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Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. Logistic regression can in fact handle also more than two classes, which we will see

shortly.

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is a sigmoid function

It can be trained using the SGD algorithm.
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Logistic Regression

We denote the output of the “linear part” of the logistic regression as  and

the overall prediction as 

The logistic regression output  models the probability of class , .

To give some meaning to the output of the linear part , starting with

we arrive at

which is called a logit and it is a logarithm of odds of the probabilities of the two classes.
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1 + e−  (x;w)ȳ
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Logistic Regression

To train the logistic regression, we use MLE (the maximum likelihood estimation). Its
application is straightforward, given that  is directly the model output .

Therefore, the loss for a minibatch  is

Input: Input dataset ( , ), learning rate . 

until convergence (or patience runs out), process a minibatch of examples with indices :

p(C  ∣x;w)1 y(x;y)

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

E(w) =   − log(p(C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1}N α ∈ R+

w ← 0
b

g ←   ∇  −∣b∣
1 ∑i∈b w log (p(C  ∣x  ;w))t  i i

w ← w− αg
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Linearity in Logistic Regression

 

Figure 4.12 of Pattern Recognition and Machine Learning.
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Generalized Linear Models

The logistic regression is in fact an extended linear regression. A linear regression model, which
is followed by some activation function , is called generalized linear model:

Name Activation Distribution Loss Gradient

linear regression identity ?

logistic regression Bernoulli

a

p(t∣x;w, b) = y(x;w, b) = a(  (x;w, b)) =ȳ a(x w+T b).

MSE ∝ E(y(x) − t)2 (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x
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Mean Square Error as MLE

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance  – the most general such a distribution is the normal distribution.

 

https://upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg
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Mean Square Error as MLE

Therefore, assume our model generates a distribution .

Now we can apply MLE and get

p(t∣x;w) = N (t; y(x;w),σ )2
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Generalized Linear Models

We have therefore extended the GLM table to

Name Activation Distribution Loss Gradient

linear regression identity

logistic regression Bernoulli

Normal NLL ∝ MSE (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x
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Multiclass Logistic Regression

To extend the binary logistic regression to a multiclass case with  classes, we:

generate  outputs, each with its own set of weights, so that for ,

generalize the sigmoid function to a  function, such that

Note that the original sigmoid function can be written as

The resulting classifier is also known as multinomial logistic regression, maximum entropy

classifier or softmax regression.

K

K W ∈ RD×K

 (x;W ) =ȳ x W ,    or in other words,     (x;W )  =T ȳ i x (W  )T
∗,i
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 e∑j
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ez  i

σ(x) = softmax ([x  0])  =0  =
e + ex 0
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 .

1 + e−x

1

10/30NPFL129, Lecture 4 Refresh GLM MSE as MLE MulticlassLogisticReg PoissonReg MLP UniversalApproximation



Multiclass Logistic Regression

Using the  function, we naturally define that

Considering the definition of the  function, it is natural to obtain the interpretation of

the linear part of the model  as logits by computing a logarithm of the above:

The constant  is present, because the output of the model is overparametrized (for example,

the probability of the last class could be computed from the remaining ones). This is connected
to the fact that softmax is invariant to addition of a constant:

softmax

p(C  ∣x;W ) =i y(x;W )  =i softmax(  (x;W ))  =ȳ i softmax(x W )  =T
i .

 e∑j
(x W )  

T
j

e(x W )  

T
i

softmax
 (x;W )ȳ

 (x;W )  =ȳ i log(p(C  ∣x;W )) +i c.

c

softmax(z + c)  =i  =
 e∑j
z  +cj

ez  +ci

 ⋅
 e∑j
z  j

ez  i

 =
ec
ec

softmax(z)  .i
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Multiclass Logistic Regression

The difference between softmax and sigmoid output can be compared on the binary case, where
the binary logistic regression outputs of the linear part of the model are

while the outputs of the softmax variant with two outputs can be interpreted as 
 and .

