NPFL129, Lecture 5

Derivation of Softmax, k-NN

Milan Straka

i November 01, 2021

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Where Are We

We have seen the gradual development of machine learning systems to neural networks.

• linear regression \rightarrow Perceptron \rightarrow (multinomial) logistic regression \rightarrow MLP

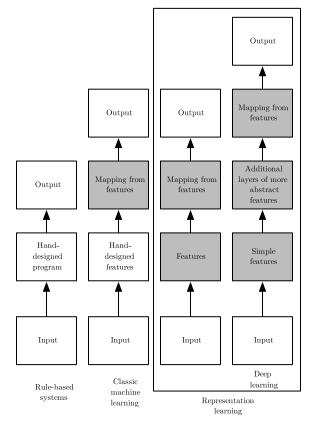
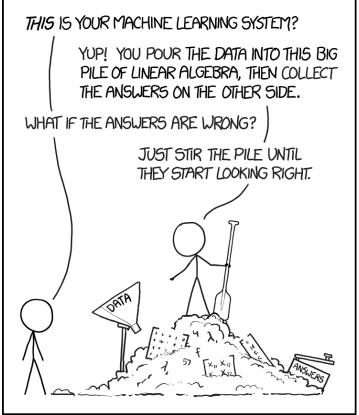
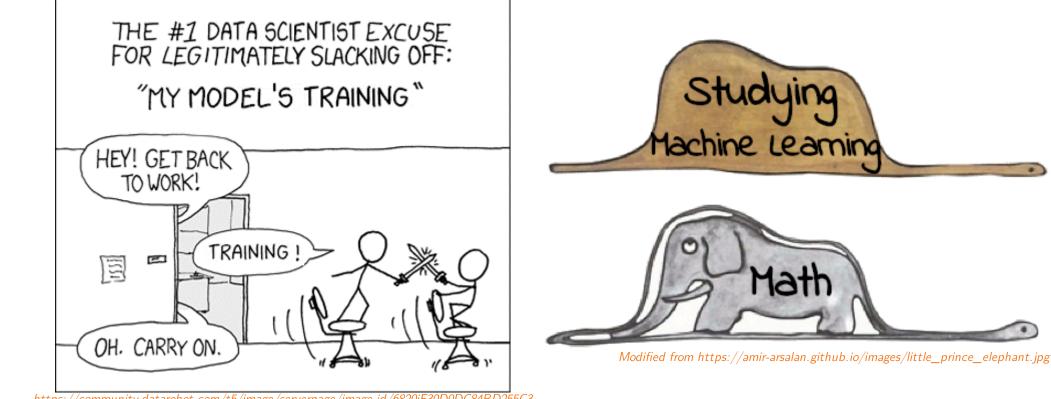



Figure 1.5, page 10 of Deep Learning Book, http://deeplearningbook.org.


https://imgs.xkcd.com/comics/machine_learning_2x.png

SoftMax

F-score ROC

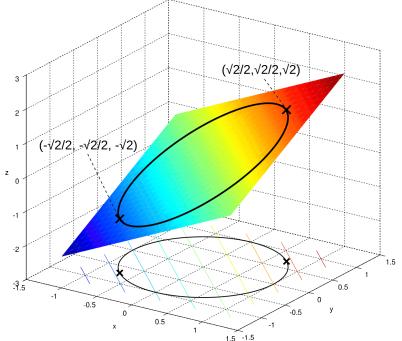
Where Are We

https://community.datarobot.com/t5/image/serverpage/image-id/6820iF30D0DC84BD255C3

NPFL129, Lecture 5

LagrangeM NAsMaxEnt

SoftMax


F-score ROC

(Non)ParametricModels k-NN

Constrained Optimization

Given a function f(x), we can find a minimum/maximum with respect to a vector $x \in \mathbb{R}^D$, by investigating the critical points $\nabla_x f(x) = 0$.

Consider now finding a minimum subject to a constraint $g(\boldsymbol{x}) = 0$.

On the left, there is an example with f(x,y)=x+y and the constraint $x^2+y^2=1$, which can be represented as $g(x,y)=x^2+y^2-1$.

k-NN

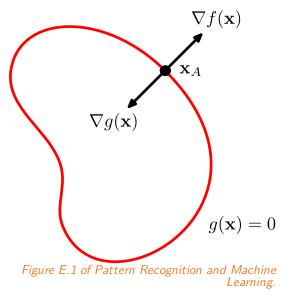
https://upload.wikimedia.org/wikipedia/commons/e/ed/Lagrange_very_simple.svg

F-score

Lagrange Multipliers – Equality Constraints

Let $f(\boldsymbol{x}): \mathbb{R}^D \to \mathbb{R}$ be a function. We seek its minimum subject to an equality constraint $g(\boldsymbol{x}) = 0$ for $g(\boldsymbol{x}): \mathbb{R}^D \to \mathbb{R}$.

