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Binary Classification

Binary classification is a classification in two classes.

The simplest way to evaluate classification is accuracy, which is the ratio of input examples
that were classified correctly – i.e., where the predicted class and the target class match.

To extend linear regression to binary classification, we might seek a threshold and then classify
an input as negative/positive depending on whether  is smaller/larger

than a given threshold.

Zero value is usually used as the threshold, both because of symmetry and also because the
bias parameter acts as a trainable threshold anyway.

The set of points with prediction 0 is called a decision boundary.

y(x;w) = x w+T b
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Binary Classification

 

Figure 4.1 of Pattern Recognition and Machine Learning.

Consider two points on the decision
boundary. Because ,

we have , and so  is

orthogonal to every vector on the decision
surface –  is a normal of the boundary.

Consider  and let  be orthogonal

projection of  to the boundary, so we can

write . Multiplying both

sides by  and adding , we get that the

distance of  to the boundary is .

The distance of the decision boundary from

the origin is therefore .

y(x  ;w) =1 y(x  ;w)2

(x  −1 x  ) w =2
T 0 w

w

x x  ⊥

x

x = x  +⊥ r  ∥w∥
w

wT b

x r =  ∥w∥
y(x)

 ∥w∥
∣b∣
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Perceptron

 

Figure 4.4 of Pattern Recognition and Machine Learning.

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value , the goal is to find weights  such that

for all train data,

or equivalently,

Note that a set is called linearly separable, if there exists a
weight vector  such that the above equation holds.

t ∈ {−1, +1} w

sign(y(x  ;w)) =i sign(x  w) =i
T t  ,i

t  y(x  ;w) =i i t  x  w >i i
T 0.

w

4/32NPFL129, Lecture 3 Perceptron ProbabilityBasics InformationTheory MLE LogisticRegression CV



Perceptron

The perceptron algorithm was invented by Rosenblatt in 1958.

Input: Linearly separable dataset ( , ). 

Output: Weights  such that  for all .

until all examples are classified correctly, process example :

if  (incorrectly classified example):

We will prove that the algorithm always arrives at some correct set of weights  if the training

set is linearly separable.

X ∈ RN×D t ∈ {−1, +1}N

w ∈ RD t  x  w >i i
T 0 i

w ← 0
i

y ← x  wi
T

t  y ≤i 0
w ← w+ t  x  i i

w
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Perceptron as SGD

Consider the main part of the perceptron algorithm:

if  (incorrectly classified example):

We can derive the algorithm using on-line gradient descent, using the following loss function

In this specific case, the value of the learning rate does not influence the model behavior
(different learning rates would produce models with same predictions), because multiplying 

by a constant does not change the prediction and the loss derivative does not depend on .

Note that the second condition is crucial; the first holds also for logistic regression, but the
learning rate matters there.

y ← x  wi
T

t  y ≤i 0
w ← w+ t  x  i i

L(y(x;w), t) =
def

  ={
−tx wT

0
if tx w ≤ 0T

otherwise
max(0, −tx w) =T ReLU(−tx w).T

w

w
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Perceptron Example

 

Figure 4.7 of Pattern Recognition and Machine Learning.
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Proof of Perceptron Convergence

Let  be some weights correctly classifying (separating) the training data, and let 

be the weights after  nontrivial updates of the perceptron algorithm, with  being 0.

We will prove that the angle  between  and  decreases at each step. Note that

w  ∗ w  k

k w  0

α w  ∗ wk

cos(α) =  .
∥w  ∥ ⋅ ∥w  ∥∗ k

w  w  ∗
T

k
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Proof of Perceptron Convergence

Assume that the maximum norm of any training example  is bounded by , and that 

 is the minimum margin of , so for each training example , 

First consider the dot product of  and :

By iteratively applying this equation, we get

Now consider the length of :

Because  was misclassified, we know that , so 

When applied iteratively, we get .

∥x∥ R

γ w  ∗ (x, t) tx w  ≥T
∗ γ.

w  ∗ w  k

w w  =∗
T

k w  (w  +∗
T

k−1 t  x  ) ≥k k w  w  +∗
T

k−1 γ.

w  w  ≥∗
T

k kγ.

w  k

  

∥w  ∥k 2 = ∥w  + t  x  ∥ = ∥w  ∥ + 2t  x  w  + ∥x  ∥ .k−1 k k
2

k−1
2

k k
T

k−1 k
2

x  k t  x  w  ≤k k
T

k−1 0 ∥w  ∥ ≤k
2 ∥w  ∥ +k−1

2 R .2

∥w  ∥ ≤k
2 k ⋅ R2
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Proof of Perceptron Convergence

Putting everything together, we get

Therefore, the  increases during every update. Because the value of  is at most

one, we can compute the upper bound on the number of steps when the algorithm converges as

cos(α) =  ≥
∥w  ∥ ⋅ ∥w  ∥∗ k

w  w  ∗
T

k
 .

