents and  a collection of terms.

We assume that whenever we need to draw a document, we do it uniformly randomly. Then,

 and ,

,

, assuming  in  as usual,

Finally, we can compute the mutual information  as

Therefore, summing all TF-IDF terms recovers the mutual information between  and , and

we can say that each TF-IDF carries a “bit of information” attached to a document-term pair.

D T

P (d) = 1/∣D∣ I(d) = H(D) = log ∣D∣

P (d∣t ∈ d) = 1/∣{d ∈ D : t ∈ d}∣

I(d∣t ∈ d) = H(D∣t) = log ∣{d ∈ D : t ∈ d}∣ 0 ⋅ log 0 = 0 H

I(d) − I(d∣t ∈ d) = H(D) − H(D∣t) = log  =∣{d ∈ D : t∈ d}∣
∣D∣

IDF(t).

I(D; T )

I(D; T ) =  P (d) ⋅
d, t∈d

∑ P (t∣d) ⋅ (I(d) − I(d∣t)) =   TF(t; d) ⋅
∣D∣
1

d, t∈d

∑ IDF(t).

D T
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Bayesian Probability

Until now, we considered the so-called frequentist probability, where the probability of an event
is considered a limit of its frequency.

In Bayesian probability interpretation, probability is a quantification of uncertainty instead.
Bayesian probability can be considered an extension of propositional logic, where hypotheses
(that must be true or false in frequentist probability) can be assigned probabilities.

Bayesian probability is the so-called evidential probability, where hypotheses have some initial
prior probability, which is then updated in light of new data into posterior probability.

This update of prior probability into posterior probability is performed using the Bayes theorem

P (A∣B) =  .
P (B)

P (B∣A)P (A)
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Librarian or Farmer

 

https://en.wikipedia.org/wiki/
File:Thinking,_Fast_and_Slow.jpg

The following problem is from the Thinking, Fast and Slow:

As you consider the next question, please assume that Steve was selected
at random from a representative sample. An individual has been
described by a neighbor as follows: “Steve is very shy and withdrawn,
invariably helpful but with little interest in people or in the world of
reality. A meek and tidy soul, he has a need for order and structure, and
a passion for detail.” Is Steve more likely to be a librarian or a farmer?

The given description corresponds more to a librarian than to a farmer.

However, there are many more farmers than librarians (for example, in 2016
there were 4.33k librarians and 130.3k regular agricultural workers in the
Czech Republic, a 30:1 ratio).

The description being more fitting for a librarian is in fact a likelihood, while the base rates of
librarians and farmers play the role of a prior, and the whole question asks about the posterior:

P (librarian∣description) ∝ P (description∣librarian) ⋅ P (librarian).
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Maximum A Posteriori Estimation

We demonstrate the Bayesian probability on model fitting.

Recall the maximum likelihood estimation

In the Bayesian interpretation, we capture our initial assumptions about  using a prior

probability . The effect of observing the data  can be then expressed as

The quantity  is evaluated using fixed data  and quantifies how probable the

observed data is with respect to various values of the parameter . It is therefore a likelihood,

because it is a function of .

w  =MLE  p(X;w) =
w

arg max  p(X∣w).
w

arg max

w

p(w) X

p(w∣X) =  .
p(X)

p(X∣w)p(w)

p(X∣w) X

w

w

9/36NPFL129, Lecture 8 TF-IDF MutualInformation BayesianProbability MAP Beta Dir NaiveBayes Gen&Disc



Maximum A Posteriori Estimation

Therefore, we get that

where the symbol  means “up to a multiplicative factor”.

Using the above Bayesian inference formula, we can define maximum a posteriori (MAP)
estimate as

To utilize the MAP estimate for model training, we need to specify the parameter prior ,

our preference among models.

Note that a possible view is that overfitting is just a problem of not using priors and that
suitable priors would avoid it.

 ∝

posterior

 p(w∣X)  ⋅

likelihood

 p(X∣w)  ,

prior

 p(w)

∝

w  =MAP  p(w∣X) =
w

arg max  p(X∣w)p(w).
w

arg max

p(w)
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L2 Regularization as MAP

Frequently, the mean is assumed to be zero, and the variance is assumed to be . Given that

we have no further information, we employ the maximum entropy principle, which provides us
with , so that  Then

By substituting the probability of the Gaussian prior, we get

which is in fact the -regularization.