- Note that $abla_{\boldsymbol{x}} g(\boldsymbol{x})$ is orthogonal to the surface of the constraint, because if \boldsymbol{x} and a nearby point $\boldsymbol{x} + \boldsymbol{\varepsilon}$ lie on the surface, from the Taylor expansion $g(\boldsymbol{x} + \boldsymbol{\varepsilon}) \approx g(\boldsymbol{x}) + \boldsymbol{\varepsilon}^T \nabla_{\boldsymbol{x}} g(\boldsymbol{x})$ we get $\boldsymbol{\varepsilon}^T \nabla_{\boldsymbol{x}} g(\boldsymbol{x}) \approx 0.$
- In the sought minimum, $\nabla_x f(x)$ must also be orthogonal to the constraint surface (or else moving in the direction of the derivative would increase the value).
- Therefore, there must exist λ such that $abla_{m{x}}f=\lambda
 abla_{m{x}}g$.


Consequently, the sought minimum either fulfills $\nabla_x f - \lambda \nabla_x g = 0$ for some λ , or it is an unconstrained minimum – in that case, the equation also holds with $\lambda = 0$. 23,510,500,50,511,50,5y1,50,5y1,50,5y1,50,5y1,51,

-12/2. -12/2. -12

k-NN

(√2/2,√2/2,√2)

SoftMax

F-score

Minimization – Equality Constraint

Let $f(\boldsymbol{x}) : \mathbb{R}^D \to \mathbb{R}$ be a function, which has a minimum (or a maximum) in \boldsymbol{x} subject to equality constraint $g(\boldsymbol{x}) = 0$. Assume that both f and g have continuous partial derivatives and that $\frac{\partial g}{\partial x}(\boldsymbol{x}) \neq 0$.

Then there exists a $\lambda \in \mathbb{R}$, such that the Lagrangian function

$$\mathcal{L}(oldsymbol{x},\lambda) \stackrel{ ext{def}}{=} f(oldsymbol{x}) - \lambda g(oldsymbol{x})$$

has a zero gradient in both $oldsymbol{x}$ and $oldsymbol{\lambda}.$

In detail,

•
$$rac{\partial \mathcal{L}}{\partial \lambda} = 0$$
 leads to $g(oldsymbol{x}) = 0$;

• $\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}} = 0$ is the previously derived $abla_{\boldsymbol{x}} f - \lambda
abla_{\boldsymbol{x}} g = 0$.

NPFL129, Lecture 5

F-score

Minimization – Multiple Equality Constraints

We can use induction if there are multiple equality constraints, resulting in the following generalization.

Let $f(\boldsymbol{x}) : \mathbb{R}^D \to \mathbb{R}$ be a function, which has a minimum (or a maximum) in \boldsymbol{x} subject to equality constraints $g_1(\boldsymbol{x}) = 0, \ldots, g_m(\boldsymbol{x}) = 0$. Assume that f, g_1, \ldots, g_m have continuous partial derivatives and that the gradients $\nabla_{\boldsymbol{x}} g_1(\boldsymbol{x}), \ldots, \nabla_{\boldsymbol{x}} g_m(\boldsymbol{x})$ are linearly independent.

Then there exist $\lambda_1 \in \mathbb{R}, \ldots, \lambda_m \in \mathbb{R}$, such that the Lagrangian function

$$\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) \stackrel{ ext{def}}{=} f(oldsymbol{x}) - \sum_{i=1}^m \lambda_i g_i(oldsymbol{x})$$

has a zero gradient in both $oldsymbol{x}$ and $oldsymbol{\lambda}$.

This strategy of finding constrained minima is known as the **method of Lagrange multipliers**.

Example of Minimization with Equality Constraint

Assume we want to find a categorical distribution p_1, \ldots, p_n with maximum entropy.

Then we want to minimize -H(p) under the constraints

NAsMaxEnt

LagrangeM

- $p_i \geq 0$ for all i,
- $\sum_{i=1}^n p_i = 1.$

NPFL129, Lecture 5

Ignoring the first constraint for the time being, we form a Lagrangian

$$\mathcal{L} = igg(\sum_i p_i \log p_iigg) - \lambdaigg(\sum_i p_i - 1igg).$$

Computing the derivative with respect to p_i and setting it equal to zero, we get

SoftMax

$$0 = rac{\partial \mathcal{L}}{\partial p_i} = 1 \cdot \log(p_i) + p_i \cdot rac{1}{p_i} - \lambda = \log(p_i) + 1 - \lambda.$$

ROC

(Non)ParametricModels

k-NN

Therefore, all $p_i=e^{\lambda-1}$ must be the same, and the constraint $\sum_{i=1}^n p_i=1$ yields $p_i=rac{1}{n}$.