 ∥w  ∥kR2
∗

kγ

cos(α) cos(α)

1 ≥   or k ≤
 ∥w  ∥R2

∗

 γk
 .

γ2

R ∥w  ∥2
∗

2
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Perceptron Issues

Perceptron has several drawbacks:

If the input set is not linearly separable, the algorithm never finishes.

The algorithm performs only prediction, it is not able to return the probabilities of
predictions.

Most importantly, Perceptron algorithm finds some solution, not necessarily a good one,
because once it finds some, it cannot perform any more updates.
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Common Probability Distributions

Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability that the random variable is equal to 1.φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)
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Common Probability Distributions

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

We represent outcomes as vectors  in the one-hot encoding. Therefore, an outcome

 is represented as a vector

The outcome probability, mean, and variance are very similar to the Bernoulli distribution.

K

p ∈ [0, 1]K  p  =∑i=0
K−1

i 1

∈ {0, 1}K

x ∈ {0, 1, … ,K − 1}

1  x =def
([i = x])  =

i=0
K−1

(  , 1,  ).
x

 0, … , 0

K−x−1

 0, … , 0

  

P (x)

E[x  ]i
Var(x  )i

=  p  ∏
i=0

K−1

i
x  i

= p  i

= p  (1 − p  )i i
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

I(x) =def − logP (x) = log  

P (x)
1
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Information Theory

Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

Because , for  we consider 

 to be zero.

Note that in the continuous case, the continuous entropy
(also called differential entropy) has slightly different
semantics, for example, it can be negative.

For binary logarithms, the entropy is measured in bits.
However, from now on, all logarithms are natural logarithms with base e (and then the entropy
is measured in units called nats).

H(P ) =def E  [I(x)] =x∼P −E  [logP (x)]x∼P

P H(P ) = −  P (x) logP (x)∑x

P H(P ) = − P (x) logP (x) dx∫

lim  x log x =x→0 0 P (x) = 0
P (x) logP (x)
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Information Theory

Cross-Entropy

Gibbs Inequality

Proof: Consider 

Using the fact that  with equality only for , we get

For the equality to hold,  must be 1 for all , i.e., .

H(P ,Q) =def −E  [logQ(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

H(P ) − H(P ,Q) =  P (x) log  .∑x P (x)
Q(x)

log x ≤ (x− 1) x = 1

 P (x) log  ≤
x

∑
P (x)
Q(x)

 P (x)  − 1 =
x

∑ (
P (x)
Q(x)

)  Q(x) −
x

∑  P (x) =
x

∑ 0.

 P (x)
Q(x)

x P = Q
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Information Theory

Corollary of the Gibbs inequality
For a categorical distribution with  outcomes, , because for  we

get 

Nonsymmetry
Note that generally .

n H(P ) ≤ logn Q(x) = 1/n
H(P ) ≤ H(P ,Q) = −  P (x) logQ(x) =∑x logn.

H(P ,Q) = H(Q,P )
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: ,  iff 

generally 

D  (P∥Q)KL =def
H(P ,Q) − H(P ) = E  [logP (x) −x∼P logQ(x)]

D  (P∥Q) ≥KL 0 D  (P∥Q) =KL 0 P = Q

D  (P∥Q) =KL  D  (Q∥P )KL
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Nonsymmetry of KL Divergence

 

Figure 3.6 of "Deep Learning" book, https://www.deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1 of "Deep Learning" book, https://www.deeplearningbook.org.

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions with a given mean and variance, it can be proven (using variational
inference) that such a distribution with maximum entropy is exactly the normal distribution.
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution .

We denote the empirical data distribution as , where

Let  be a family of distributions.

If the weights are fixed,  is a probability distribution.

If we instead consider the fixed training data , then

is called the likelihood. Note that even if the value of the likelihood is in range , it is

not a probability, because the likelihood is not a probability distribution.

X = {x  ,x  , … ,x  }1 2 N

p  data

  p̂data

  (x)p̂data =def
 .

N

 {i : x  = x}  i

p  (x;w)model

p  (x;w)model

X

L(w) = p  (X;w) =model  p  (x  ;w)∏
i=1

N

model i

[0, 1]
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Maximum Likelihood Estimation

Let  be training data drawn independently from the data-generating

distribution . We denote the empirical data distribution as  and let  be a

family of distributions.

The maximum likelihood estimation of  is:

X = {x  ,x  , … ,x  }1 2 N

p  data   p̂data p  (x;w)model

w

=w  MLE  p  (X;w) =
w

arg max model   p (x ;w)
w

arg max∏
i=1

N

model i

=   − log p  (x  ;w)
w

arg min∑
i=1

N

model i

=  E  [− log p  (x;w)]
w

arg min x∼   p̂data model

=  H(   (x), p  (x;w))
w

arg min p̂data model

=  D  (   (x)∥p  (x;w)) +
w

arg min KL p̂data model H(   (x))p̂data
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Maximum Likelihood Estimation

MLE can be easily generalized to the conditional case, where our goal is to predict  given :

where the conditional entropy is defined as  and

the conditional cross-entropy as .

