
NPFL129, Lecture 5

Derivation of Softmax, F1, k-NN

Milan Straka

October 31, 2022

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Where Are We

We have seen the gradual development of machine learning systems to neural networks.

linear regression → Perceptron → (multinomial) logistic regression → MLP

Figure 1.5 of "Deep Learning" book, https://www.deeplearningbook.org.

https://imgs.xkcd.com/comics/machine_learning_2x.png

2/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Where Are We

https://community.datarobot.com/t5/image/serverpage/image-id/6820iF30D0DC84BD255C3

Modified from https://amir-arsalan.github.io/images/little_prince_elephant.jpg

3/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Constrained Optimization

https://upload.wikimedia.org/wikipedia/commons/e/ed/Lagrange_very_simple.svg

Given a function , we can find a minimum/maximum with respect to a vector , by

investigating the critical points .

Consider now finding a minimum subject to a constraint .

On the left, there is an example with

and the constraint , which can be

represented as .

f(x) x ∈ RD
∇ f(x) =x 0

g(x) = 0

f(x, y) = x+ y

x +2 y =2 1
g(x, y) = x +2 y −2 1

4/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Lagrange Multipliers – Equality Constraints

https://upload.wikimedia.org/wikipedia/commons/e/ed/L

Figure E.1 of Pattern Recognition and Machine
Learning.

Let be a function. We seek its minimum subject to

an equality constraint for .

Note that is orthogonal to the surface of the constraint,

because if and a nearby point lie on the surface, from the

Taylor expansion we get

.

For the desired minimum, must also be orthogonal to the

constraint surface (or else moving in the direction of the derivative
would increase the value).

Therefore, there must exist such that .

Consequently, the sought minimum either fulfills

for some , or it is an unconstrained minimum – in that case, the

equation also holds with .

f(x) : R →D R
g(x) = 0 g(x) : R →D R

∇ g(x)x

x x+ ε

g(x+ ε) ≈ g(x) + ε ∇ g(x)T
x

ε ∇ g(x) ≈T
x 0

∇ f(x)x

λ ∇ f =x λ∇ gx

∇ f −x λ∇ g =x 0
λ

λ = 0

5/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Minimization – Equality Constraint

Let be a function that has a minimum (or a maximum) in subject to

equality constraint . Assume that both and have continuous partial derivatives

and that .

Then there exists a , such that the Lagrangian function

has a zero gradient in both and .

In detail,

 leads to ;

 is the previously derived .

f(x) : R →D R x

g(x) = 0 f g

∇ g(x) =x  0

λ ∈ R

L(x,λ) =def
f(x) − λg(x)

x λ

 =∂λ
∂L 0 g(x) = 0
∇ L =x 0 ∇ f −x λ∇ g =x 0

6/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Minimization – Multiple Equality Constraints

We can use induction if there are multiple equality constraints, resulting in the following
generalization.

Let be a function that has a minimum (or a maximum) in subject to

equality constraints . Assume that have continuous

partial derivatives and that the gradients are linearly independent.

Then there exist , such that the Lagrangian function

has a zero gradient in both and .

This strategy of finding constrained minima is known as the method of Lagrange multipliers.

f(x) : R →D R x

g (x) =1 0, … , g (x) =m 0 f , g , … , g 1 m

∇ g (x), … , ∇ g (x)x 1 x m

λ ∈1 R, … ,λ ∈m R

L(x,λ) =
def
f(x) − λ g (x)

i=1

∑
m

i i

x λ

7/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Example of Minimization with Equality Constraint

Assume we want to find a categorical distribution with maximum entropy.

Then we want to minimize under the constraints

 for all ,

.

Ignoring the first constraint for the time being, we form a Lagrangian

Computing the derivative with respect to and setting it equal to zero, we get

Therefore, all must be the same, and the constraint yields .

p = (p , … , p)1 n

−H(p)

p ≥i 0 i

 p =∑i=1
n

i 1

L = (p log p) −
i

∑ i i λ(p −
i

∑ i 1).

p i

0 = =
∂p i

∂L
1 ⋅ log(p) +i p ⋅i −

p i

1
λ = log(p) +i 1 − λ.

p =i eλ−1
 p =∑i=1

n
i 1 p =i

n
1

8/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Minimization – With Respect to a Function

So far, we minimized a function with respect to a finite number of variables.

A function of a function, , is known as a functional, for example the entropy .

To minimize a functional with respect to a function, we can turn to the calculus of
variations.

Consider a functional

where and are twice continuously differentiable with respect to all

arguments.

If has a minimum (or a maximum) in function , then for all

J [f] H[⋅]

J [f] = g(x, f(x))dx,∫
a

b

f(x) g(x, y = f(x))

J f x

 =
∂y

∂g(x, y = f(x))
0.

