NPFL129, Lecture 2

Linear Regression II, SGD

Milan Straka

i October 10, 2022

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Linear Regression

2/32

Given an input value $oldsymbol{x} \in \mathbb{R}^D$, **linear regression** computes predictions as:

$$y(oldsymbol{x};oldsymbol{w},b) = x_1w_1 + x_2w_2 + \ldots + x_Dw_D + b = \sum_{i=1}^D x_iw_i + b = oldsymbol{x}^Toldsymbol{w} + b.$$

The bias b can be considered one of the weights $oldsymbol{w}$ if convenient.

We train the weights by minimizing an **error function** between the real target values and their predictions, notably *sum of squares*:

$$rac{1}{2}\sum_{i=1}^Nig(y(oldsymbol{x}_i;oldsymbol{w})-t_iig)^2$$

There are various approaches to minimize it, but for linear regression an explicit solution exists:

$$oldsymbol{w} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{t}.$$

NPFL129, Lecture 2 Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features

Linear Regression Example

Assume we want to predict a $t \in \mathbb{R}$ for a given $x \in \mathbb{R}$. If we train the linear regression with "raw" input vectors $oldsymbol{x}=(x)$, only straight lines could be modeled.

However, if we consider input vectors $oldsymbol{x} = (x^0, x^1, \dots, x^M)$ for a given $M \geq 0$, the linear regression is able to model polynomials of degree M, because the prediction is then computed as

$$w_0x^0+w_1x^1+\ldots+w_Mx^M.$$

Therefore, the weights are the coefficients of a polynomial of degree M.

Hyperparameters

Linear Regression Example

To plot the error, the root mean squared error $RMSE = \sqrt{MSE}$ is frequently used.

The displayed error nicely illustrates two main challenges in machine learning:

- underfitting
- overfitting

NPFL129, Lecture 2

Hyperparameters

SVD Solution

Random Variables

SGD

LR-SGD Features

Model Capacity

We can control whether a model underfits or overfits by modifying its capacity.

- representational capacity
- effective capacity

Linear Regression Overfitting

Note that employing more data usually alleviates overfitting (the relative capacity of the model is decreased).

NPFL129, Lecture 2

Hyperparameters

SVD Solution

Random Variables

SGD

LR-SGD Features

Regularization

Regularization, in a broad sense, is any change that is designed to *reduce generalization error* (but not necessarily its training error) in a machine learning algorithm.

We already saw that **limiting model capacity** can work as regularization.

https://upload.wikimedia.org/wikipedia/commons/1/19/Overfitting.svg

NPFL129, Lecture 2

Refresh Regularization

Hyperparameters

SVD Solution

Random Variables

SGD

LR-SGD Features

L2 Regularization

 L^2 -regularization is one of the oldest regularization techniques, which tries to prefer "simpler" models by endorsing models with **smaller weights**.

Concretely, L^2 -regularization (also called weight decay) penalizes models with large weights by utilizing the following error function:

$$rac{1}{2}\sum_{i=1}^Nig(y(oldsymbol{x}_i;oldsymbol{w})-t_iig)^2+rac{oldsymbol{\lambda}}{2}\|oldsymbol{w}\|^2.$$

Note that the L^2 -regularization is usually not applied to the *bias*, only to the "proper" weights, because we cannot really overfit via the bias. Also, without penalizing the bias, linear regression with L^2 -regularization is invariant to shifts (i.e., adding a constant to all the targets results in the same solution, only with the bias increased by that constant; if the bias were penalized, this would not be true).

For simplicity, we will not explicitly exclude the bias from the L^2 -regularization penalty in the slides (several textbooks also take the same approach).

NPFL129, Lecture 2

Refresh

Features 8/32

LR-SGD

L2 Regularization

One way to look at L^2 -regularization is that it promotes smaller changes of the model (the gradient of linear regression with respect to the inputs are exactly the weights, i.e., $\nabla_x y(x; w) = w$).