F-score

Minimization – With Respect to a Function

So far, we minimized a function with respect to a finite number of variables.

A function of a function, J[f], is known as a **functional**, for example the entropy $H[\cdot]$.

To minimize a functional with respect to a function, we can turn to the *calculus of* variations.

Consider a functional

$$J[f] = \int_a^b gig(oldsymbol{x}, f(oldsymbol{x})ig) \, \mathrm{d}oldsymbol{x},$$

where $f(\boldsymbol{x})$ and $g(\boldsymbol{x}, y = f(\boldsymbol{x}))$ are twice continuously differentiable with respect to all arguments.

If J has a minimum (or a maximum) in function f, then for all \boldsymbol{x}

$$rac{\partial g(oldsymbol{x},y=f(oldsymbol{x}))}{\partial y}=0.$$

NPFL129, Lecture 5

Function with Maximum Entropy

What distribution over ${\mathbb R}$ maximizes entropy $H[p] = -{\mathbb E}_x[\log p(x)]$?

For continuous values, the entropy is an integral $H[p] = -\int p(x)\log p(x)\,\mathrm{d}x.$

We cannot just maximize H with respect to a function p, because:

- the result might not be a probability distribution we need to add a constraint that $\int p(x) \, \mathrm{d}x = 1;$
- the problem is underspecified because a distribution can be shifted without changing entropy we add a constraint $\mathbb{E}[x] = \mu$;
- because entropy increases as variance increases, we ask which distribution with a *fixed* variance σ^2 has maximum entropy adding a constraint $Var(x) = \sigma^2$.

F-score

Function with Maximum Entropy

Lagrangian $\mathcal{L}(p(x), x, \boldsymbol{\lambda}; \mu, \sigma^2)$ of all the constraints and the entropy function is

$$\mathcal{L} = -oldsymbol{H}[oldsymbol{p}] - \lambda_1 \Big(\int p(x)\,\mathrm{d}x - 1\Big) - \lambda_2ig(\mathbb{E}[x] - oldsymbol{\mu}ig) - oldsymbol{\lambda}_3ig(\operatorname{Var}(x) - \sigma^2ig)$$

By expanding all definitions to integrals, we get

$$egin{aligned} \mathcal{L}(p(x),x,oldsymbol{\lambda};\mu,\sigma^2) &= \int \left(p(x)\log p(x) - \lambda_1 p(x) - \lambda_2 p(x)x - \lambda_3 p(x)(x-\mu)^2
ight) \mathrm{d}x \ &+ \lambda_1 + \mu\lambda_2 + \sigma^2\lambda_3. \end{aligned}$$

We now set the derivative of the inner of the integral with respect to p(x) equal to zero:

$$0=\log p(x)+1-\lambda_1-\lambda_2 x-\lambda_3 (x-\mu)^2,$$

ROC

obtaining
$$p(x) = \exp\left(\lambda_1 + \lambda_2 x + \lambda_3 (x-\mu)^2 - 1
ight)$$
.

LagrangeM

NPFL129, Lecture 5

Function with Maximum Entropy

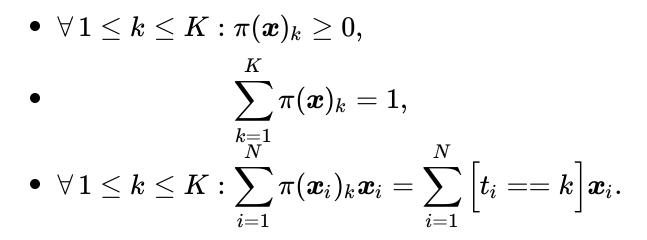
^ÚF_AL

We can verify that setting $\lambda_1 = 1 - \log \sqrt{2\pi\sigma^2}$, $\lambda_2 = 0$ and $\lambda_3 = -1/(2\sigma^2)$ fulfills all the constraints, arriving at

$$egin{aligned} p(x) &= \exp\left(\lambda_1 + \lambda_2 x + \lambda_3 (x-\mu)^2 - 1
ight) \ &= \exp\left(1 - \log\sqrt{2\pi\sigma^2} + -1/(2\sigma^2)(x-\mu)^2 - 1
ight) \ &= rac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight) \ &= \mathcal{N}(x;\mu,\sigma^2). \end{aligned}$$

NPFL129, Lecture 5

t SoftMax


F-score ROC

Let $X = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}$ be training data of a K-class classification, with $x_i \in \mathbb{R}^D$ and $t_i \in \{1, 2, \dots, K\}$.

