
NPFL129, Lecture 10

Gradient Boosting Decision Trees

Milan Straka

December 06, 2021

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Gradient Boosting Decision Trees

Figure 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

The gradient boosting decision trees also train a collection of decision trees, but unlike random
forests, where the trees are trained independently, in GBDT they are trained sequentially to
correct the errors of the previous trees.

If we denote as the

prediction function of the

 tree, the prediction of

the whole collection is then

where is a vector of

parameters (leaf values, to
be concrete) of the tree.

y t

tth

y(x) =i y (x ;W),
t=1

∑
T

t i t

W t

tth

2/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting for Regression

Considering a regression task first, we define the overall loss as

where

 are the parameters (leaf values) of the trees;

 is an per-example loss, for regression;

the is the usual regularization strength.

L(W) = ℓ(t , y(x ;W))+
i

∑ i i λ W ,
t=1

∑
T

2
1
∥
∥

t∥
∥2

W = (W , … ,W)1 T

ℓ(t , y(x ;W))i i (t −i y(x ;W))i
2

λ L 2

3/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting for Regression

To construct the trees sequentially, we extend the definition to

In the following text, we drop the parameters of and for brevity.

The original idea of gradient boosting was to set

as a direction minimizing the residual loss and then finding a suitable constant , which would

minimize the loss

L (W ;W) =(t)
t 1..t−1 [ℓ(t , y (x ;W) +

i

∑ i
(t−1)

i 1..t−1 y (x ;W))] +t i t λ W .
2
1
∥
∥

t∥
∥2

y(t−1) y t

y (x) ∝t i −

∂y (x)(t−1)
i

∂ℓ(t , y (x))i
(t−1)

i

γ t

 [ℓ(t , y (x) +
i

∑ i
(t−1)

i γ y (x))] +t t i λ W .
2
1
∥
∥

t∥
∥2

4/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

First-order and Second-order Methods

Until now, we used mostly SGD for finding a minimum, by performing

A disadvantage of this (so-called first-order method) is that we need to specify the learning
rates by ourselves, usually using quite a small one and performing the update many times.

However, in some situations we can do better.

w ← w− α∇L(w).

5/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Newton’s Root-Finding Method

Modification of https://commons.wikimedia.org/wiki/File:Newton–
Raphson_method.svg

Assume we got a function and we want to find its root. A SGD-like algorithm

would always move “towards” zero by taking small steps.

Instead, we could consider the a linear local
approximation (i.e., consider a line “touching” the
function in a given point) and perform a step so that our
linear local approximation has value 0:

Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivation, resulting in:

f : R → R

x ←′ x− .
f (x)′

f(x)

x ←′ x− .
f (x)′′

f (x)′

6/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Newton’s Method

The following update is the Newton’s method of searching for extremes:

It is a so-called second-order method, but it is in fact a SGD update with learning rate .

Derivation from Taylor’s Expansion
The same update can be derived also from the Taylor’s expansion

which we can minimise for by

x ←′ x− .
f (x)′′

f (x)′

f (x)′′
1

f(x+ ε) ≈ f(x) + εf (x) +′
 ε f (x), +O(ε)

2
1 2 ′′ 3

ε

0 = ≈
∂ε

∂f(x+ ε)
f (x) +′ εf (x), obtaining x+′′ ε = x− .

f (x)′′

f (x)′

7/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Training MLPs with the Newton’s Method

Note that the second-order methods (methods utilizing second derivatives) are impractical
when training MLPs (and GLMs) with many parameters. The problem is that there are
too many second derivatives – if we consider weights ,

the gradient has elements;

however, we have a matrix with all second derivatives, called the Hessian :

For completeness, the Taylor expansion than has the following form

from which we obtain the following second-order method update:

w ∈ RD

∇L(w) D

D × D H

H i,j =def
 .