Considering the data points on the right, we present mean squared errors and L^2 norms of the weights for three linear regression models:

Figure a: $\hat{y} = 0.04 + 0.04x + 0.9x^2$ Figure b: $\hat{y} = -0.01 + 0.01x + 0.8x^2 + 0.5x^3 - 0.1x^4 - 0.1x^5 + 0.3x^6 - 0.3x^7 + 0.2x^8$ Figure c: $\hat{y} = -0.01 + 0.57x + 2.67x^2 - 4.08x^3 - 12.25x^4 + 7.41x^5 + 24.87x^6 - 3.79x^7 - 14.38x^8$ https://miro.medium.com/max/2880/1*UolRIKXikCz7SFsPfSZrYQ.png

NPFL129, Lecture 2

Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features $9_{
m /}$

L2 Regularization

The effect of L^2 -regularization can be seen as limiting the *effective capacity* of the model.

NPFL129, Lecture 2

Hyperparameters

SVD Solution

Random Variables

SGD LR-SGD

Features 10/32

Regularizing Linear Regression

In a matrix form, the regularized sum of squares error for linear regression amounts to

$$rac{1}{2}\|oldsymbol{X}oldsymbol{w}-oldsymbol{t}\|^2+rac{\lambda}{2}\|oldsymbol{w}\|^2.$$

When repeating the same calculation as in the unregularized case, we arrive at

$$(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{t},$$

where \boldsymbol{I} is an identity matrix.

Input: Dataset ($X \in \mathbb{R}^{N \times D}$, $t \in \mathbb{R}^N$), constant $\lambda \in \mathbb{R}^+$. Output: Weights $w \in \mathbb{R}^D$ minimizing MSE of regularized linear regression.

•
$$\boldsymbol{w} \leftarrow (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{t}.$$

Refresh

Note that the matrix $\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$ is always regular for $\lambda > 0$ (you can show that the matrix is positive definite), so another effect of L^2 -regularization is that the inverse always exists.

NPFL129, Lecture 2

SGD

LR-SGD

Features 11/32

Choosing Hyperparameters

Hyperparameters are not adapted by the learning algorithm itself.

Usually, a **validation set** or **development set** is used to estimate the generalization error, allowing us to update hyperparameters accordingly. If there is not enough data (well, there is **always** not enough data), more sophisticated approaches can be used.

So far, we have seen two hyperparameters, M and λ .

Linear Regression

When training a linear regression model, we minimized the *sum of squares* error function by computing its gradient (partial derivatives with respect to all weights) and setting it to zero, arriving at the following equation for optimal weights:

$$\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{t}.$$

If $\boldsymbol{X}^T \boldsymbol{X}$ is regular, we can invert it and compute the weights as $\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{t}$. It can be proven (see next slide) that $\operatorname{rank}(\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}^T \boldsymbol{X})$. Therefore, the matrix $\boldsymbol{X}^T \boldsymbol{X} \in \mathbb{R}^{D \times D}$ is regular if and only if \boldsymbol{X} has rank D, which is equivalent to the columns of \boldsymbol{X} being linearly independent.

Hyperparameters

SVD Solution

LR-SGD Features

Linear Regression Solution Always Exists

We now show that the solution of $\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{t}$ always exists.

Recall that the rank-nullity theorem states that for a matrix $oldsymbol{A} \in \mathbb{R}^{V imes W}$,

 $\mathrm{rank}(oldsymbol{A}) + \mathrm{nullity}(oldsymbol{A}) \stackrel{ ext{def}}{=} \dim(\mathrm{im}(oldsymbol{A})) + \dim(\ker(oldsymbol{A})) = W.$

Our goal is to show that $im(\mathbf{X}^T \mathbf{X}) = im(\mathbf{X}^T)$. Then the solution would always exist, because for any \mathbf{t} , $\mathbf{X}^T \mathbf{t} \in im(\mathbf{X}^T \mathbf{X})$.

- Therefore, the rank-nullity theorem implies that $\operatorname{rank}(\boldsymbol{X}^T\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}^T)$.
- Finally, it is easy to see that $\operatorname{im}(\boldsymbol{X}^T \boldsymbol{X}) \subseteq \operatorname{im}(\boldsymbol{X}^T)$, which together with the rank equality proves the required equation $\operatorname{im}(\boldsymbol{X}^T \boldsymbol{X}) = \operatorname{im}(\boldsymbol{X}^T)$.

Refresh

SVD Solution of Linear Regression

Now consider the case that $\mathbf{X}^T \mathbf{X}$ is singular. We already know that $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{t}$ is solvable, but it does not have a unique solution (it has many solutions). Our goal in this case will be to find the \mathbf{w} with the minimum $\|\mathbf{w}\|$ fulfilling the equation.