We want to model it using a function $\pi : \mathbb{R}^D \to \mathbb{R}^K$ so that $\pi(\boldsymbol{x})$ gives a distribution of classes for input \boldsymbol{x} .

We impose the following conditions on π :

NPFL129, Lecture 5

SoftMax

F-score ROC (No

There are many such π , one particularly bad is

$$\pi(oldsymbol{x}) = egin{cases} oldsymbol{1}_{t_i} & ext{if there exists } i:oldsymbol{x}_i = oldsymbol{x}, \ oldsymbol{1}_0 & ext{otherwise}, \end{cases}$$

where $\mathbf{1}_i$ is a one-hot encoding of i (vector of zeros, except for position i, which is equal to 1). Therefore, we want to find a more **general** π – consequently, we turn to the principle of maximum entropy and search for π with maximum entropy.

We want to minimize $-\sum_{i=1}^{N} H(\pi(\boldsymbol{x}_i))$ given

- $orall 1 \leq i \leq N, orall 1 \leq k \leq K: \pi(oldsymbol{x}_i)_k \geq 0$,
- $\forall 1 \leq i \leq N$: $\sum_{k=1}^{K} \pi(\boldsymbol{x}_i)_k = 1$, $\forall 1 \leq j \leq D, \forall 1 \leq k \leq K : \sum_{i=1}^{N} \pi(\boldsymbol{x}_i)_k x_{i,j} = \sum_{i=1}^{N} [t_i == k] x_{i,j}$.

We therefore form a Lagrangian (ignoring the first inequality constraint):

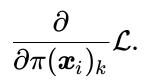
$$egin{split} \mathcal{L} = \sum_{i=1}^N \sum_{k=1}^K \pi(m{x}_i)_k \log(\pi(m{x}_i)_k) \ &- \sum_{j=1}^D \sum_{k=1}^K \lambda_{j,k} \Big(\sum_{i=1}^N \pi(m{x}_i)_k x_{i,j} - ig[t_i == kig] x_{i,j} \Big) \ &- \sum_{i=1}^N eta_i \Big(\sum_{k=1}^K \pi(m{x}_i)_k - 1\Big). \end{split}$$

F-score

NPFL129, Lecture 5

LagrangeM NAsMaxEnt SoftMax

We now compute partial derivatives of the Lagrangian, notably the values


We arrive at

 $rac{\partial}{\partial \pi(oldsymbol{x}_i)_k}\mathcal{L} = \log(\pi(oldsymbol{x}_i)_k) + 1 - oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k} - eta_i.$

Setting the Lagrangian to zero, we obtain

$$\pi(oldsymbol{x}_i)_k = oldsymbol{e}^{oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k}+eta_i-oldsymbol{1}}.$$

Such a form guarantees $\pi(\boldsymbol{x}_i)_k > 0$, which we did not include in the conditions.

LagrangeM NAsMaxEnt

In order to find out the β_i values, we turn to the constraint

$$\sum_k \pi(oldsymbol{x}_i)_k = \sum_k e^{oldsymbol{x}_i^Toldsymbol{\lambda}_{st,k}+eta_i-1} = 1,$$

from which we get

$$e^{eta_i} = rac{1}{\sum_k e^{oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k}-1}},$$

yielding

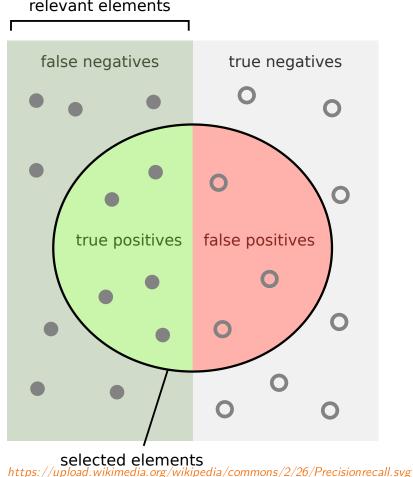
$$\pi(oldsymbol{x}_i)_k = e^{oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k}+eta_i-1} = rac{e^{oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k}}}{\sum_{k'}e^{oldsymbol{x}_i^Toldsymbol{\lambda}_{*,k'}}} = ext{softmax}(oldsymbol{x}_ioldsymbol{\lambda})_k.$$