∂w ∂w i j

∂ L(w)2

f(x+ ε) = f(x) + ε ∇f(x) +T
 ε Hε,

2
1 T

x ← x− H ∇f(x).−1

8/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting

However, a more principled approach was later suggested. Denoting

and

we can expand the objective using a second-order approximation to

g =i

∂y (x)(t−1)
i

∂ℓ(t , y (x))i
(t−1)

i

h =i ,
∂y (x)(t−1)

i
2

∂ ℓ(t , y (x))2
i

(t−1)
i

L(t)

L (W ;W) ≈(t)
t 1..t−1 [ℓ(t , y (x))+

i

∑ i
(t−1)

i g y (x) +i t i h y (x)] +
2
1

i t
2

i λ W .
2
1
∥
∥

t∥
∥2

9/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting

Recall that we denote the indices of instances belonging to a node as , and let us denote

the prediction for the node as . Then we can rewrite

By setting a derivative with respect to to zero, we get

Therefore, the optimal weight for a node is

T I T

T w T

L (W ;W) ≈(t)
t 1..t−1 [g y (x) +∑

i
i t i h y (x)] +

2
1

i t
2

i λ W +
2
1
∥
∥

t∥
∥2

const

≈ [(g)w +
T

∑
i∈I T

∑ i T (λ+
2
1

 h)w] +
i∈I T

∑ i T
2 const.

w T

0 = =
∂w T

∂L(t)

 g +∑
i∈I T

i (λ+ h)w .∑
i∈I T

i T

T

w =T
∗ − .

λ+ h ∑i∈I T
i

 g ∑i∈I T
i

10/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting

Substituting the optimum weights to the loss, we get

which can be used as a splitting criterion.

Figure 2 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

L (W) ≈(t) − +
2
1

T

∑
λ+ h ∑i∈I T

i

 g (∑i∈I T
i)

2

const,

11/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting

When splitting a node, the criterions of all possible splits can be effectively computed using the
following algorithm:

D

D

if
next

then

Modified from Algorithm 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

12/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting

Furthermore, gradient boosting trees frequently use:

data subsampling: either bagging, or (even more commonly) utilize only a fraction of the
original training data for training a single tree (with 0.5 being a common value),

feature subsampling;

shrinkage: multiply each trained tree by a learning rate , which reduces influence of each

individual tree and leaves space for future optimization.

α

13/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Binary Classification with Gradient Boosting Decision Trees

To perform classification, we train the trees to perform the linear part of a generalized linear
model.

Specifically, for a binary classification, we perform prediction by

and the per-example loss is defined as

σ(y(x)) =i σ y (x ;W) ,(
t=1

∑
T

t i t)

ℓ(t , y(x)) =i i − log [σ(y(x)) (1 −i
t i

σ(y(x)))].i
1−t i

14/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Multiclass Classification with Gradient Boosting Decision Trees

For multiclass classification, we need to model the full categorical output distribution.
Therefore, for each “timestep” , we train trees , each predicting a single value of the

linear part of a generalized linear model.

Then, we perform prediction by

and the per-example loss for all trees is defined analogously as

so that for a tree at time ,

t K W t,k

softmax (y(x)) =i softmax y (x ;W), … , y (x ;W) ,(∑
t=1

T

t,1 i t,1 ∑
t=1

T

t,K i t,K)

K

ℓ(t ,y(x)) =i i − log(softmax (y(x))),i t i

k t

 =
∂y (x)

(t−1)
i k

∂ℓ(t ,y (x))i
(t−1)

i
(softmax (y (x))−(t−1)

i 1) .t i
k

15/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Multiclass Classification with Gradient Boosting Decision Trees