We now consider singular value decomposition (SVD) of X, writing $X = U \Sigma V^T$, where

- $m{U} \in \mathbb{R}^{N imes N}$ is an orthogonal matrix, i.e., $m{u}_i^T m{u}_j = [i=j] \Leftrightarrow m{U}^T m{U} = m{I} \Leftrightarrow m{U}^{-1} = m{U}^T$,
- $\mathbf{\Sigma} \in \mathbb{R}^{N imes D}$ is a diagonal matrix,
- $oldsymbol{V} \in \mathbb{R}^{D imes D}$ is again an orthogonal matrix.

Assuming the diagonal matrix ${f \Sigma}$ has a rank r, we have

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_r & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{bmatrix},$$

where $\Sigma_r \in \mathbb{R}^{r \times r}$ is a regular diagonal matrix. Denoting U_r and V_r the matrices of first r columns of U and V, respectively, we can write $X = U_r \Sigma_r V_r^T$.

oles SGD LR-SGD Features

 \sum

SVD Solution of Linear Regression

Using the decomposition $m{X} = m{U}_r m{\Sigma}_r m{V}_r^T$, we can rewrite the goal equation as

$$ig(oldsymbol{V}_roldsymbol{\Sigma}_r^Toldsymbol{U}_r^Tig)ig(oldsymbol{U}_roldsymbol{\Sigma}_roldsymbol{V}_r^Tig)oldsymbol{w} =ig(oldsymbol{V}_roldsymbol{\Sigma}_r^Toldsymbol{U}_r^Tig)oldsymbol{t}.$$

The transposition of an orthogonal matrix is its inverse. Therefore, our submatrix \boldsymbol{U}_r fulfills $\boldsymbol{U}_r^T \boldsymbol{U}_r = \boldsymbol{I}$, because $\boldsymbol{U}_r^T \boldsymbol{U}_r$ is the top left submatrix of $\boldsymbol{U}^T \boldsymbol{U}$. Analogously, $\boldsymbol{V}_r^T \boldsymbol{V}_r = \boldsymbol{I}$.

We therefore simplify the goal equation to

$$oldsymbol{V}_r^Toldsymbol{V}_roldsymbol{\Sigma}_r^Toldsymbol{U}_roldsymbol{\Sigma}_roldsymbol{V}_r^Toldsymbol{w} = oldsymbol{V}_r^Toldsymbol{V}_roldsymbol{\Sigma}_r^Toldsymbol{U}_roldsymbol{\Sigma}_roldsymbol{U}_roldsymbol{w} = oldsymbol{V}_r^Toldsymbol{V}_roldsymbol{\Sigma}_r^Toldsymbol{U}_roldsymbol{U}_roldsymbol{U}_roldsymbol{u}$$

Because the diagonal matrix $oldsymbol{\Sigma}_r = oldsymbol{\Sigma}_r^T$ is regular, we can divide by it and obtain

$$oldsymbol{V}_r^Toldsymbol{w} = oldsymbol{\Sigma}_r^{-1}oldsymbol{U}_r^Toldsymbol{t}.$$

SVD Solution of Linear Regression

We have $\boldsymbol{V}_r^T \boldsymbol{w} = \boldsymbol{\Sigma}_r^{-1} \boldsymbol{U}_r^T \boldsymbol{t}$. If the original matrix $\boldsymbol{X}^T \boldsymbol{X}$ was regular, then r = D and \boldsymbol{V}_r is a square regular orthogonal matrix, in which case $\boldsymbol{w} = \boldsymbol{V}_r \boldsymbol{\Sigma}_r^{-1} \boldsymbol{U}_r^T \boldsymbol{t}$. Let $\boldsymbol{\Sigma}^+ \in \mathbb{R}^{D \times N}$ denote the diagonal matrix with

$$\Sigma_{i,i}^+ \stackrel{ ext{def}}{=} egin{cases} \Sigma_{i,i}^{-1} & ext{ if } \Sigma_{i,i}
eq 0, \ 0 & ext{ otherwise.} \end{cases}$$

Using this notation, we can rewrite $m{w}$ for the r=D case to $m{w}=m{V}m{\Sigma}^+m{U}^Tm{t}$.