NPFL129, Lecture 5

LagrangeM NAsMaxEnt

 $\mathsf{SoftMax}$

F-score ROC (1



When evaluating binary classification, we have used **accuracy** so far. relevant elements However, there are other metrics we might want to consider. One of them is F_1 -score. false negatives Consider the following **confusion matrix**: **Target positive Target negative** Predicted False Positive (FP) True Positive (TP) positive true positives Predicted False Negative (FN) True Negative (TN) negative

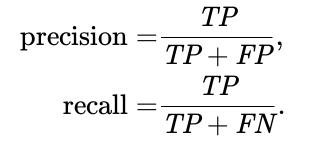
Accuracy can be computed as

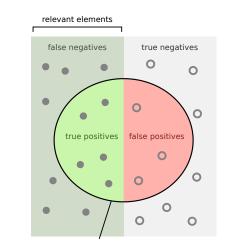
$$\operatorname{accuracy} = rac{TP+TN}{TP+TN+FP+FN}.$$

k-NN

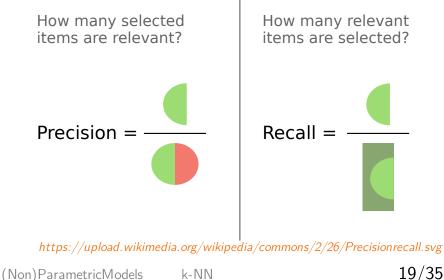
NPFL129, Lecture 5

F-score


(Non)ParametricModels



	Target positive	Target negative
Predicted positive	True Positive (TP)	False Positive (FP)
Predicted negative	False Negative (FN)	True Negative (TN)


In some cases, we are mostly interested in positive examples.

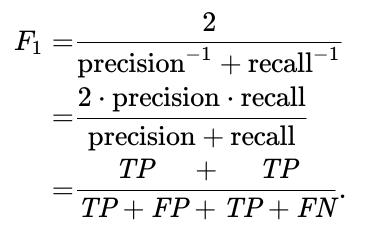
We define **precision** (percentage of correct predictions in predicted examples) and recall (percentage of correct predictions in the gold examples) as

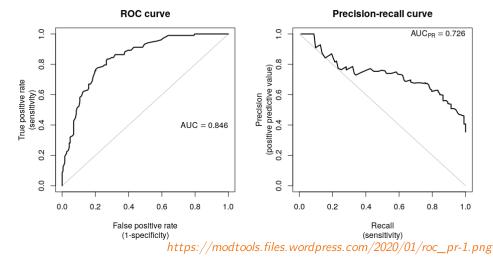
selected elements https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

NAsMaxEnt LagrangeM

SoftMax

ROC


F-score


19/35

F_1 -score

The precision and recall go "against each other": decreasing the classifier threshold usually increases recall and decreases precision, and vice versa.

We therefore define a single F_1 -score as a harmonic mean of precision and recall:

SoftMax

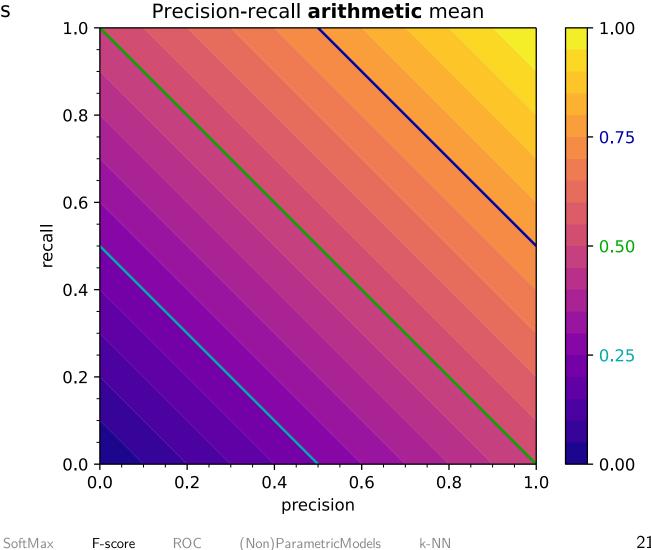
F-score ROC

Arithmetic mean of precision recall is

$$AM(p,r) \stackrel{ ext{\tiny def}}{=} rac{p+r}{2}.$$

As any mean, it is "between" the input values

$$egin{aligned} \min(p,r) &\leq AM(p,r), \ AM(p,r) &\leq \max(p,r). \end{aligned}$$