Tree 1 for class 1 Tree 1 for class 2 Tree 1 for class 3

Tree 2 for class 1 Tree 2 for class 2 Tree 2 for class 3

Tree 3 for class 1 Tree 3 for class 2 Tree 3 for class 3

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -18.1
instances = 84
prediction=-1.4

c_gb = -28.5
instances = 52
prediction=2.2

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

color_intensity <= 3.8
c_gb = -1.2

instances = 136
prediction=0.3

c_gb = -43.2
instances = 49
prediction=2.8

c_gb = -12.5
instances = 87
prediction=-1.1

color_intensity <= 3.9
c_gb = -0.6

instances = 136
prediction=0.2

flavanoids <= 1.2
c_gb = -1.1

instances = 136
prediction=-0.3

c_gb = -26.6
instances = 35
prediction=2.6

c_gb = -18.3
instances = 101
prediction=-1.3

flavanoids <= 1.4
c_gb = -0.6

instances = 136
prediction=-0.2

c_gb = -11.2
instances = 84
prediction=-1.2

c_gb = -13.2
instances = 52
prediction=1.4

flavanoids <= 2.3
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -19.7
instances = 53
prediction=1.7

c_gb = -8.7
instances = 83
prediction=-1.1

alcohol <= 12.7
c_gb = -0.4

instances = 136
prediction=0.2

c_gb = -12.6
instances = 44
prediction=1.6

c_gb = -14.0
instances = 92
prediction=-1.3

hue <= 0.8
c_gb = -0.3

instances = 136
prediction=-0.2

c_gb = -9.1
instances = 76
prediction=-1.2

c_gb = -7.9
instances = 60
prediction=1.1

c_gb = -11.9
instances = 57
prediction=1.4

c_gb = -6.1
instances = 79
prediction=-1.0

c_gb = -9.5
instances = 35
prediction=1.6

c_gb = -8.3
instances = 101
prediction=-1.0

16/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Gradient Boosting Demo and Implementations

Playground
You can explore the Gradient Boosting Trees playground and Gradient Boosting Trees
explained.

Implementations
Scikit-learn offers an implementation of gradient boosting decision trees,
sklearn.ensemble.GradientBoostingClassifier for classification and
sklearn.ensemble.GradientBoostingRegressor for regression.

Furthermore, sklearn.ensemble.HistGradientBoosting{Classifier/Regressor}
provide histogram-based splitting (which can be much faster for larger datasets – tens of
thousands of examples and more) and efficient categorical feature splitting.

There are additional efficient implementations, capable of distributed processing of data larger
than available memory (both offering also scikit-learn interface):

XGBoost,
LightGBM (which is the inspiration for the HistGradientBoosting* implementation).

17/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

https://ufal.mff.cuni.cz/~straka/courses/npfl129/2122/slides/10/gbt/playground.html
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2122/slides/10/gbt/explained.html

Supervised Machine Learning

This concludes the supervised machine learning part of our course.

We have encountered:

parametric models
generalized linear models: perceptron algorithm, linear regression, logistic regression,
multinomial (softmax) logistic regression, Poisson regression

linear models, but manual feature engineering allows solving non-linear problems

multilayer perceptron: non-linear, perfect approximator – Universal approx. theorem

non-parametric models
k-nearest neighbors
kernelized linear regression
support vector machines

decision trees
can be both parametric or non-parametric depending on the constraints

generative models
naive Bayes

18/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

Supervised Machine Learning

When training a model for a new dataset, I start by evaluating two models:

an MLP with one/two hidden layers
works best for high-dimensional data (images, speech, text), where an individual single
dimension (feature) does not convey much meaning;

gradient boosted decision tree

works best for lower-dimensional data, where the input features have interpretation on
their own.

However, if the amount of training examples is not too large (tens/hundreds of thousands at
most) and there are lot of features, SVM with RBF kernel might offer best performance.

Furthermore, if there are only a few training examples with a lot of features, naive Bayes

might also work well.

Finally, if your goal is to reach the highest possible performance and you have a lot of
resources, definitely use ensembling.

19/19NPFL129, Lecture 10 Gradient Boosting Newton’s Method GB Training GB Classification GB Demo SupervisedML