9/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

What distribution over maximizes entropy ?

For continuous values, the entropy is an integral .

We cannot just maximize with respect to a function , because:

the result might not be a probability distribution – we need to add a constraint that

;

the problem is underspecified because a distribution can be shifted without changing the
entropy – we add a constraint ;

because entropy increases as variance increases, we ask which distribution with a fixed
variance has maximum entropy – adding a constraint .

R H[p] = −E [log p(x)]x

H[p] = − p(x) log p(x) dx∫

H p

p(x) dx =∫ 1

E[x] = μ

σ2 Var(x) = σ2

10/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

Lagrangian of all the constraints and the entropy function is

By expanding all definitions to integrals, we get

We now set the derivative of the integrand with respect to equal to zero:

obtaining .

L(p(x),x,λ;μ,σ)2

L = −H[p] − λ (p(x) dx−1 ∫ 1) − λ (E[x] −2 μ)− λ (Var(x) −3 σ).2

L(p(x),x,λ;μ,σ) =2 (p(x) log p(x) − λ p(x) − λ p(x)x− λ p(x)(x− μ)) dx∫ 1 2 3
2

+ λ + μλ + σ λ .1 2
2

3

p(x)

0 = log p(x) + 1 − λ −1 λ x−2 λ (x−3 μ) ,2

p(x) = exp(λ +1 λ x+2 λ (x−3 μ) −2 1)

11/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

We can verify that setting , and fulfills all

the constraints, arriving at

λ =1 1 − log 2πσ2 λ =2 0 λ =3 −1/(2σ)2

p(x) = exp(λ + λ x+ λ (x− μ) − 1)1 2 3
2

= exp 1 − log + −1/(2σ)(x− μ) − 1(2πσ2 2 2)

= exp −

 2πσ2

1
(

2σ2

(x− μ)2

)

= N (x;μ,σ).2

12/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

Let be training data of a -class classification, with

 and .

We want to model it using a function so that gives a distribution of

classes for input .

We impose the following conditions on :

X = {(x , t), (x , t), … , (x , t)}1 1 2 2 N N K

x ∈i RD t ∈i {1, 2, … ,K}

π : R →D RK π(x)
x

π

for 1 ≤ k ≤ K : π(x) ≥k 0,

 π(x) =
k=1

∑
K

k 1,

for 1 ≤ k ≤ K : π(x) x =
i=1

∑
N

i k i [t =
i=1

∑
N

i k]x .i

13/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

There are many such , one particularly bad is

where is a one-hot encoding of (vector of zeros, except for position , which is equal to 1).

Therefore, we want to find a more general – consequently, we turn to the principle of

maximum entropy and search for with maximum entropy.

π

π(x) = {
1 t i

1 1

if there exists i : x = x,i

otherwise,

1 i i i

π

π

14/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

We want to minimize given

,

,

.

We therefore form a Lagrangian (ignoring the first inequality constraint):

− H(π(x))∑i=1
N

i

for 1 ≤ i ≤ N, 1 ≤ k ≤ K : π(x) ≥i k 0
for 1 ≤ i ≤ N : π(x) =∑k=1

K
i k 1

for 1 ≤ j ≤ D, 1 ≤ k ≤ K : π(x) x =∑i=1
N

i k i,j [t =∑i=1
N

i k]x i,j

L = π(x) log(π(x))
i=1

∑
N

k=1

∑
K

i k i k

− λ (π(x) x − [t = k]x)
j=1

∑
D

k=1

∑
K

j,k
i=1

∑
N

i k i,j i i,j

− β (π(x) − 1).
i=1

∑
N

i

k=1

∑
K

i k

15/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

We now compute partial derivatives of the Lagrangian, notably the values

We arrive at

Setting the derivative of the Lagrangian to zero, we obtain

Such a form guarantees , which we did not include in the conditions.

 L.
∂π(x) i k

∂

 L =
∂π(x) i k

∂
log(π(x)) +i k 1 − x λ −i

T
∗,k β .i

π(x) =i k e .x λ +β −1i
T

∗,k i

π(x) >i k 0

16/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

In order to find out the values, we turn to the constraint

from which we get

yielding

β i

 π(x) =
k

∑ i k e =
k

∑ x λ +β −1i
T

∗,k i 1,

e =βi
 ,

 e∑k
x λ −1i
T

∗,k

1

π(x) =i k e =x λ +β −1i
T

∗,k i
 =

 e∑k′
x λ i
T

∗,k′

ex λ i
T

∗,k

softmax(x λ) .i
T

k

17/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

When evaluating binary classification, we have used accuracy so far.

