Kernel Methods, SVM

Milan Straka

甸 November 08, 2021

Consider linear regression with linear, quadratic and cubic features (for simplicity we consider x_{i} , $x_{i} x_{j}$ and $x_{i} x_{j} x_{k}$ for any indices) computed by feature mapping $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{1+D+D^{2}+D^{3}}$:

$$
\varphi(\boldsymbol{x})=\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\ldots \\
x_{1}^{2} \\
x_{1} x_{2} \\
\cdots \\
x_{2} x_{1} \\
\cdots \\
x_{1}^{3} \\
x_{1}^{2} x_{2} \\
\cdots
\end{array}\right] .
$$

The SGD update of a linear regression using a minibatch of examples with indices \boldsymbol{b} is then

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}-\frac{\alpha}{|\boldsymbol{b}|} \sum_{i \in \boldsymbol{b}}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right) \varphi\left(\boldsymbol{x}_{i}\right)
$$

When the dimensionality of the input is D, one step of SGD takes $\mathcal{O}\left(D^{3}\right)$ per example.
Surprisingly, we can do better under some circumstances. We start by noting that we can write the parameters \boldsymbol{w} as a linear combination of the input feature vectors $\varphi\left(\boldsymbol{x}_{i}\right)$.
By induction, we can start with $\boldsymbol{w}=0=\sum_{i} 0 \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, and assuming $\boldsymbol{w}=\sum_{i} \beta_{i} \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, after an SGD update we get

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\frac{\alpha}{|\boldsymbol{b}|} \sum_{i \in \boldsymbol{b}}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right) \varphi\left(\boldsymbol{x}_{i}\right) \\
& \leftarrow \sum_{i}\left(\beta_{i}-[i \in \boldsymbol{b}] \cdot \frac{\alpha}{|\boldsymbol{b}|}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right)\right) \varphi\left(\boldsymbol{x}_{i}\right) .
\end{aligned}
$$

Every β_{i} for $i \in \boldsymbol{b}$ changes to $\beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right)$, so after substituting for \boldsymbol{w} we get

$$
\beta_{i} \leftarrow \beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\sum_{j}\left(\beta_{j} \varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)\right)-t_{i}\right)
$$

We can formulate an alternative linear regression algorithm (a so-called dual formulation):
Input: Dataset $\left(\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in \mathbb{R}^{N}\right)$, learning rate $\alpha \in \mathbb{R}^{+}$.

- set $\beta_{i} \leftarrow 0$
- compute all values $\boldsymbol{K}_{i, j}=\varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)$
- until convergence (or patience runs out), process a minibatch of examples with indices \boldsymbol{b} :
- simultaneously for all $i \in \boldsymbol{b}$ (the β_{j} on the right side must not be modified during the batch update):
- $\beta_{i} \leftarrow \beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\sum_{j}\left(\beta_{j} \boldsymbol{K}_{i, j}\right)-t_{i}\right)$

The predictions are then performed by computing

$$
y(\boldsymbol{z})=\varphi(\boldsymbol{z})^{T} \boldsymbol{w}=\sum_{i} \beta_{i} \boldsymbol{\varphi}(\boldsymbol{z})^{T} \boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)
$$

Until now we did not consider bias. Unlike the usual formulation, where we can "hide" it in the weights, we usually handle it manually in the dual formulation.
Specifically, if we want to include bias in kernel linear regression, we modify the predictions to

$$
y(\boldsymbol{z})=\varphi(\boldsymbol{z})^{T} \boldsymbol{w}+b=\sum_{i} \beta_{i} \boldsymbol{\varphi}(\boldsymbol{z})^{T} \boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)+b
$$

and update the bias b separately.
The bias can be updated by SGD, which is what we did in the algorithms until now; however, if we are considering a bias of an output layer, we can even estimate it as the mean of the training targets before the training of the rest of the weights.