σ2

p(w  ) =i N (w  ; 0,σ )i
2 p(w) =  N (w  ; 0,σ ) =∏i=1

D
i

2 N (w;0,σ I).2

  

w  MAP =  p(X∣w)p(w)
w

arg max

=   p(x  ∣w)p(w)
w

arg max∏
i=1

N

i

=   ( − log p(x  ∣w) − log p(w)).
w

arg min∑
i=1

N

i

w  =MAP   ( −
w

arg min∑
i=1

N
log p(x  ∣w)+  log(2πσ ) +i 2

D 2
 ),

2σ2

∥w∥2

L2
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Bernoulli and Binomial Distribution

We have already discussed the Bernoulli distribution, which is a distribution over a binary
random variable with a single parameter  specifying the probability of the random

variable being equal to 1.

If a Bernoulli trial is repeated multiple times , the resulting outcome is the number of

successes  and has a binomial distribution .

If , then

where  is the binomial coefficient .

φ ∈ [0, 1]

n

∈ {0, 1, … ,n} B(n,φ)

x ∼ B(n,φ)

P (x = k) =  φ (1 −(
k

n
) k φ) ,n−k

 (k
n)  =(k

n)  k!(n−k)!
n!
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Bernoulli and Binomial Distribution

If we observe  outcomes of a Bernoulli trial (or equivalently a single outcome of a binomially-

distributed -trial random variable), we can use MLE to estimate the parameter .

In the context of Bayesian inference, we would start with some prior , and then compute a

posterior after any amount of observed data – be it a single trial or several trials at once. In the
extreme case, we can compute a posterior after every single observed data.

This sequential nature of Bayesian inference makes it practical, if for a given prior and
likelihood, the posterior comes from the same distribution family as the prior. Such a
distribution is then called a conjugate prior of a given likelihood function.

N

N φ

p(φ)
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Conjugate Prior of a Bernoulli Distribution

To derive a conjugate prior of a Bernoulli distribution, recall that for a Bernoulli-
distributed random variable 

Therefore, if the prior would be a product of the  and  factors, it would keep

the same form after being multiplied by the likelihood. Therefore, we seek for a prior of a form

We still need to compute a normalization constant so that the distribution integrates to 1. The
value of the normalization constant is called the Beta function

and the conjugate prior Beta of a Bernoulli distribution is

P (x) = φ (1 −x φ) .1−x

φ (1 − φ)

Beta(x;α, β) ∝ x (1 −α−1 x) .β−1

B(α, β) =  x (1 −∫
0

1
α−1 x) dx =β−1

 ,
Γ(α + β)
Γ(α)Γ(β)

Beta(x;α, β) =  x (1 −
B(α, β)

1 α−1 x) .β−1
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Gamma Function
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https://commons.wikimedia.org/wiki/File:Gamma_plot.svg

The  used in the beta function is the Gamma function, which is the commonly-

used extension of factorial to complex numbers fulfilling

It is defined as

and we can verify that

 and using integration by parts, 

Γ(x)

Γ(n) = (n − 1)!  for any  n ∈ N.

Γ(z) =  x e dx∫
0

∞
z−1 −x

Γ(1) =  e dx =∫0
∞ −x [− e ]  =−x

0
∞

lim  (−x→∞ e )−−x

(− e ) =0 0 + 1 = 1,
Γ(z + 1) =  x e dx∫0

∞ z −x

Γ(z + 1) = [− x e ]  −z −x
0
∞

 −zx e dx =∫0
∞ z−1 −x 0 + z  x e dx =∫0

∞ z−1 −x zΓ(z).
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Conjugate Prior of a Bernoulli Distribution

 

https://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg

If we have a prior  and we

observe  successes and  failures, the

posterior is .

Therefore, the  and  parameters

can be considered “counts” of
successes and failures.

Therefore, the prior corresponds to
adding some number of “pseudo-
observations”.

Note that  is uniform, 

 corresponds to 

successes and  failures and the

mode ( ) of  for 

 is .

Beta(α, β)
k l

Beta(α + k, β + l)

α β

Beta(1, 1)
Beta(α, β) α − 1

β − 1
arg max Beta(α, β)

α, β > 1 (α − 1)/(α + β − 2)
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Conjugate Prior of a Bernoulli Distribution

 

https://commons.wikimedia.org/wiki/File:Beta_distribution_for_3_different_prior_probability_functions,_skewed_case_sample_size_=_(4,12,40)_-_J._Rodal.png
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Multinomial and Dirichlet Distribution

Similarly to how the binomial distribution models outcomes of  independent Bernoulli trials,

the multinomial distribution generalizes the categorical distribution by considering  trials.