However, there are other metrics we might want to consider.
One of them is -score.

Consider the following confusion matrix:

Target positive Target negative

Predicted

positive
True Positive (TP) False Positive (FP)

Predicted

negative
False Negative (FN) True Negative (TN)

Accuracy can be computed as

F 1

accuracy = .
TP+ TN+ FP+ FN

TP+ TN

18/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1
relevant elements

selected elements

false positivestrue positives

false negatives true negatives

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Precision = Recall =

How many selected

items are relevant?

How many relevant

items are selected?

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Target positive Target negative

Predicted

positive
True Positive (TP) False Positive (FP)

Predicted

negative
False Negative (FN) True Negative (TN)

In some cases, we are mostly interested in positive examples.

We define precision (percentage of correct predictions in
predicted examples) and recall (percentage of correct
predictions in the gold examples) as

precision =

recall =

 ,
TP+ FP
TP

 .
TP+ FN
TP

19/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

The precision and recall go “against each other”:
decreasing the classifier threshold usually increases
recall and decreases precision, and vice versa.

We therefore define a single -score as a

harmonic mean of precision and recall:

F 1

F =1

=

=

precision + recall−1 −1
2

precision + recall
2 ⋅ precision ⋅ recall

 .
TP+ FP+ TP+ FN
TP + TP

20/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-score and Other Means of Precision and RecallF 1

Arithmetic mean of precision&recall is

As any mean, it is ”between“ the
input values

However,

AM(p, r) =def
 .

2
p+ r

min(p, r) ≤ AM(p, r),

AM(p, r) ≤ max(p, r).

AM(1%, 100%) = 50.5%.

21/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-score and Other Means of Precision and RecallF 1

Geometric mean of precision&recall is

It is better than the arithmetic mean,
but still

GM(p, r) =def
 .p ⋅ r

GM(1%, 100%) = 10%.

22/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-score and Other Means of Precision and RecallF 1

Harmonic mean of precision&recall is

In addition to being bounded by the
input values, is also dominated

by the minimum of its input values:

For example,

HM(p, r) =def
 .

 +

p
1

r
1

2

HM

min(p, r) ≤ HM(p, r),

HM(p, r) ≤ max(p, r),

HM(p, r) ≤ 2 min(p, r).

HM(1%, 100%) ≈ 2%.

23/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

General -scoreF β

The score can be generalized to score, which can be used as a metric when recall is

times more important than precision; favoring recall and favoring precision are

commonly used.

The formula for is

F 1 F β β

F 2 F 0.5

F β

F =β

=

=

precision + β ⋅ recall−1 2 −1
1 + β2

β ⋅ precision + recall2

(1 + β) ⋅ precision ⋅ recall2

 .
TP+ FP+ β ⋅ (TP+ FN)2

TP + β ⋅ TP2

24/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

General -scoreF β

You may wonder why is used in the formula

instead of just .

Quoting C. J. van Rijsbergen from his book Information Retrieval, 1979:

What we want is therefore a parameter to characterise the measurement function in

such a way that we can say: it measures the effectiveness of retrieval with respect to a
user who attaches times as much importance to recall as precision. The simplest way I

know of quantifying this is to specify the ratio at which the user is

willing to trade an increment in precision for an equal loss in recall.

It is straightforward to verify that indeed implies .

β2

F =β

precision + β ⋅ recall−1 2 −1
1 + β2

β

β

β

recall/precision

 =∂precision
∂F β

 ∂recall
∂F β

 =precision
recall β

25/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-score and Other Means of Precision and RecallF 1

26/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Precision-Recall Curve

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

Changing the threshold in logistic regression allows
us to trade off precision for recall, and vice versa.
Therefore, we can tune it on the development set
to achieve the highest possible score, if required.

Also, if we want to evaluate -score without

considering a specific threshold, the area under
curve (AUC) is sometimes used as a metric.

F 1

F 1

27/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-Score in Multiclass ClassificationF 1

To extend -score to multiclass classification, we expect one of the classes to be negative and

the others to be different kinds of positive. For each of the positive classes, we compute the
same confusion matrix as in the binary case (considering all other labels as negative ones), and
then combine the results in one of the following ways:

micro-averaged (or just micro): we first sum all the TP, FP and FN of the

individual binary classifications and compute the final -score (this way, the frequency of

the individual classes is taken into account);

macro-averaged (or just macro): we first compute the -scores of the individual

binary classifications and then compute an unweighted average (therefore, the frequency of
the classes is more or less ignored).

F 1

F 1 F 1

F 1

F 1 F 1 F 1

28/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Metrics for Exemplary Tasks

Part-of-speech tagging: assign a part-of-speech to every word in the input text.
accuracy on such a task is the same as micro-averaged precision, recall, and -score,

because exactly one class is predicted for every word (i.e., TP+FP = TP+FN).