A single SGD update of a dual-formulation kernel linear regression takes $\mathcal{O}(N)$ per example, if we pre-compute all the $\mathcal{O}\left(N^{2}\right)$ dot products $\varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)$. Furthermore, inference requires evaluating $\mathcal{O}(N)$ dot products $\varphi(\boldsymbol{z})^{T} \varphi\left(\boldsymbol{x}_{i}\right)$.
Therefore, we need to compute a dot product $\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$ quickly.
Using the previously-defined φ, we get

$$
\begin{aligned}
\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z}) & =1+\sum_{i} x_{i} z_{i}+\sum_{i, j} x_{i} x_{j} z_{i} z_{j}+\sum_{i, j, k} x_{i} x_{j} x_{k} z_{i} z_{j} z_{k} \\
& =1+\sum_{i} x_{i} z_{i}+\left(\sum_{i} x_{i} z_{i}\right)^{2}+\left(\sum_{i} x_{i} z_{i}\right)^{3} \\
& =1+\boldsymbol{x}^{T} \boldsymbol{z}+\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{2}+\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{3}
\end{aligned}
$$

Therefore, we can compute the dot product $\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$ in $\mathcal{O}(D)$ instead of $\mathcal{O}\left(D^{3}\right)$.

We define a kernel corresponding to a feature map φ as a function

$$
K(\boldsymbol{x}, \boldsymbol{z}) \stackrel{\text { def }}{=} \varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})
$$

There exist quite a lot of kernels, but the most commonly used are the following:

- Polynomial kernel of degree d, also called homogenous polynomial kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}\right)^{d}
$$

corresponds to a feature map returning all combinations of exactly d input features. Using $\left(a_{1}+\ldots+a_{k}\right)^{d}=\sum_{n_{i} \geq 0, \sum n_{i}=d}\binom{d}{n_{1}, \ldots, n_{k}} a_{1}^{n_{1}} \cdots a_{k}^{n_{k}}$, we can verify that

$$
\varphi(\boldsymbol{x})=\left(\sqrt{\gamma^{d}\binom{d}{n_{1}, \ldots, n_{D}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{n_{i} \geq 0, \sum n_{i}=d}
$$

For example, for $d=2, \varphi\left(x_{1}, x_{2}\right)=\gamma\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$.

- Polynomial kernel of degree at most d, also called nonhomogenous polynomial kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}+1\right)^{d}
$$

corresponds to a feature map generating all combinations of up to d input features.
Given that $\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}+1\right)^{d}=\sum_{i}\binom{d}{i}\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}\right)^{i}$, it is not difficult to derive that

$$
\varphi(\boldsymbol{x})=\left(\sqrt{\gamma^{d-n_{D+1}}\binom{d}{n_{1}, \ldots, n_{D+1}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{n_{i} \geq 0, \sum_{i=1}^{D+1} n_{i}=d}
$$

For example, for $d=2, \varphi\left(x_{1}, x_{2}\right)=\left(1, \sqrt{2 \gamma} x_{1}, \sqrt{2 \gamma} x_{2}, \gamma x_{1}^{2}, \sqrt{2} \gamma x_{1} x_{2}, \gamma x_{2}^{2}\right)$.

- Gaussian Radial basis function (RBF) kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=e^{-\gamma\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}
$$

corresponds to a scalar product in an infinite-dimensional space; it is a combination of polynomial kernels of all degrees. Assuming $\gamma=1$ for simplicity, we get

$$
e^{-\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}=e^{-\|\boldsymbol{x}\|^{2}+2 \boldsymbol{x}^{T} \boldsymbol{z}-\|\boldsymbol{z}\|^{2}}=\sum_{d=0}^{\infty} \frac{\left(2 \boldsymbol{x}^{T} \boldsymbol{z}\right)^{d}}{d!} e^{-\|\boldsymbol{x}\|^{2}-\|\boldsymbol{z}\|^{2}}=\sum_{d=0}^{\infty} \frac{2^{d} e^{-\|\boldsymbol{x}\|^{2}-\|\boldsymbol{z}\|^{2}}}{d!}\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{d},
$$

which is a combination of polynomial kernels; therefore, the feature map corresponding to the RBF kernel is

$$
\varphi(\boldsymbol{x})=\left(e^{-\gamma\|\boldsymbol{x}\|^{2}} \sqrt{\frac{(2 \gamma)^{d}}{d!}\binom{d}{n_{1}, \ldots, n_{D}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{d \in\{0,1,2, \ldots\}, n_{i} \geq 0, \sum_{i=1}^{D} n_{i}=d}
$$

Note that the RBF kernel is a function of distance - it "weighs" more similar examples more strongly. We could interpret it as an extended version of k-nearest neighbor algorithm, one which considers all examples, each weighted by similarity.
For illustration, we plot RBF kernel values of three points $(0,-1),(1,1)$ and $(1,-1)$ with different values of γ :

Let us return to a binary classification task. The perceptron algorithm guaranteed finding some separating hyperplane if it existed (but it could find quite a bad one).