Now if r < D, $\boldsymbol{V}_r^T \boldsymbol{w} = \boldsymbol{y}$ is undetermined and has infinitely many solutions. To find the one with the smallest norm $\|\boldsymbol{w}\|$, consider the full product $\boldsymbol{V}^T \boldsymbol{w}$. Because \boldsymbol{V} is orthogonal, $\|\boldsymbol{V}^T \boldsymbol{w}\| = \|\boldsymbol{w}\|$, and it is sufficient to find \boldsymbol{w} with the smallest $\|\boldsymbol{V}^T \boldsymbol{w}\|$. We know that the first r elements of $\boldsymbol{V}^T \boldsymbol{w}$ are fixed by the above equation – therefore, the smallest $\|\boldsymbol{V}^T \boldsymbol{w}\|$ can be obtained by setting the last D - r elements to zero. Finally, note that $\boldsymbol{\Sigma}^+ \boldsymbol{U}^T \boldsymbol{t}$ is exactly $\boldsymbol{\Sigma}_r^{-1} \boldsymbol{U}_r^T \boldsymbol{t}$ padded with D - r zeros, which yields the same solution $\boldsymbol{w} = \boldsymbol{V} \boldsymbol{\Sigma}^+ \boldsymbol{U}^T \boldsymbol{t}$.

NPFL129, Lecture 2

Refresh

SVD Solution of Linear Regression and Pseudoinverses

The solution to a linear regression with *sum of squares* error function is tightly connected to matrix pseudoinverses. If a matrix X is singular or rectangular, it does not have an exact inverse, and Xw = b does not have an exact solution.

However, we can consider the so-called Moore-Penrose pseudoinverse

$$oldsymbol{X}^+ \stackrel{ ext{def}}{=} oldsymbol{V} oldsymbol{\Sigma}^+ oldsymbol{U}^T$$

to be the closest approximation to an inverse, in the sense that we can find the best solution (with the smallest MSE) to the equation Xw = b by setting $w = X^+b$.

Alternatively, we can define the pseudoinverse of a matrix $oldsymbol{X}$ as

$$oldsymbol{X}^+ = rgmin_{oldsymbol{Y} \in \mathbb{R}^{D imes N}} ig\| oldsymbol{X} oldsymbol{Y} - oldsymbol{I}_N ig\|_F = rgmin_{oldsymbol{Y} \in \mathbb{R}^{D imes N}} ig\| oldsymbol{Y} oldsymbol{X} - oldsymbol{I}_D ig\|_F$$

which can be verified to be the same as our SVD formula.

NPFL129, Lecture 2

Features

Random Variables

A random variable \mathbf{x} is a result of a random process, and it can be either discrete or continuous.

Probability Distribution

A probability distribution describes how likely are the individual values that a random variable can take.

The notation ${f x}\sim P$ stands for a random variable ${f x}$ having a distribution P.

For discrete variables, the probability that x takes a value x is denoted as P(x) or explicitly as P(x = x). All probabilities are nonnegative, and the sum of the probabilities of all possible values of x is $\sum_{x} P(x = x) = 1$.

For continuous variables, the probability that the value of x lies in the interval [a, b] is given by $\int_{a}^{b} p(x) dx$, where p(x) is the *probability density function*, which is always nonnegative and integrates to 1 over the range of all values of x.

NPFL129, Lecture 2

SGD

LR-SGD

Joint, Conditional, Marginal Probability

For two random variables, a **joint probability distribution** is a distribution of all possible pairs of outputs (and analogously for more than two):

$$P(\mathrm{x}=x_2,\mathrm{y}=y_1).$$

Marginal distribution is a distribution of one (or a subset) of the random variables and can be obtained by summing over the other variable(s):

$$P(\mathrm{x}=x_2)=\sum_y P(\mathrm{x}=x_2,\mathrm{y}=y).$$

Conditional distribution is a distribution of one (or a subset) of the random variables, given that another event has already occurred:

$$P(\mathrm{x}=x_2|\mathrm{y}=y_1)=P(\mathrm{x}=x_2,\mathrm{y}=y_1)/P(\mathrm{y}=y_1).$$

If $P(x, y) = P(x) \cdot P(y)$ or P(x|y) = P(x), random variables x and y are **independent**.