The resulting loss function is called negative log-likelihood (NLL), or cross-entropy, or
Kullback-Leibler divergence.

t x

  

w  MLE =  p  (t∣X;w) =   p  (t  ∣x  ;w)
w

arg max model
w

arg max∏
i=1

N

model i i

=   − log p  (t  ∣x  ;w)
w

arg min∑
i=1

N

model i i

=  E  [− log p  (t∣x;w)]
w

arg min (x,t)∼   p̂data model

=  H( (t∣x), p  (t∣x;w))
w

arg min p̂data model

=  D  (   (t∣x)∥p  (t∣x;w)) + H(   (t∣x))
w

arg min KL p̂data model p̂data

H(   ) =p̂data E  [− log(   (t∣x;w))](x,t)∼   p̂data p̂data

H(   , p  ) =p̂data model E  [− log(p  (t∣x;w))](x,t)∼   p̂data model
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Properties of Maximum Likelihood Estimation

Assume that the true data-generating distribution  lies within the model 

family . Furthermore, assume there exists a unique  such that 

.

MLE is a consistent estimator. If we denote  to be the parameters found by MLE for a

training set with  examples generated by the data-generating distribution, then 

converges in probability to .

Formally, for any ,  as .

MLE is in a sense the most statistically efficient. For any consistent estimator, let us
consider the average distance of  and : .  

It can be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean
squared error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.

p  data

p  (⋅;w)model w  p  data p  =data

p  (⋅;w  )model p  data

w  m

m w  m

w  p  data

ε > 0 P (∥w  −m w  ∥ >p  data ε) → 0 m → ∞

w  m w  p  data E  [∥w  −x  ,…,x  ∼p  1 m data m w  ∥ ]p  data
2
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Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. Logistic regression can in fact handle also more than two classes, which we will see in

the next lecture.

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is a sigmoid function

It can be trained using the SGD algorithm.

p(C  ∣x)0

p(C  ∣x)1

  

p(C  ∣x)1

p(C  ∣x)0

= σ(x w+ b)T

= 1 − p(C  ∣x),1

σ

σ(x) =  .
1 + e−x

1
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Sigmoid Function

The sigmoid function has values in range , is monotonically increasing and it has a

derivative of  at .

(0, 1)
 4

1 x = 0

σ(x) =  

1 + e−x

1

σ (x) =′ σ(x)(1 − σ(x))
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Logistic Regression

We denote the output of the “linear part” of the logistic regression as

and the overall prediction as

 (x;w) =ȳ x w,T

y(x;w) = σ(  (x;w)) =ȳ σ(x w).T
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Logistic Regression

The logistic regression output  models the probability of class , .

To give some meaning to the output of the linear part , starting with

we arrive at

which is called a logit and it is a logarithm of odds of the probabilities of the two classes.

y(x;w) C  1 p(C  ∣x)1

 (x;w)ȳ

p(C  ∣x) =1 σ(  (x;w)) =ȳ  ,
1 + e−  (x;w)ȳ

1

 (x;w) =ȳ log  =(
1 − p(C  ∣x)1

p(C  ∣x)1 ) log  ,(
p(C  ∣x)0

p(C  ∣x)1 )
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Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its
application is straightforward, given that  is directly the model output .

Therefore, the loss for a minibatch  is

Input: Input dataset ( , ), learning rate . 

 or we initialize  randomly

until convergence (or patience runs out), process a minibatch of examples :

p(C  ∣x;w)1 y(x;w)

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

E(w) =   − log(p(C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1}N α ∈ R+

w ← 0 w

B
g ←   ∇  ( −∣B∣

1 ∑i∈B w log (p(C  ∣x  ;w)))t  i i

w ← w− αg
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Cross-Validation

 

https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg

We already discussed a train set and a test set. Given that the main goal of machine learning
is to perform well on unseen data, the test set must not be used during training or
hyperparameter selection. Ideally, it is hidden to us altogether.

Therefore, to evaluate a machine learning model (for example to select model architecture,
features, or hyperparameter value), we normally need the validation or a development set.

However, using a single development set might give us noisy results. To obtain less noisy results
(i.e., with smaller variance), we can use cross-validation.

In cross-validation, we choose multiple validation
sets from the training data, and for each one, we
train a model on the rest of the training data and
evaluate on the chosen validation sets. A
commonly used strategy to choose the validation
sets is called k-fold cross-validation. Here the
training set is partitioned into  subsets of

approximately the same size, and each subset
takes turns to play a role of a validation set.

k
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Cross-Validation

An extreme case of the k-fold cross-validation is leave-one-out cross-validation, where
every element is considered a separate validation set.

Computing leave-one-out cross-validation is usually extremely inefficient for larger training sets,
but in the case of linear regression with -regularization, it can be evaluated efficiently.

If you are interested, see:

Ryan M. Rifkin and Ross A. Lippert: Notes on Regularized Least Square
http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf

Implemented by sklearn.linear_model.RidgeCV.

L2
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