Covariance

Given a collection of random variables x_1, \ldots, x_N, we know that

$$
\mathbb{E} \left[\sum_i x_i \right] = \sum_i \mathbb{E} [x_i].
$$

But how about $\text{Var} \left(\sum_i x_i \right)$?

$$
\text{Var} \left(\sum_i x_i \right) = \mathbb{E} \left[\left(\sum_i x_i - \sum_i \mathbb{E} [x_i] \right)^2 \right]
= \mathbb{E} \left[\left(\sum_i (x_i - \mathbb{E} [x_i]) \right)^2 \right]
= \mathbb{E} \left[\sum_i \sum_j (x_i - \mathbb{E} [x_i]) (x_j - \mathbb{E} [x_j]) \right]
= \sum_i \sum_j \mathbb{E} [(x_i - \mathbb{E} [x_i]) (x_j - \mathbb{E} [x_j])].
$$
We define **covariance** of two random variables x, y as

$$\text{cov}(x, y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])].$$

Then,

$$\text{Var} \left(\sum_i x_i \right) = \sum_i \sum_j \text{cov}(x_i, x_j).$$

Note that $\text{cov}(x, x) = \text{Var}(x)$ and that we can write covariance as

$$\text{cov}(x, y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$

$$= \mathbb{E}[xy - x\mathbb{E}[y] - \mathbb{E}[x]y + \mathbb{E}[x]\mathbb{E}[y]]$$

$$= \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y].$$
Two random variables x, y are **uncorrelated** if $\text{cov}(x, y) = 0$; otherwise, they are **correlated**.

Note that two *independent* random variables are uncorrelated, because

$$\text{cov}(x, y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$

$$= \sum_{x, y} P(x, y)(x - \mathbb{E}[x])(y - \mathbb{E}[y])$$

$$= \sum_{x, y} P(x)(x - \mathbb{E}[x]) P(y)(y - \mathbb{E}[y])$$

$$= \sum_{x} P(x)(x - \mathbb{E}[x]) \sum_{y} P(y)(y - \mathbb{E}[y])$$

$$= \mathbb{E}_x [x - \mathbb{E}[x]] \mathbb{E}_y [y - \mathbb{E}[y]] = 0.$$

However, dependent random variables can be uncorrelated – random uniform x on $[-1, 1]$ and $y = |x|$ are not independent (y is completely determined by x), but they are uncorrelated.
Pearson correlation coefficient

There are several ways to measure correlation of random variables x, y.

Pearson correlation coefficient, denoted as ρ or r, is defined as

\[
\rho \overset{\text{def}}{=} \frac{\text{cov}(x, y)}{\sqrt{\text{Var}(x)} \sqrt{\text{Var}(y)}}
\]

\[
r \overset{\text{def}}{=} \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2} \sqrt{\sum_i (y_i - \bar{y})^2}},
\]

where:

- ρ is used when the full expectation is computed (population Pearson correlation coefficient);
- r is used when estimating the coefficient from data (sample Pearson correlation coefficient);
 - \bar{x} and \bar{y} are sample estimates of mean.
The value of Pearson correlation coefficient is in fact normalized covariance, because its value is always bounded by \(-1 \leq \rho \leq 1\) (and the same holds for \(r\)).

The bound can be derived from:

\[
0 \leq \mathbb{E} \left[\left(\frac{x - \mathbb{E}[x]}{\sqrt{\text{Var}(x)}} - \rho \frac{y - \mathbb{E}[y]}{\sqrt{\text{Var}(y)}} \right)^2 \right]
= \mathbb{E} \left[\frac{(x - \mathbb{E}[x])^2}{\text{Var}(x)} \right] - 2\rho \mathbb{E} \left[\frac{(x - \mathbb{E}[x])}{\sqrt{\text{Var}(x)}} \frac{(y - \mathbb{E}[y])}{\sqrt{\text{Var}(y)}} \right] + \rho^2 \mathbb{E} \left[\frac{(y - \mathbb{E}[y])^2}{\text{Var}(y)} \right]
= \frac{\text{Var}(x)}{\text{Var}(x)} - 2\rho \cdot \rho + \rho^2 \frac{\text{Var}(y)}{\text{Var}(y)} = 1 - \rho^2,
\]

which yields \(\rho^2 \leq 1\).