Refresh

SGD

LR-SGD Features

Random Variables

Expectation

The expectation of a function f(x) with respect to a discrete probability distribution P(x) is defined as:

$$\mathbb{E}_{\mathrm{x}\sim P}[f(x)] \stackrel{ ext{def}}{=} \sum_x P(x)f(x).$$

For continuous variables, the expectation is computed as:

$$\mathbb{E}_{\mathrm{x}\sim p}[f(x)] \stackrel{\scriptscriptstyle\mathrm{def}}{=} \int_x p(x)f(x)\,\mathrm{d}x.$$

If the random variable is obvious from context, we can write only $\mathbb{E}_P[x]$, $\mathbb{E}_x[x]$, or even $\mathbb{E}[x]$. Expectation is linear, i.e., for constants $\alpha, \beta \in \mathbb{R}$:

$$\mathbb{E}_{\mathrm{x}}[lpha f(x) + eta g(x)] = lpha \mathbb{E}_{\mathrm{x}}[f(x)] + eta \mathbb{E}_{\mathrm{x}}[g(x)].$$

NPFL129, Lecture 2

Refresh

Random Variables

Variance

Variance measures how much the values of a random variable differ from its mean $\mathbb{E}[x]$.

$$\mathrm{Var}(x) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathbb{E}\left[ig(x - \mathbb{E}[x]ig)^2
ight], ext{ or more generally}, \ \mathrm{Var}_{\mathrm{x}\sim P}(f(x)) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathbb{E}\left[ig(f(x) - \mathbb{E}[f(x)]ig)^2
ight].$$

It is easy to see that

$$\mathrm{Var}(x) = \mathbb{E}\left[x^2 - 2x \cdot \mathbb{E}[x] + ig(\mathbb{E}[x]ig)^2
ight] = \mathbb{E}\left[x^2
ight] - ig(\mathbb{E}[x]ig)^2,$$

because $\mathbb{E}ig[2x \cdot \mathbb{E}[x]ig] = 2(\mathbb{E}[x])^2$.

Variance is connected to $\mathbb{E}[x^2]$, the **second moment** of a random variable – it is in fact a **centered** second moment.

NPFL129, Lecture 2

Hyperparameters

SVD Solution

Random Variables

SGD

LR-SGD Features

Estimators and Bias

An **estimator** is a rule for computing an estimate of a given value, often an expectation of some random value(s).

For example, we might estimate *mean* of a random variable by sampling a value according to its probability distribution.

Bias of an estimator is the difference between the expected value of the estimator and the true value being estimated:

 $estimator \ bias \stackrel{\scriptscriptstyle
m def}{=} \mathbb{E}_{
m estimator}[estimate] - true \ estimated \ value.$

If the bias is zero, we call the estimator unbiased; otherwise, we call it biased.

As an example, consider estimating $\mathbb{E}_P[f(x)]$ by generating a single sample x from P and returning f(x). Such an estimate is unbiased, because $\mathbb{E}[estimate] = \mathbb{E}_P[f(x)]$, which is exactly the true estimated value.

NPFL129, Lecture 2

Hyperparameters

SVD Solution

Estimators and Bias

If we have a sequence of estimates, it might also happen that the bias converges to zero. Consider the well-known sample estimate of variance. Given independent and identically distributed random variables x_1, \ldots, x_n , we might estimate the mean and variance as

$$\hat{\mu} = rac{1}{n}\sum_i x_i, \hspace{1em} \hat{\sigma}^2 = rac{1}{n}\sum_i (x_i - \hat{\mu})^2.$$

Such an estimate is biased, because $\mathbb{E}[\hat{\sigma}^2] = (1 - \frac{1}{n})\sigma^2$, but the bias converges to zero with increasing n.

Also, an unbiased estimator does not necessarily have a small variance – in some cases, it can have a large variance, so a biased estimator with a smaller variance might be preferred.

NPFL129, Lecture 2

Hyperparameters

SVD Solution

SGD

Gradient Descent

Sometimes it is more practical to search for the best model weights in an iterative/incremental/sequential fashion. Either because there is too much data, or the direct optimization is not feasible.

Assuming we are minimizing an error function

$$\underset{\boldsymbol{w}}{\operatorname{arg\,min}} E(\boldsymbol{w}),$$

we may use *gradient descent*:

 $oldsymbol{w} \leftarrow oldsymbol{w} - lpha
abla_{oldsymbol{w}} E(oldsymbol{w})$

The constant α is called a **learning rate** and specifies the "length" of a step we perform in every iteration of the gradient descent.