However,

NPFL129, Lecture 5

$$AM(1\%,100\%)=50.5\%.$$

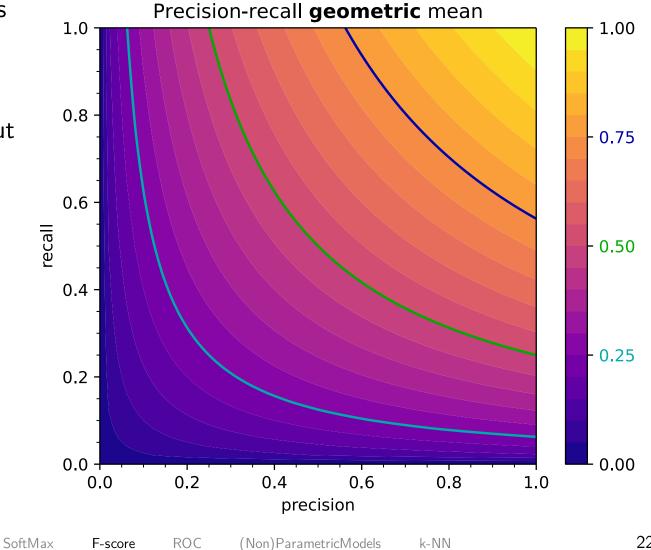
LagrangeM

NAsMaxEnt

21/35

Geometric mean of precision recall is

$$GM(p,r) \stackrel{ ext{def}}{=} \sqrt{p \cdot r}.$$


It is better than arithmetic mean, but still

$$GM(1\%,100\%)=10\%$$

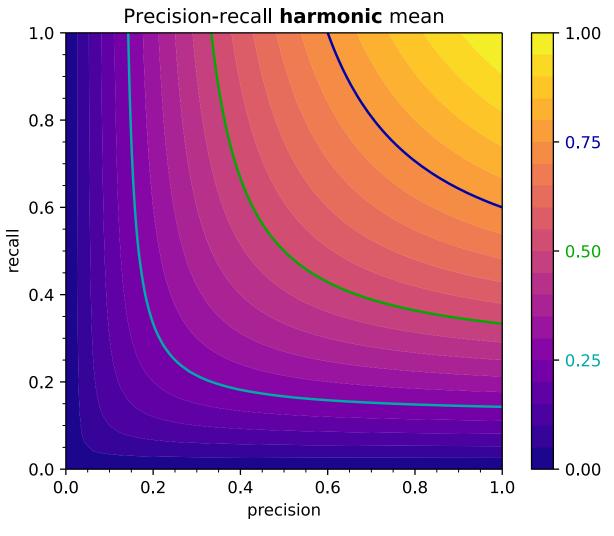
LagrangeM

NAsMaxEnt

NPFL129, Lecture 5

22/35

Harmonic mean of precision recall is


$$HM(p,r) \stackrel{ ext{def}}{=} rac{2}{rac{1}{p}+rac{1}{r}}.$$

In addition to being bounded by the input values, it is also dominated by the minimum of its input values:

 $egin{aligned} \min(p,r) &\leq HM(p,r), \ HM(p,r) &\leq \max(p,r), \ HM(p,r) &\leq 2\min(p,r). \end{aligned}$

For example,

k-NN

NPFL129, Lecture 5

LagrangeM NAsMaxEnt

nt SoftMax

F-score R

ROC (Non)ParametricModels

General F_{β} -score

Ú FA

The F_1 score can be generalized to F_β score, which can be used as a metric when recall is β times more important than precision; F_2 favoring recall and $F_{0.5}$ favoring precision are commonly used.

The formula for F_{eta} is

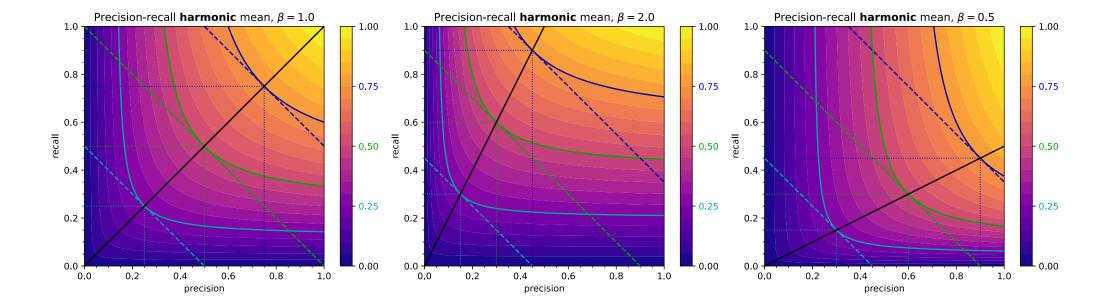
$$egin{aligned} F_eta =& rac{1+eta^2}{ ext{precision}^{-1}+eta^2\cdot ext{recall}^{-1}} \ &=& rac{(1+eta^2)\cdot ext{precision}\cdot ext{recall}}{eta^2\cdot ext{precision}+ ext{recall}} \ &=& rac{TP+eta^2\cdot TP}{TP+FP+eta^2\cdot(TP+FN)} \end{aligned}$$

NPFL129, Lecture 5

General F_{β} -score

You may wonder why is β^2 used in the formula

$$F_eta = rac{1+eta^2}{ ext{precision}^{-1}+eta^2\cdot ext{recall}^{-1}}$$


instead of just β .