Alternatively, the desired inequality can be obtained by applying the Cauchy-Schwarz inequality:

\[
\langle u, v \rangle \leq \sqrt{\langle u, u \rangle} \sqrt{\langle v, v \rangle} \quad \text{on} \quad \langle x, y \rangle \overset{\text{def}}{=} \mathbb{E}[xy].
\]
Pearson correlation coefficient quantifies linear dependence of the two random variables.

- $\rho = -1$
- $-1 < \rho < 0$
- $0 < \rho < +1$
- $\rho = +1$
- $\rho = 0$

https://upload.wikimedia.org/wikipedia/commons/3/34/Correlation_coefficient.png
Pearson correlation coefficient quantifies linear dependence of the two random variables.
Pearson correlation coefficient

The four displayed variables have the same mean 7.5, variance 4.12, Pearson correlation coefficient 0.816 and regression line $3 + \frac{1}{2}x$.

https://upload.wikimedia.org/wikipedia/commons/e/ec/Anscombe%27s_quartet_3.svg
To measure also non-linear correlation, two common coefficients are used.

Spearman's rank correlation coefficient ρ

Spearman's ρ is Pearson correlation coefficient measured on ranks of the original data, where a rank of an element is its index in sorted ascending order.

https://upload.wikimedia.org/wikipedia/commons/4/4e/Spearman_fig{1,2,3,5,4}.svg
Kendall rank correlation coefficient τ

Kendall's τ measures the amount of *concordant pairs* (pairs where y increases/decreases when x does), minus the *discordant pairs* (where y increases/decreases when x does the opposite):

$$\tau \overset{\text{def}}{=} \frac{|\{\text{pairs } i \neq j : x_j > x_i, y_j > y_i\}| - |\{\text{pairs } i \neq j : x_j > x_i, y_j < y_i\}|}{\binom{n}{2}}$$

$$= \sum_{i<j} \text{sign}(x_j - x_i) \text{sign}(y_j - y_i) \binom{n}{2}.$$

There is no clear consensus whether to use Spearman's ρ or Kendall's τ, but I believe Kendall's τ is a bit more preferred. First, $\frac{1+\tau}{2}$ can be interpreted as a probability of a concordant pair, and Kendall's τ converges to a normal distribution faster.

As defined, the range of Kendall's $\tau \in [-1, 1]$. However, if there are ties, its range is smaller – therefore, several corrections (not discussed here) exist to adjust its value in case of ties.
Usage of Correlation in Machine Learning

In the machine learning area, correlation is commonly used to measure “agreement” between:

- several human annotations;
- automatic metric and gold annotation;
- automatic metric and human evaluation.

Figure 4.4 of diploma thesis “Adaptive Handwritten Text Recognition”, http://hdl.handle.net/20.500.11956/147680

Figure showing correlation plots and a graph of Pearson's r for M̄^2
Model Combination aka Ensembling

Ensembling is combining several models with a goal of reaching higher performance. The simplest approach is to train several independent models and then combine their outputs by averaging or voting.

The terminology varies, but for classification:

- **voting** (or hard voting) usually means predicting the class predicted most often by the individual models,
- **averaging** (or soft voting) denotes averaging the returned model distributions and predicting the class with the highest probability.

The main idea behind ensembling is that if models have uncorrelated errors, then by averaging model outputs the errors will cancel out.
If we denote the prediction of a model y_i on a training example (x, t) as $y_i(x) = t + \varepsilon_i(x)$, so that $\varepsilon_i(x)$ is the model error on example x, the mean square error of the model is

$$
\mathbb{E}[(y_i(x) - t)^2] = \mathbb{E}[\varepsilon_i^2(x)].
$$

Considering M models, we analogously get that the mean square error of the ensemble is