The multinomial distribution is again parametrized with a probability distribution 

and a number of trials , and the probability of  outcomes of category  is

where  is the multinomial coefficient .

The conjugate prior of the categorical distribution is a generalization of the beta distribution –
the Dirichlet distribution

where the  play again the role of the (pseudo-)counts of the individual classes.

n

n

p ∈ [0, 1]K

n ∈ N x  k k

P (x) =  p  p  ⋯ p  ,(
x  x  … x  1 2 K

n
) 1

x  1
2
x  2

K
x  K

 (
x  x  … x  1 2 K

n )  =(
x  x  … x  1 2 K

n )  

x  !x  !⋯x  !1 2 K

n!

Dir(x;α) =  ⋅
Π  Γ(α  )i i

Γ(Σ  α  )i i
 x  ,∏
i i

α  −1i

α
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Naive Bayes Classifier

So far, our classifiers were so-called discriminative and had a form

Instead, we might use the Bayes' theorem, and rewrite the conditional probability to

Then, classification could be performed as

Therefore, instead of modeling , we model

the prior  according to the distribution of classes in the data, and

the distribution .

p(C  ∣x) =k p(C  ∣x  ,x  , … ,x  ).k 1 2 D

p(C  ∣x) =k  .
p(x)

p(x∣C  )p(C  )k k

 p(C  ∣x) =
k

arg max k   =
k

arg max
p(x)

p(x∣C  )p(C  )k k
 p(x∣C  )p(C  ).

k

arg max k k

p(C  ∣x)k

p(C  )k
p(x∣C  )k
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Naive Bayes Classifier

Modeling the distribution  is however difficult –  can be high-dimensional high-

structured data.

Therefore, the so-called Naive Bayes classifier assumes that

all  are independent given ,

so we can rewrite

to

Notice that modeling  is substantially easier because it is a distribution over a single-

dimensional quantity.

p(x∣C  )k x

x  d C  k

p(x∣C  ) =k p(x  ∣C  )p(x  ∣C  ,x  )p(x  ∣C  ,x  ,x  ) ⋯ p(x  ∣C  ,x  ,x  , …)1 k 2 k 1 3 k 1 2 D k 1 2

p(x∣C ) =k  p(x  ∣C  ).∏
d=1

D

d k

p(x  ∣C  )d k

20/36NPFL129, Lecture 8 TF-IDF MutualInformation BayesianProbability MAP Beta Dir NaiveBayes Gen&Disc



Naive Bayes Classifier

There are in fact several naive Bayes classifiers, depending on the distribution .

Gaussian Naive Bayes

In Gaussian naive Bayes, we expect a continuous feature to have normal distribution for a given 

, and model  as a normal distribution .

Assuming we have the training data  together with -class classification targets ,

the “training” phase consists of estimating the parameters  and  of the distributions 

 for , , employing the maximum likelihood estimation.

Now let feature  and class  be fixed and let  be the training data

corresponding to the class . We already know that maximum likelihood estimation using 

samples drawn from a Gaussian distribution  amounts to

p(x  ∣C  )d k

C  k p(x  ∣C  )d k N (μ  ,σ  )d,k d,k
2

X K t

μ  d,k σ  d,k
2

N (μ  ,σ  )d,k d,k
2 1 ≤ d ≤ D 1 ≤ k ≤ K

d k x  ,x  , … ,x  1 2 N  k

k N  k

N (μ  ,σ  )d,k d,k
2

  log(2πσ ) +
μ  ,σ  d,k d,k

arg min
2
Nk

d,k
2

  .
i=1

∑
N  k

2σ  d,k
2

(x  − μ  )i,d d,k
2
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Gaussian Naive Bayes

Setting the derivative with respect to  to zero results in

which we can rewrite to .

Similarly, zeroing out the derivative with respect to  gives

from which we obtain .

However, the variances are usually smoothed (increased) by a given constant  to avoid too

sharp distributions (in Scikit-learn, the default value of  is  times the largest variance of

all features).