Figure 4.1 of "Deep Learning" book, https://www.deeplearningbook.org

NPFL129, Lecture 2

SVD Solution

LR-SGD Features

Gradient Descent Variants

Let $m{X} \in \mathbb{R}^{N imes D}$, $m{t} \in \mathbb{R}^N$ be the training data, and denote $\hat{p}_{ ext{data}}(m{x},t) \stackrel{\text{def}}{=} rac{|\{i:(m{x},t)=(m{x}_i,t_i)\}|}{N}$. Assume that the error function can be computed as an expectation over the dataset:

$$E(oldsymbol{w}) = \mathbb{E}_{(\mathbf{x}, \mathrm{t}) \sim \hat{p}_{\mathrm{data}}} Lig(y(oldsymbol{x}; oldsymbol{w}), tig), ext{ so that }
abla_{oldsymbol{w}} E(oldsymbol{w}) = \mathbb{E}_{(\mathbf{x}, \mathrm{t}) \sim \hat{p}_{\mathrm{data}}}
abla_{oldsymbol{w}} Lig(y(oldsymbol{x}; oldsymbol{w}), tig).$$

- (Standard/Batch) Gradient Descent: We use all training data to compute $\nabla_{w} E(w)$.
- **Stochastic (or Online) Gradient Descent**: We estimate $\nabla_{\boldsymbol{w}} E(\boldsymbol{w})$ using a single random example from the training data. Such an estimate is unbiased, but very noisy.

 $\nabla_{\boldsymbol{w}} E(\boldsymbol{w}) \approx \nabla_{\boldsymbol{w}} L(y(\boldsymbol{x}; \boldsymbol{w}), t)$ for a randomly chosen (\boldsymbol{x}, t) from \hat{p}_{data} .

Minibatch SGD: Trade-off between gradient descent and SGD – the expectation in $\nabla_{\boldsymbol{w}} E(\boldsymbol{w})$ is estimated using B random independent examples from the training data.

$$abla_{oldsymbol{w}} E(oldsymbol{w}) pprox rac{1}{B} \sum_{i=1}^{B}
abla_{oldsymbol{w}} Lig(y(oldsymbol{x}_i;oldsymbol{w}),t_iig) ext{ for a randomly chosen } (oldsymbol{x}_i,t_i) ext{ from } \hat{p}_{ ext{data}}.$$

NPFL129, Lecture 2

Refresh

26/32

Features

Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates α_i , and using a noisy estimate $J(\boldsymbol{w})$ of the real gradient $\nabla_{\boldsymbol{w}} E(\boldsymbol{w})$:

$$oldsymbol{w}_{i+1} \leftarrow oldsymbol{w}_i - lpha_i J(oldsymbol{w}_i).$$

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951) that if the loss function L is convex and continuous, then SGD converges to the unique optimum almost surely if the sequence of learning rates α_i fulfills the following conditions:

$$orall i:lpha_i>0, \quad \sum_i lpha_i=\infty, \quad \sum_i lpha_i^2<\infty.$$

Note that the third condition implies that $\alpha_i \rightarrow 0$.

For nonconvex loss functions, we can get guarantees of converging to a *local* optimum only. However, note that finding the global minimum of an arbitrary function is *at least NP-hard*.

NPFL129, Lecture 2

SGD

LR-SGD Features

Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for $m{u}, m{v}$ and real $0 \leq t \leq 1$,

 $f(toldsymbol{u}+(1-t)oldsymbol{v})\leq tf(oldsymbol{u})+(1-t)f(oldsymbol{v}).$

A twice-differentiable function of a single variable is convex iff its second derivative is always nonnegative. (For functions of multiple variables, the Hessian must be positive semi-definite.) A local minimum of a convex function is always the unique global minimum. Well-known examples of convex functions are x^2 , e^x , $-\log x$, and also the *sum of squares*. NPFL129, Lecture 2 Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features

Solving Linear Regression using SGD

To apply SGD on linear regression, we usually minimize one half of the mean squared error:

$$E(oldsymbol{w}) = \mathbb{E}_{(\mathbf{x},t)\sim \hat{p}_{ ext{data}}}igg[rac{1}{2}(y(oldsymbol{x};oldsymbol{w})-t)^2igg] = \mathbb{E}_{(\mathbf{x},t)\sim \hat{p}_{ ext{data}}}igg[rac{1}{2}(oldsymbol{x}^Toldsymbol{w}-t)^2igg].$$