$$
\mathbb{E}\left[\left(\frac{1}{M} \sum_i \varepsilon_i(x)\right)^2\right].
$$

Finally, assuming that the individual errors ε_i have zero mean and are uncorrelated, we get that $\mathbb{E}[\varepsilon_i(x)\varepsilon_j(x)] = 0$ for $i \neq j$, and therefore,

$$
\mathbb{E}\left[\left(\frac{1}{M} \sum_i \varepsilon_i(x)\right)^2\right] = \mathbb{E}\left[\frac{1}{M^2} \sum_{i,j} \varepsilon_i(x)\varepsilon_j(x)\right] = \frac{1}{M} \mathbb{E}\left[\frac{1}{M} \sum_i \varepsilon_i^2(x)\right],
$$

so the average error of the ensemble is $\frac{1}{M}$ times the average error of the individual models.
For neural network models, training models with independent initialization is usually enough, given that the loss has many local minima, so the models tend to be quite independent just when using different initialization.

However, algorithms with a convex loss functions usually converge to the same optimum independent of randomization.

In these cases, we can use bagging, which stands for bootstrap aggregation.

In bagging, we construct a different dataset for every model to be trained. We construct it using bootstrapping — we sample as many training instances as the original dataset has, but with replacement.

Such dataset is sampled using the same empirical data distribution and has the same size, but is not identical.
The idea of decision trees is to partition the input space into usually cuboid regions and solving each region with a simpler model.

We focus on **Classification and Regression Trees** (CART; Breiman et al., 1984), but there are additional variants like ID3, C4.5, …
Regression Decision Trees

Assume we have an input dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$, $\mathbf{t} \in \mathbb{R}^N$. At the beginning, the decision tree is just a single node and all input examples belong to this node. We denote I_T the set of training example indices belonging to a node T.

For each leaf, our model predicts the average of the training examples belonging to that leaf, $\hat{t}_T = \frac{1}{|I_T|} \sum_{i \in I_T} t_i$.

We use a criterion c_T telling us how uniform or homogeneous are the training examples belonging to a node T – for regression, we employ the sum of squares error between the examples belonging to the node and the predicted value in that node; this is proportional to the variance of the training examples belonging to the node T, multiplied by the number of the examples. Note that even if it is not mean squared error, it is sometimes denoted as MSE.

$$c_{SE}(T) \overset{\text{def}}{=} \sum_{i \in I_T} (t_i - \hat{t}_T)^2, \text{ where } \hat{t}_T = \frac{1}{|I_T|} \sum_{i \in I_T} t_i.$$
Tree Construction

To split a node, the goal is to find a feature and its value such that when splitting a node T into T_L and T_R, the resulting regions decrease the overall criterion value the most, i.e., the difference $c_{T_L} + c_{T_R} - c_T$ is the lowest.

Usually we have several constraints, we mention on the most common ones:

- **maximum tree depth**: we do not split nodes with this depth;
- **minimum examples to split**: we only split nodes with this many training examples;
- **maximum number of leaf nodes**: we split until we reach the given number of leaves.

The tree is usually built in one of two ways:

- if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner, recursively splitting every leaf until some of the above constraint is invalidated;
- if the maximum number of leaf nodes is given, we usually split such leaf T, where the criterion difference $c_{T_L} + c_{T_R} - c_T$ is the lowest.
Pruning

To control overfitting, the mentioned constraints can be used. Additionally, **pruning** can also be used. After training, we might decide that some subtrees are not necessary and **prune** them (replacing them by a leaf). Pruning can be used both as a regularization or model compression.

There are many heuristics to prune a decision tree; Scikit-learn implements **minimal cost-complexity pruning**:

- we extend the criterion to **cost-complexity criterion** as
 - for a leaf, \(c_\alpha (T) = c(T) + \alpha \),
 - for a subtree with a root \(t \), \(c_\alpha (t) = \sum_{T \in \text{leaves}} c_\alpha (T) = \sum_{T \in \text{leaves}} c(T) + \alpha |\text{leaves}| \);
- generally a criterion in a node \(t \) is greater or equal to the sum of criteria of its leaves;
- \(\alpha_{\text{eff}} \) for a node \(t \) is the value of \(\alpha \) such that the two mentioned cost-complexity quantities (\(c_\alpha (T) \) computed as if \(t \) is a leaf, and \(c_\alpha (t) \)) are equal
 - \(\alpha_{\text{eff}} = (c(T) - c(t)) / (|\text{leaves}| - 1) \);
- we then prune the nodes in the order of increasing \(\alpha_{\text{eff}} \).
Classification Decision Trees

For multi-class classification, we predict such class most frequent in the training examples belonging to a leaf T.