We now consider finding the one with maximum margin.

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision boundary, as shown on the right. The location of this boundary is determined by a subset of the data points, known as support vectors, which are indicated by the circles.

Assume we have a dataset $\boldsymbol{X} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in\{-1,1\}^{N}$, a feature map φ and a model

$$
y(\boldsymbol{x}) \stackrel{\text { def }}{=} \boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b
$$

We already know that the distance of a point \boldsymbol{x}_{i} to the decision boundary is

$$
\frac{\left|y\left(\boldsymbol{x}_{i}\right)\right|}{\|\boldsymbol{w}\|} \stackrel{\substack{\text { assuming } y \text { classifies } \\ \text { all } \boldsymbol{x}_{i} \text { correctly }}}{ } \frac{t_{i} y\left(\boldsymbol{x}_{i}\right)}{\|\boldsymbol{w}\|} .
$$

We therefore want to maximize

$$
\underset{\boldsymbol{w}, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}+b\right)\right] .
$$

However, this problem is difficult to optimize directly.

Because the model is invariant to multiplying \boldsymbol{w} and b by a constant, we can decide that for the points closest to the decision boundary, it will hold that

$$
t_{i} y\left(\boldsymbol{x}_{i}\right)=1
$$

Then for all the points we will have $t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1$ and we can simplify

$$
\underset{\boldsymbol{w}, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}+b\right)\right] .
$$

to

$$
\underset{\boldsymbol{w}, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1
$$

Constrained Optimization - Inequality Constraints

Given a function $f(\boldsymbol{x})$, we can find its minimum with respect to a vector $\boldsymbol{x} \in \mathbb{R}^{D}$, by investigating the critical points $\nabla_{\boldsymbol{x}} f(\boldsymbol{x})=0$.

We can even incorporate constraints of form $g(\boldsymbol{x})=0$ by forming a Lagrangian

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=f(\boldsymbol{x})-\lambda g(\boldsymbol{x})
$$

and again investigating the critical points $\nabla_{\boldsymbol{x}, \lambda} \mathcal{L}(\boldsymbol{x}, \lambda)=0$.
We now describe how to include inequality constraints $g(\boldsymbol{x}) \geq 0$.

https://upload.wikimedia.org/wikipedia/commons/e/ed/Lagrange

Our goal is to find a minimum of $f(\boldsymbol{x})$ subject to a constraint $g(x) \geq 0$.
We start by again forming a Lagrangian $f(\boldsymbol{x})-\lambda g(\boldsymbol{x})$.
The optimum can either be attained for $g(\boldsymbol{x})>0$, when the constraint is said to be inactive, or for $g(\boldsymbol{x})=0$, when the constraint is said to be active. In the inactive case, the minimum is again a critical point of the Lagrangian with the condition $\lambda=0$.

When the minimum is on a boundary, it corresponds to a critical point with $\lambda \neq 0$ - but note that this time the sign of the multiplier matters, because the minimum is attained only when the gradient of $f(\boldsymbol{x})$ is oriented into the region $g(\boldsymbol{x}) \geq 0$. We therefore require $\nabla f(\boldsymbol{x})=\lambda \nabla g(\boldsymbol{x})$ for $\lambda>0$.
In both cases, $\lambda g(\boldsymbol{x})=0$.

Let $f(\boldsymbol{x}): \mathbb{R}^{D} \rightarrow \mathbb{R}$ be a function, which has a minimum in \boldsymbol{x} subject to an inequality constraint $g(\boldsymbol{x}) \geq 0$. Assume that both f and g have continuous partial derivatives and that $\frac{\partial g}{\partial x}(\boldsymbol{x}) \neq 0$.
Then there exists a $\lambda \in \mathbb{R}$, such that the Lagrangian function

$$
\mathcal{L}(\boldsymbol{x}, \lambda) \stackrel{\text { def }}{=} f(\boldsymbol{x})-\lambda g(\boldsymbol{x})
$$

has zero gradient in \boldsymbol{x} and the following conditions hold:

$$
\begin{aligned}
g(\boldsymbol{x}) & \geq 0 \\
\lambda & \geq 0 \\
\lambda g(\boldsymbol{x}) & =0
\end{aligned}
$$

These conditions are known as Karush-Kuhn-Tucker (KKT) conditions.