If we consider  to be zero, the model can then predict only the probability ,

and the constant  is fixed to , recovering the original interpretation.

Generalizing to a -class classification, we could produce only  outputs and define 

, resulting in the interpretation of the linear part outputs analogous to the binary case:

 (x;w) =ȳ log  ,(
p(C  ∣x;w)0

p(C  ∣x;w)1 )

 (x;W )  =ȳ 0 log(p(C  ∣x;W )) +0 c  (x;W )  =ȳ 1 log(p(C  ∣x;W )) +1 c

 (x;W )  ȳ 0 p(C  ∣x)1

c − log(p(C  ∣x;W ))0

K K − 1
  =ȳ0 0

 (x;W )  =ȳ i log  .(
p(C  ∣x;W )0

p(C  ∣x;W )i )
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Multiclass Logistic Regression

To train -class classification, analogously to the binary logistic regression we can use MLE

and train the model using minibatch stochastic gradient descent:

Input: Input dataset ( , ), learning rate . 

Model: Let  denote all parameters of the model (in our case, the parameters are a weight

matrix  and maybe a bias vector ).

until convergence (or patience runs out), process a minibatch of examples with indices :

K

X ∈ RN×D t ∈ {0, 1, … ,K − 1}N α ∈ R+

w

W b

w ← 0
b

g ←   ∇  −∣b∣
1 ∑i∈b w log (p(C  ∣x  ;w))t  i i

w ← w− αg
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Multiclass Logistic Regression

 

Figure 4.3 of Pattern Recognition and Machine Learning.

Note that the decision regions of the binary/multiclass
logistic regression are convex (and therefore connected).

To see this, consider  and  in the same decision

region .

Any point  lying on the line connecting them is their

convex combination, , and from

the linearity of  it follows that

Given that  was the largest among  and also given that  was the largest

among , it must be the case that  is the largest among all .

x  A x  B

R  k

x

x = λx  +A (1 − λ)x  B

 (x) =ȳ x WT

 (x) =ȳ λ  (x  ) +ȳ A (1 − λ)  (x  ).ȳ B

 (x  )  ȳ A k  (x  )ȳ A  (x  )  ȳ B k

 (x  )ȳ B  (x)  ȳ k  (x)ȳ
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Generalized Linear Models

The multiclass logistic regression can now be added to the GLM table:

Name Activation Distribution Loss Gradient

linear regression identity Normal

logistic regression Bernoulli

multiclass 

logistic regression
categorical

 

for 

 

Recall that  is one-hot representation of target .

NLL ∝ MSE (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x

softmax(  )ȳ NLL ∝ E− log(p(t∣x))
(y(x) − 1  )xt

T

W ∈T RK×D

1  =t ([i = t])  

i=0
K−1

t ∈ {0, 1, … ,K − 1}
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Poisson Regression

 

https://upload.wikimedia.org/wikipedia/commons/1/16/Poisson_pmf.svg

Several other GLMs exist, we now describe a final one, this time for regression and not for
classification. Compared to regular linear regression, where we assume the output distribution is
normal, we turn our attention to Poisson distribution.

Poisson Distribution
Poisson distribution is a discrete distribution suitable for modeling the probability of a given
number of events occurring in a fixed time interval, if these events occur at a known rate and
independently of each other.

It is easy to show that if  has Poisson distribution,

P (x = k;λ) =  

k!
λ ek −λ

x

 

E[x] = λ

Var(x) = λ
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Poisson Distribution Derivation

The Poisson distribution can be obtained as a limit of the binomial distribution.

Assume we are considering  independent events, each with probability , and that 

converges to . Then

and the result follows, since  and .
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λ)

n
e−λ lim  1 −  =n→∞ ( n

λ)
−k

1
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Poisson Distribution

An important difference compared to the normal distribution is that the latter assumes that the
variance does not depend on the mean, i.e., that the model “makes errors of the same
magnitude everywhere”.