To define the criterions, let us denote the average probability for class k in a region T as $p_T(k)$.

For classification trees, one of the following two criterions is usually used:

- **Gini index**, also called **Gini impurity**, measuring how often a randomly chosen element would be incorrectly labeled if it was randomly labeled according to p_T:

 \[
 c_{\text{Gini}}(T) \overset{\text{def}}{=} |I_T| \sum_k p_T(k)(1 - p_T(k)),
 \]

- **Entropy Criterion**

 \[
 c_{\text{entropy}}(T) \overset{\text{def}}{=} |I_T| \cdot H(p_T) = -|I_T| \sum_{k} p_T(k) \log p_T(k).\]

 \[
 \text{with}\quad p_T(k) \neq 0
 \]
Recall that I_T denotes the set of training example indices belonging to a leaf node T, let $n_T(0)$ be the number of examples with target value 0, $n_T(1)$ be the number of examples with target value 1, and let $p_T = \frac{1}{|I_T|} \sum_{i \in I_T} t_i = \frac{n_T(1)}{n_T(0) + n_T(1)}$.

Consider sum of squares loss $L(p) = \sum_{i \in I_T} (p - t_i)^2$.

By setting the derivative of the loss to zero, we get that the p minimizing the loss fulfills $|I_T|p = \sum_{i \in I_T} t_i$, i.e., $p = p_T$.

The value of the loss is then

$$L(p_T) = \sum_{i \in I_T} (p_T - t_i)^2 = n_T(0)(p_T - 0)^2 + n_T(1)(p_T - 1)^2$$

$$= \frac{n_T(0)n_T(1)^2}{(n_T(0) + n_T(1))^2} + \frac{n_T(1)n_T(0)^2}{(n_T(0) + n_T(1))^2} = \frac{(n_T(1) + n_T(0))n_T(0)n_T(1)}{(n_T(0) + n_T(1))(n_T(0) + n_T(1))}$$

$$= (n_T(0) + n_T(1))(1 - p_T)p_T = |I_T|p_T(1 - p_T).$$
Entropy as NLL Loss

Again let I_T denote the set of training example indices belonging to a leaf node T, let $n_T(k)$ be the number of examples with target value k, and let $p_T(k) = \frac{1}{|I_T|} \sum_{i \in I_T} [t_i = k] = \frac{n_T(k)}{|I_T|}$.

Consider a distribution p on K classes and non-averaged NLL loss $L(p) = \sum_{i \in I_T} -\log p_{t_i}$.

By setting the derivative of the loss with respect to p_k to zero (using a Lagrangian with constraint $\sum_k p_k = 1$), we get that the p minimizing the loss fulfills $p_k = p_T(k)$.

The value of the loss with respect to p_T is then

$$L(p_T) = \sum_{i \in I_T} -\log p_{t_i}$$

$$= -\sum_{k \atop p_T(k) \neq 0} n_T(k) \log p_T(k)$$

$$= -|I_T| \sum_{k \atop p_T(k) \neq 0} p_T(k) \log p_T(k) = |I_T| \cdot H(p_T).$$
Random Forests

Bagging of data combined with random subset of features (sometimes called *feature bagging*).

```
https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz
```
Random Forests

Bagging
Every decision tree is trained using bagging (on a bootstrapped dataset).

Random Subset of Features
During each node split, only a random subset of features is considered, when finding the best split. A fresh random subset is used for every node.

Extra Trees
The so-called extra trees are even more randomized, not finding the best possible feature value when choosing a split, but considering uniformly random samples from a feature's empirical range (minimum and maximum in the training data).
https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html