μ  d,k

0 =   ,∑
i=1

N  k

2σ  d,k
2

−2(x  − μ  )i,d d,k

μ  =d,k   x  

N  k

1 ∑i=1
N  k

i,d

σ  d,k
2

0 =  −
2σ  d,k

2
N  k

  (x  −
2(σ  )d,k

2 2

1
∑

i=1

N  k

i,d μ  ) ,d,k
2

σ  =d,k
2

  (x  −N  k

1 ∑i=1
N  k

i,d μ  )d,k
2

α

α 10−9
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Gaussian Naive Bayes Example

 

Means and standard deviations estimated by Gaussian NB on a subset of the MNIST dataset.
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Bernoulli Naive Bayes

When the input features are binary, the  might be modeled using a Bernoulli

distribution

We can therefore write

and by computing a logarithm we get

where the constant  does not depend on  and is therefore not needed for prediction

p(x  ∣C  )d k

p(x  ∣C  ) =d k p  ⋅d,k
x  d (1 − p  ) .d,k

(1−x  )d

p(C ∣x) ∝k (  p  ⋅∏
d=1

D

d,k
x  d (1 − p  ) )p(C  ),d,k

(1−x  )d
k

log p(C  ∣x) +k c = log p(C  ) +k  (x  log  +∑
d

d 1−p  d,k

p  d,k log(1 − p  )) =d,k b  +k x w  ,T
k

c C  k

arg max  log p(C  ∣x) =k k arg max  b  +k k x w  .T
k
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Bernoulli Naive Bayes Estimation

To estimate the probabilities , we turn again to the maximum likelihood estimation. The

log-likelihood of  samples drawn from Bernoulli distribution with parameter  is

Setting the derivative with respect to  to zero, we obtain

giving us .

p  d,k

N  k p  d,k

 log (p  (1 −∑
i=1

Nk

d,k
x  i,d p  ) ) =d,k

1−x  i,d
 (x  log p  +∑

i=1

N  k

i,d d,k (1 − x  ) log(1 −i,d p  )).d,k

p  d,k

0 =   −  =∑
i=1

N  k

(
p  d,k

x  i,d

1 − p  d,k

1 − x  i,d )  ((1 −
p  (1 − p  )d,k d,k

1
∑

i=1

N  k

p  )x  −d,k i,d p  (1 −d,k x  )),i,d

p  =d,k   x  

N  k

1 ∑i=1
N  k

i,d

25/36NPFL129, Lecture 8 TF-IDF MutualInformation BayesianProbability MAP Beta Dir NaiveBayes Gen&Disc



Bernoulli Naive Bayes Estimation

We could therefore estimate the probabilities  as

However, if a feature  is always set to one (or zero) for a given class , then  (or 0).

That is impractical because the resulting classifier would give probability zero to inputs with the
opposite value of such a feature.

Therefore, Laplace or additive smoothing is used, and the probability  estimated as

for some pseudo-count .

Note that even if this technique has a special name, it corresponds to using a maximum a
posteriori estimate, using  as a prior distribution.

p  d,k

p  =d,k  .
number of documents of class k

number of documents of class k with nonzero feature d

d k p  =d,k 1

p  d,k

p  =d,k  

number of documents of class k + 2α
number of documents of class k with nonzero feature d + α

α > 0

Beta(α + 1,α + 1)
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Multinomial Naive Bayes

The last variant of naive Bayes we will describe is the multinomial naive Bayes, where 

 is modeled to be multinomial distribution, .

Similarly to the Bernoulli NB case, we can write the log-likelihood as

p(x∣C  )k p(x∣C  ) ∝k  p  ∏d d,k
x  d

log p(C  ∣x) +k c = log p(C  ) +k  x  log p  =∑
d

d d,k b  +k x w  .T
k
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Multinomial Naive Bayes Estimation

As in the previous cases, we turn to the maximum likelihood estimation in order to find out the
values of . We start with the log-likelihood

To maximize this quantity with respect to a probability distribution , we need to

form a Lagrangian

Setting the derivative with respect to  to zero results in , so

p  d,k

 log(  p  ) =∑
i=1

N  k

∏
d d,k

x  i,d
 x  log p  .∑

i,d
i,d d,k

 p  =∑d d,k 1

L =  x  log p  +∑
i,d

i,d d,k λ(1 −  p  ).∑
d

d,k

p  d,k 0 =   −∑i=1
N  k

p  d,k

x  i,d λ

p  =d,k   x  =
λ

1
∑

i=1

N  k

i,d  ,  where λ is set to fulfill   p  =
  x  ∑i=1

N  k ∑d =1′
D

i,d′

 x  ∑i=1
N  k

i,d
∑

d
d,k 1.
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Multinomial Naive Bayes Estimation

Denoting  as the sum of features  for a class , the probabilities  could be

therefore estimated as

However, for the same reasons as in the Bernoulli NB case, we also use the Laplace smoothing,
i.e., utilize a Dirichlet prior , and instead use

with pseudo-count .

n  d,k x  d C  k p  d,k

p  =d,k  .
 n  ∑d =1′

D
d ,k′

n  d,k

Dir(α + 1)

p  =d,k  =
 (n  + α)∑d =1′

D
d ,k′

n  + αd,k
 

(  n  )+ αD∑d =1′
D

d ,k′

n  + αd,k

α > 0
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Naive Bayes Example

 

Probabilities estimated by Bernoulli NB on a subset of the MNIST dataset.