If we also include L^2 regularization, we get

$$E(oldsymbol{w}) = \mathbb{E}_{(\mathbf{x}, \mathrm{t}) \sim \hat{p}_{\mathrm{data}}}ig[rac{1}{2}(oldsymbol{x}^Toldsymbol{w} - t)^2ig] + rac{\lambda}{2}\|oldsymbol{w}\|^2.$$

We then estimate the expectation by a minibatch of examples with indices ${\mathbb B}$ as

$$rac{1}{|\mathbb{B}|}\sum_{i\in\mathbb{B}}\left(rac{1}{2}(oldsymbol{x}_i^Toldsymbol{w}-t_i)^2
ight)+rac{\lambda}{2}\|oldsymbol{w}\|^2,$$

which gives us an estimate of a gradient

Refresh

$$abla_{oldsymbol{w}} E(oldsymbol{w}) pprox rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \left((oldsymbol{x}_i^T oldsymbol{w} - t_i) oldsymbol{x}_i
ight) + \lambda oldsymbol{w}.$$

NPFL129, Lecture 2

Regularization

Hyperparameters

SVD Solution Ra

Random Variables

SGD LR-SGD

Solving Linear Regression using SGD

Ú_F≩L

The computed gradient allows us to formulate the following algorithm for solving linear regression with minibatch SGD.

Input: Dataset ($X \in \mathbb{R}^{N \times D}$, $t \in \mathbb{R}^N$), learning rate $\alpha \in \mathbb{R}^+$, L^2 strength $\lambda \in \mathbb{R}$. **Output**: Weights $w \in \mathbb{R}^D$ hopefully minimizing the regularized MSE of a linear regression model.

• $oldsymbol{w} \leftarrow oldsymbol{0}$ or we initialize $oldsymbol{w}$ randomly

Refresh

- repeat until convergence (or until our patience runs out):
 - $^{\circ}\,$ sample a minibatch of examples with indices $\mathbb B$
 - either uniformly randomly,
 - or we may want to process all training instances before repeating them, which can be implemented by generating a random permutation and then splitting it into minibatch-sized chunks
 - the most common option; one pass through the data is called an **epoch**

$$\circ ~~ oldsymbol{w} \leftarrow oldsymbol{w} - lpha rac{1}{|\mathbb{B}|} \sum_{i \in \mathbb{B}} \left((oldsymbol{x}_i^T oldsymbol{w} - t_i) oldsymbol{x}_i
ight) - lpha \lambda oldsymbol{w}$$

NPFL129, Lecture 2

Features 30/32

LR-SGD

Features

Recall that the *input* instance values are usually the raw observations and are given. However, we might extend them suitably before running a machine learning algorithm, especially if the algorithm is linear or otherwise limited and cannot represent an arbitrary function. Such instance representations are called *features*.

We already saw this in the example from the previous lecture, where even if our training examples were x and t, we performed the linear regression using features (x^0, x^1, \ldots, x^M) :

NPFL129, Lecture 2

Regularization

Refresh

Hyperparameters

SVD Solution Ra

Random Variables

SGD LR-SGD

31/32

Features

Features

Generally, it would be best if the machine learning algorithms would process only the raw inputs. However, many algorithms are capable of representing only a limited set of functions (for example linear ones), and in that case, **feature engineering** plays a major part in the final model performance. Feature engineering is a process of constructing features from raw inputs.

Commonly used features are:

- polynomial features of degree p: Given features (x_1, x_2, \ldots, x_D) , we might consider all products of p input values. Therefore, polynomial features of degree 2 would consist of $x_i^2 \forall i$ and of $x_i x_j \forall i \neq j$.
- categorical one-hot features: Assume, for example, that a day in a week is represented in the input as an integer value of 1 to 7, or a breed of a dog is expressed as an integer value of 0 to 366. Using these integral values as an input to linear regression makes little sense instead, it might be better to learn weights for individual days in a week or for individual dog breeds. We might therefore represent input classes by binary indicators for every class, giving rise to a one-hot representation, where an input integral value $0 \le v < L$ is represented as L binary values, which are all zero except for the v^{th} one, which is one.

NPFL129, Lecture 2