It is easy to verify that if we have the minimum \boldsymbol{x} and λ fulfilling the KKT conditions $g(\boldsymbol{x}) \geq$ $0, \lambda \geq 0, \lambda g(\boldsymbol{x})=0$, the Langrangian \mathcal{L} has a maximum in λ subject to $\lambda \geq 0$:

- if $g(\boldsymbol{x})=0$, then \mathcal{L} does not change when changing λ,
- if $g(\boldsymbol{x})>0$, then $\lambda=0$ from the KKT conditions, which is a maximum of \mathcal{L}.

On the other hand, if we have the minimum \boldsymbol{x}, and \mathcal{L} has a maximum in λ subject to $\lambda \geq 0$, all the KKT conditions must hold:

- if $g(\boldsymbol{x})<0$, then increasing λ would increase \mathcal{L},
- if $g(\boldsymbol{x})>0$, then decreasing λ increases \mathcal{L}, so $\lambda=0$.

Maximizing Given $f(\boldsymbol{x})$

If we instead want to find the constrained maximum of $f(\boldsymbol{x})$, we can search for the minimum of $-f(\boldsymbol{x})$, which results in the Lagrangian $f(\boldsymbol{x})+\lambda g(\boldsymbol{x})$, which we minimize with respect to λ.

The KKT conditions are necessary conditions for a minimum (resp. a maximum). However, it can be proven that in the following settings, the conditions are also sufficient:

- if the objective to optimize is a convex function (resp. concave for maximization) with respect to \boldsymbol{x};
- the inequality constraints are continuously differentiable convex functions;
- the equality constraints are affine functions (linear functions with an offset).

Therefore, if the above holds and if we find \boldsymbol{x} and λ such that:

- $\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}}=0$,
- either
- $g(\boldsymbol{x}) \geq 0, \lambda \geq 0, \lambda g(\boldsymbol{x})=0$,
- or $\lambda \geq 0$ and \mathcal{L} has a maximum in λ,
then \boldsymbol{x} is a minimum of the function $f(\boldsymbol{x})$ subject to an inequality constraint $g(\boldsymbol{x}) \geq 0$. It is easy to verify that these conditions hold for the SVM optimization problem.

In order to solve the constrained problem of

$$
\underset{\boldsymbol{w}, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1
$$

we write the Lagrangian with multipliers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right)$ as

$$
\mathcal{L}=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i} a_{i}\left[t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right]
$$

Setting the derivatives with respect to \boldsymbol{w} and b to zero, we get

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{i} a_{i} t_{i} \varphi\left(\boldsymbol{x}_{i}\right) \\
0 & =\sum_{i} a_{i} t_{i}
\end{aligned}
$$

Substituting these to the Lagrangian, we want to maximize

$$
\mathcal{L}=\sum_{i} a_{i}-\frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

with respect to a_{i} subject to the constraints $a_{i} \geq 0$ and $\sum_{i} a_{i} t_{i}=0$, using the kernel $K(\boldsymbol{x}, \boldsymbol{z})=\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$.
The solution will fulfill the KKT conditions, meaning that

$$
a_{i} \geq 0, \quad t_{i} y\left(x_{i}\right)-1 \geq 0, \quad a_{i}\left(t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right)=0
$$

Therefore, either a point \boldsymbol{x}_{i} is on a boundary, or $a_{i}=0$. Given that the prediction for \boldsymbol{x} is $y(\boldsymbol{x})=\sum_{i} a_{i} t_{i} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)+b$, we only need to keep the training points \boldsymbol{x}_{i} that are on the boundary, the so-called support vectors. Therefore, even though SVM is a nonparametric model, it needs to store only a subset of the training data.

The dual formulation allows us to use non-linear kernels.
Figure 7.2 Example of synthetic data from two classes in two dimensions showing contours of constant $y(\mathbf{x})$ obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