On the other hand, the variance of a Poisson distribution increases with the mean. It is useful if
we want to measure error relatively, not as an absolute difference.

 

https://bookdown.org/roback/bookdown-bysh/bookdown-bysh_files/figure-html/OLSpois-1.png
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Poisson Regression

Poisson regression is a generalized linear model producing a Poisson distribution (i.e., the mean
rate ).

Again, we use NLL as the loss. To choose a suitable activation, we might be interested in
obtaining the same gradient as for other GLMs – solving for an activation function while
requiring the gradient to be  yields , which means the linear

part of the model is predicting .

Name Activation Distribution Loss Gradient

linear regression identity Normal

logistic regression Bernoulli

multiclass 

logistic regression
categorical

 

for 

Poisson regression Poisson

λ

(a(  (x)) −ȳ t) ⋅ x a(  ) =ȳ exp(  )ȳ
log(λ)

NLL ∝ MSE (y(x) − t)x

σ(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x

softmax(  )ȳ NLL ∝ E− log(p(t∣x))
(y(x) − 1  )xt

T

W ∈T RK×D

exp(  )ȳ NLL ∝ E− log(p(t∣x)) (y(x) − t)x
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Multilayer Perceptron

x3

y1

y2

x4

x1

x2

Input layer Output layer
activation  a

We can reformulate the generalized linear models in the following framework.

Assume we have an input node for every input feature.

Additionally, we have an output node for every model
output (one for linear regression or binary classification, 

for classification in  classes).

Every input node and output node are connected with a
directed edge, and every edge has an associated weight.

Value of every (output) node is computed by summing the
values of predecessors multiplied by the corresponding
weights, added to a bias of this node, and finally passed
through an activation function :

or in matrix form , or for a batch of examples , .

K

K

a

y  =i a  x  w  + b  (∑
j

j j,i i)

y = a(x W +T b) X Y = a(XW + b)
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Multilayer Perceptron

x3 h3

h4

h1

h2

x4

x1

x2 y1

y2

Input layer Hidden layer
activation  f

Output layer
activation  a

We now extend the model by adding a hidden layer with activation .

The computation is performed analogically:

or in matrix form

and for batch of inputs  and .

f

  

h  i

y  i

= f  x  w  + b  ,(∑
j

j j,i
(h)

i
(h))

= a  h  w  + b  ,(∑
j

j j,i
(y)

i
(y))

  

h

y

= f(x W + b ),T (h) (h)

= a(h W + b ),T (y) (y)

H = f(XW +(h) b )(h) Y = a(HW +(y) b )(y)
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Multilayer Perceptron

 

Figure 5.1 of Pattern Recognition and Machine Learning.

Note that:

the structure of the input layer depends on the input features;

the structure and the activation function of the output layer depends on the target data;

however, the hidden layer has no pre-image in the data and is completely arbitrary – which
is the reason why it is called a hidden layer.

Also note that we can absorb biases into
weights analogously to the generalized linear
models.
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Output Layer Activation Functions

Output Layer Activation Functions
regression:

identity activation: we model normal distribution on output (linear regression)
: we model Poisson distribution on output (Poisson regression)

binary classification:
: we model the Bernoulli distribution (the model predicts a probability)

-class classification:

: we model the (usually overparametrized) categorical distribution

exp(x)

σ(x)

σ(x) =
def

 

1 + e−x

1

K

softmax(x)

softmax(x) ∝ e ,    softmax(x)  

x
i =def

 

 e∑j
x  j

ex  i
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Hidden Layer Activation Functions

Hidden Layer Activation Functions
no activation (identity): does not help, composition of linear mapping is a linear mapping

 (but works suboptimally – nonsymmetrical, )

result of making  symmetrical

and making derivation in zero 1

ReLU

the most common non-linear
activation used nowadays

σ  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Training MLP

The multilayer perceptron can be trained using again a minibatch SGD algorithm:

Input: Input dataset ( ,  targets), learning rate . 