Named entity recognition: recognize personal names, organizations, and locations in the
input text.

accuracy is artificially high, because many words are not a named entity;
micro-averaged considers all named entities, with classes used only to decide if a

prediction is correct; “how good are we at recognizing all present named entities”;
macro-averaged “how good are we at recognizing all named entities types”.

Consider multi-label classification, where you can generate any number of classes for an input
example (while in the multiclass classification you generate always exactly one).

For example text classification: choose domains (sports/politics/…) for input documents.
Can be solved analogously to softmax classification, only using sigmoid activation.
Accuracy is very strict (all predicted classes must be exactly the same).
Commonly evaluated using micro-averaged or macro-averaged -score.

F 1

F 1

F 1

F 1

29/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

ROC Curve

The precision-recall curve is useful when we are interested in the positive examples (i.e., we are
ignoring true negative instances). In case we want to consider also the true negatives, we might
instead use the Receiver Operating Characteristic (ROC) curve.

In the ROC curve, we consider two measures of a binary classifier under changing threshold:

true positive rate or sensitivity (probability of detection): ;

false positive rate or 1-specificity (probability of false alarm): ;

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

TP

FN TN

FP

TP

FP
TN

FN

0% 100%P(FP)

100%

P(TP)

https://upload.wikimedia.org/wikipedia/commons/4/4f/ROC_curves.svg

 =target positives
TP

TP+FN
TP

 =target negatives
FP

FP+TN
FP

30/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Binary Confusion Metric Measures Overview

Target positive Target negative

Predicted positive True Positive (TP)
False Positive (FP)

Type I Error

precision

Predicted negative
False Negative (FN)

Type II Error
True Negative (TN)

true positive rate, recall,

sensitivity

false positive rate

specificity

-score =

accuracy =

TP+FP
TP

 1

TP+FN
TP

 1

FP+TN
FP

 1

TN+FP
TN

 1

F 1 =precision+recall
2⋅precision⋅recall

TP+FP+TP+FN
TP + TP

 2

TP+FP+FN+TN
TP+TN

 1
 1

31/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Parametric and Nonparametric Models

All machine learning models which we have discussed so far are parametric, because they use a
fixed number of parameters (usually depending on the number of features, for multiclass

classification, hidden layer in MLPs, …).

However, there also exist nonparametric models. Even if the name seems to suggest they do
not have any parameters, they have a non-fixed number of parameters, because the number of
parameters usually depends on the size of the training data – therefore, the model size usually
grows with the size of the training data.

K

32/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

???

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

A simple but sometimes effective nonparametric method for
both classification and regression is -nearest neighbors

algorithm.

The training phase of the -nearest neighbors algorithm is

trivial, it consists of only storing the whole train set (the
so-called lazy learning).

For a given test example, the main idea is to use the
targets of the most similar training data to perform the
prediction.

k

k

33/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

???

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

Several hyperparameters influence the behavior of the
prediction phase:

k: consider most similar training examples (higher

usually decreases variance, but increases bias);

metric: a function used to find the nearest neighbors;
common choices are metrics based on norms (with

usual values of being , , ,). For ,

the distance is measured as , where

weights: optionally, more similar examples can be considered with bigger weights:
uniform: all nearest neighbors are considered equally;

inverse: the weight of an example is proportional to the inverse of distance;
softmax: the weights are proportional to the of negative distances.

k k

Lp

p 1 2 3 ∞ x,y ∈ RD
∥x− y∥ p

∥x∥ =p (∣x ∣) ;∑
i

i
p

1/p

k

softmax
34/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

Regression

To perform regression when nearest neighbors have values and weights , we predict

Classification

For uniform weights, we can use voting during prediction – the most frequent class is predicted
(with ties broken arbitrarily).

Otherwise, we weight the categorical distributions (with the training target classes

represented using one-hot encoding), predicting a distribution

The predicted class is then the one with the largest probability, i.e., .

k t i w i

t = ⋅
i

∑
 w ∑j j

w i
t .i

t ∈i RK

t = ⋅
i

∑
 w ∑j j

w i
t .i

arg max w t k∑i i i,k

35/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

A trivial implementation of the -nearest neighbors algorithm is extremely demanding during

the inference, requiring to measure distances of a given example to all training instances.

However, there exist several data structures that can speed up the -nearest neighbor search,

such as

- trees, which allow both a static or dynamic construction and can perform nearest

neighbor queries of uniformly random points in logarithmic time on average, but which
become inefficient for high-dimensional data;

ball trees, R-trees, …

k

k

k d

36/36NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