Quoting C. J. van Rijsbergen from his book *Information Retrieval*, 1979:

What we want is therefore a parameter β to characterise the measurement function in such a way that we can say: it measures the effectiveness of retrieval with respect to a user who attaches β times as much importance to recall as precision. The simplest way I know of quantifying this is to specify the recall/precision ratio at which the user is willing to trade an increment in precision for an equal loss in recall.

It is straightforward to verify that indeed $\frac{\partial F_{\beta}}{\partial \text{precision}} = \frac{\partial F_{\beta}}{\partial \text{recall}}$ implies $\frac{\text{recall}}{\text{precision}} = \beta$.

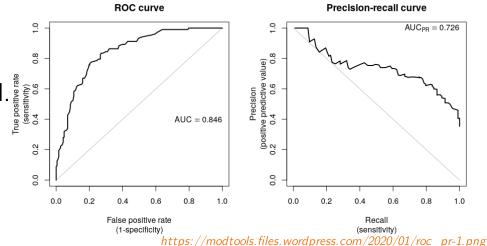
NPFL129, Lecture 5

NPFL129, Lecture 5

LagrangeM NAsMaxEnt

SoftMax

F-score ROC


(Non)ParametricModels k-NN

Precision-Recall Curve

Changing the threshold in logistic regression allows us to trade off precision for recall, and vice versa. Therefore, we can tune it on the development set to achieve the highest possible F_1 score, if required.

Also, if we want to evaluate F_1 -score without considering a specific threshold, the **area under curve** (AUC) is sometimes used as a metric.

SoftMax

F-score ROC

Ú F_ÁL

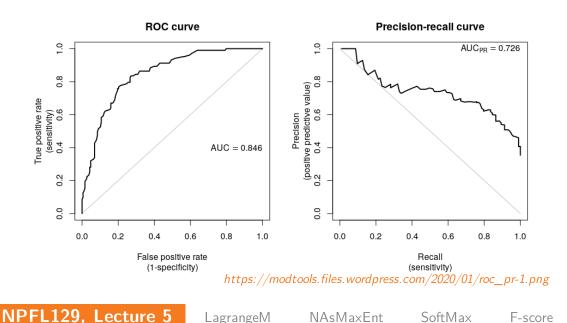
F_1 -Score in Multiclass Classification

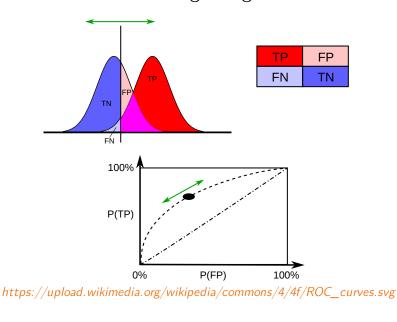
^ÚF_AL

To extend F_1 -score to multiclass classification, we expect one of the classes to be *negative* and the others *different kinds of positive*. For each of the positive classes, we compute the same confusion matrix as in the binary case (considering all other labels as negative ones), and then combine the results in one of the following ways:

- micro-averaged F_1 (or just micro F_1): we first sum all the TP, FP and FN of the individual binary classifications and compute the final F_1 -score (this way, the frequency of the individual classes is taken into account);
- macro-averaged F_1 (or just macro F_1): we first compute the F_1 -scores of the individual binary classifications and then compute an unweighted average (therefore, the frequency of the classes is more or less ignored).

F-score


ROC Curve



The precision-recall curve is useful when we are interested in the positive examples (i.e., we are ignoring true negative instances). In case we want to consider also the true negatives, we might instead use the **Receiver Operating Characteristic** (ROC) curve.