Model: Let  denote all parameters of the model (all weight matrices and bias vectors).

initialize 

set weights randomly, for example in  range, where  is the

size of the layer computed by the corresponding edge
set biases to 0

until convergence (or patience runs out), process a minibatch of examples with indices :

X ∈ RN×D t α ∈ R+

w

w

U[− 1/  , 1/  ]M M M

b

g ←   ∇  −∣b∣
1 ∑i∈b w log (p(t  ∣x  ;w))i i

w ← w− αg
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Training MLP – Computing the Derivatives

x3 h3

h4

h1

h2

x4

x1

x2 y1

y2

Input layer Hidden layer
activation  f

Output layer
activation  aAssume we have an MLP with input of size , weights , 

, hidden layer of size  and activation  with weights 

, , and finally an output layer of size  with activation .

In order to compute the gradient of the loss  with respect to all weights,

you should proceed gradually:

first compute ,

then compute , where  are the inputs to the output layer (i.e., before applying

activation function ; in other words, ),

then compute  and , which allows us to obtain  and

analogously ,

followed by  and ,

and finally using  and  to compute  and .

D W ∈(h) RD×H

b ∈(h) RH H f W ∈(y)

RH×K b ∈(y) RK K a

L

 ∂y
∂L

 ∂y(in)
∂y y(in)

a y = a(y )(in)

 

∂W (y)
∂y(in)

 

∂b(y)
∂y(in)

 =
∂W (y)

∂L
 ⋅∂y

∂L
 ⋅∂y(in)

∂y
 

∂W (y)
∂y(in)

 

∂b(y)
∂L

 ∂h
∂y(in)

 

∂h(in)
∂h

 

∂W (h)
∂h(in)

 

∂b(h)
∂h(in)

 

∂W (h)
∂L

 

∂b(h)
∂L
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Hidden Layer Interpretation and Initialization

 

Figure 4.12 of Pattern Recognition and Machine Learning.

One way how to interpret the hidden layer is:

the part from the hidden layer to the output
layer is the previously used generalized linear
model (linear regression, logistic regression, …);

the part from the inputs to the hidden layer can
be considered automatically constructed features.
The features are a linear mapping of the input
values followed by a non-linearity, and the theorem on the next slide proves they can always
be constructed to achieve as good a fit of the training data as is required.

Note that the weights in an MLP must be initialized randomly. If we used just zeros, all the
constructed features (hidden layer nodes) would behave identically and we would never
distinguish them.

Using random weights corresponds to starting with random features, which allows the SGD to
make progress (improve the individual features).
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and nondecreasing continuous function.  

(Later a proof was given also for  and even for any nonpolynomial function.)

For any  and any continuous function , there exists , , 

 and , such that if we denote

where  is applied elementwise, then for all :

φ(x) : R → R
φ = ReLU

ε > 0 f : [0, 1] →D R H ∈ N v ∈ RH
b ∈ RH W ∈ RD×H

F (x) = v φ(x W +T T b) =  v  φ(x W  +
i=1

∑
H

i
T

∗,i b  ),i

φ x ∈ [0, 1]D

∣F (x) − f(x)∣ < ε.
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Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

 

https://miro.medium.com/max/844/1*lihbPNQgl7oKjpCsmzPDKw.png

However, we can create a sequence of  linear segments as a sum of  ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tangent and the tangent of the
approximation until this point.

k k
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function  (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

We can prove  can be arbitrarily close to a hard threshold by compressing it horizontally.

 

https://hackernoon.com/hn-images/1*N7dfPwbiXC-Kk4TCbfRerA.png

Then we approximate the original function using a series of straight line segments

 

https://hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJhl_fomg.png

φ(x)

φ
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