 

Probabilities estimated by multinomial NB on a subset of the MNIST dataset.

 

Means estimated by Gaussian NB on a subset of the MNIST dataset.
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Naive Bayes Conclusions

The choice among the Gaussian, Bernoulli and multinomial naive Bayes depends on the feature
values.

If we expect the individual feature values to be roughly normally distributed, Gaussian NB is
an obvious choice.

To use multinomial NB, the features should roughly follow the multinomial distribution –
they must be nonnegative, be interpretable as “counts”, and “compete” with each other.

Note that the feature can be real-valued (the multinomial distribution can be extended
to real-value observations using the  function).

When the data is imbalanced (the number of examples for different classes differ
substantially), multinomial NB is biased towards more frequent classes. Therefore, the
Complement Naive Bayes classifier estimates parameters using data from all classes
except , which is usually more balanced.

In order to use Bernoulli NB, the features must be binary. However, an important difference
is that contrary to the multinomial NB, the absence of features is also modeled by the 

 term; the multinomial NB uses  in such a case.

Γ

k

(1 − p  )d,k p  =d,k
0 1
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Generative and Discriminative Models

So far, all our classification models (except for the naive Bayes) have been discriminative,
modeling a conditional distribution .

On the other hand, the generative models estimate joint distribution , often by

employing Bayes' theorem and estimating . They therefore model the probability of

the data being generated by an outcome and only transform it to  during prediction.

p(t∣x)

p(t,x)
p(x∣t) ⋅ p(t)

p(t∣x)
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Generative and Discriminative Models

Discriminative Model Generative Model

Goal Estimate Estimate 

What's 

learned
Decision boundary Probability distribution of the data

Illustration

 

https://stanford.edu/~shervine/teaching/cs-229/illustrations/discriminative-
model.png

 

https://stanford.edu/~shervine/teaching/cs-229/illustrations/generative-
model.png

P (t∣x) P (t,x) = P (x∣t)P (t)
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Generative and Discriminative Models

Empirically, discriminative models perform better in classification tasks, because modeling
the decision boundary is often much easier than modeling the data distribution.

On the other hand, generative models can recognize anomalies/outliers/out-of-distribution
data (when the input example has low probability under the data distribution).

The term generative comes from a (theoretical) possibility of “generating” random instances
of  and . However, just being able to evaluate  does not necessarily mean there is

an efficient procedure of actually sampling (generating) .

In recent years, generative modeling combined with deep neural networks created a new
family of deep generative models like VAE or GAN, which can in fact efficiently generate
samples from .

 

Figure 1 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096.

x t p(x∣t)
x

p(x)
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LogReg/NaiveBayes Generative-Discriminative Pair

Given that

multinomial/Bernoulli naive Bayes fits logits, i.e., , as a linear model; and

logistic regression also fits logits, i.e., , as a linear model,

multinomial/Bernoulli NB and logistic regression form a so-called generative-discriminative
pair.

Several theorems are known about this generative-discriminative pair (for proofs see the 2002
paper On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive
Bayes by NG and Jordan):

If the assumed model in naive Bayes is correct, then both logistic regression and naive Bayes
converge to the same performance.
Asymptotically, logistic regression is always better or equal to the naive Bayes.
Let  be given and let the model contain  features.

Logistic regression can reach the optimal error up to  with  training examples.

Naive Bayes can reach the optimal error up to  with  examples.

log p(C  ∣x) +k c

log p(C  ∣x) +k c

ε > 0 D

ε Ω(D)
ε Ω(log(D))
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LogReg/NaiveBayes Generative-Discriminative Pair

 

Figure 1 of https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf.

The results of experiments from the 2002 paper On Discriminative vs. Generative Classifiers by
NG and Jordan. The generalization error of logistic regression (dashed lines) and naive Bayes
(solid lines) are plotted with respect to the number of training examples .m
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