In the ROC curve, we consider two measures of a binary classifier under changing threshold:

- true positive rate or sensitivity (probability of detection): $\frac{TP}{\text{target positives}} = \frac{TP}{TP+FN}$;
- false positive rate or 1-specificity (probability of false alarm): $\frac{FP}{\text{target negatives}} = \frac{FP}{FP+TN}$;

Binary Confusion Metric Measures Overview

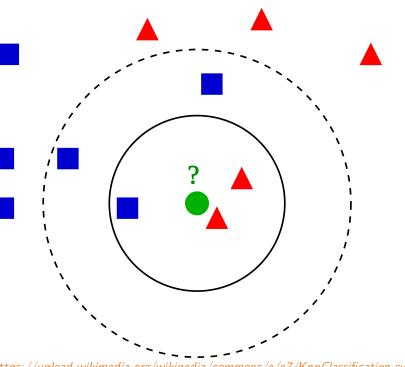
	Target positive	Target negative	
Predicted positive	True Positive (TP)	False Positive (FP) Type I Error	$\frac{TP}{TP+FP} \begin{bmatrix} 1 \\ \hline \end{array}$
Predicted negative	False Negative (FN) Type II Error	True Negative (TN)	
	true positive rate, recall, sensitivity $\frac{TP}{TP+FN}$	false positive rate $\frac{FP}{FP+TN}$ 1specificity $\frac{TN}{TN+FP}$ 1	

- F_1 -score = $\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{TP + TP}{TP + FP + TP + FN}$
- accuracy = $\frac{TP+TN}{TP+FP+FN+TN}$ 1

Parametric and Nonparametric Models

^ÚF_AL

All machine learning models which we have discussed so far are **parametric**, because they use a *fixed* number of parameters (usually depending on the number of features, K for multiclass classification, hidden layer in MLPs, ...).


However, there also exist **nonparametric** models. Even if the name seems to suggest they do not have any parameters, they have a non-fixed number of parameters, because the number of parameters usually depend on the size of the training data – therefore, the model size usually grows with the size of the training data.

SoftMax

A simple but sometimes effective nonparametric method for both classification and regression is k-nearest neighbors algorithm.

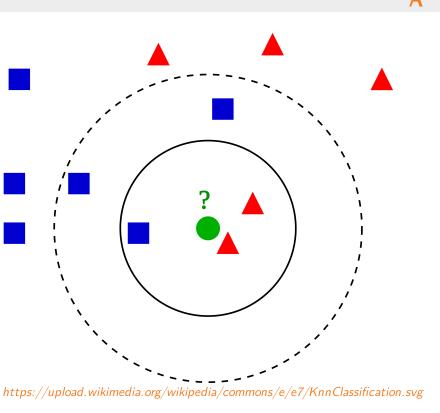
The training phase of the k-nearest neighbors algorithm is trivial, it consists of only storing the whole train set (the so-called **lazy learning**).

For a given test example, the main idea is to use the targets of the most similar training data to perform the prediction.

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

k-NN

t SoftMax


F-score ROC

Several hyperparameters influence the behavior of the prediction phase:

- **k**: consider k most similar training examples (higher k) usually decreases variance, but increases bias);
- **metric**: a function used to find the nearest neighbors; common choices are metrics based on L_p norms (with usual values of p being 1, 2, 3, ∞). For $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^D$, the distance is measured as $\|m{x} - m{y}\|_p$, where

$$\|oldsymbol{x}\|_p = \Big(\sum_i |x_i|^p\Big)^{1/p};$$

k-NN

- weights: optionally, more similar examples can be considered with bigger weights: *uniform*: all k nearest neighbors are considered equally; Ο
 - *inverse*: the weight of an example is proportional to the inverse of distance; Ο
 - *softmax*: the weights are proportional to softmax of negative distances. Ο

LagrangeM

Regression

To perform regression when k nearest neighbors have values t_i and weights w_i , we predict

$$t = \sum_i rac{w_i}{\sum_j w_j} \cdot t_i.$$

Classification

For uniform weights, we can use **voting** during prediction – the most frequent class is predicted (with ties broken arbitrarily).

Otherwise, we weight the categorical distributions $t_i \in \mathbb{R}^K$ (with the training target classes represented using one-hot encoding), predicting a distribution

$$oldsymbol{t} = \sum_i rac{w_i}{\sum_j w_j} \cdot oldsymbol{t}_i.$$

The predicted class is then the one with the largest probability, i.e., $rg\max_k \sum_i w_i t_{i,k}$.

F-score

LagrangeM NAsMaxEnt

A trivial implementation of the k-nearest neighbors algorithm is extremely demanding during the inference, requiring to measure distances of a given example to all training instances. However, several data structures capable of speeding up the k-nearest neighbor search exist, like

• *k*-*d* trees, which allow both a static or dynamic construction and can perform nearest neighbor queries of uniformly random points in logarithmic time on average, but which become inefficient for high-dimensional data;

F-score

• ball trees, R-trees, ...

SoftMax