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Linear Regression

Given an input value , linear regression computes predictions as:

The bias  can be considered one of the weights  if convenient.

We train the weights by minimizing an error function between the real target values and their
predictions, notably sum of squares:

There are several ways how to minimize it, but in our case, there exists an explicit solution:
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Linear Regression Example

Assume our input vectors comprise of , for .

 

Figure 1.4 of Pattern Recognition and Machine Learning.

x = (x ,x , … ,x )0 1 M M ≥ 0
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Linear Regression Example

 

Figure 1.5 of Pattern Recognition and Machine Learning.

To plot the error, the root mean squared error  is frequently used.

The displayed error nicely illustrates
two main challenges in machine
learning:

underfitting
overfitting

RMSE =  MSE
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Model Capacity

We can control whether a model underfits or overfits by modifying its capacity.

representational capacity
effective capacity

 

Figure 5.3, page 115 of Deep Learning Book, http://deeplearningbook.org
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Linear Regression Overfitting

Note that employing more data usually alleviates overfitting (the relative capacity of the model
is decreased).

 

Figure 1.6 of Pattern Recognition and Machine Learning.
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Regularization

Regularization in a broad sense is any change in a machine learning algorithm that is designed
to reduce generalization error (but not necessarily its training error).

We already saw that limiting model capacity can work as regularization.

 

https://upload.wikimedia.org/wikipedia/commons/1/19/Overfitting.svg
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L2 Regularization

One of the oldest regularization techniques tries to prefer “simpler” models by endorsing models
with smaller weights.

Concretely, -regularization (also called weight decay) penalizes models with large weights

by utilizing the following error function:

Note that the -regularization usually is not applied on bias, only on the “proper” weights.

One of the reasons for this is that without penalizing bias, -regularization is invariant to

shifts (i.e., adding a constant to all targets would result in the same solution with only bias
increased by that constant; if bias would be penalized, this would not be true).

For simplicity, we will not explicitly exclude the bias from the -regularization penalty in the

slides (several textbooks also take the same approach).
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L2 Regularization

 

https://miro.medium.com/max/2880/1*0-
fsK9RkqL3rogo2SnZPCg.png

One way how you can look at -regularization is that it promotes

smaller changes of the model (the gradient of linear regression with
respect to the inputs are exactly the weights, i.e., ).

Considering the data points on the right, we present mean squared
errors and  norms of the weights for three linear regression models:

 

https://miro.medium.com/max/2880/1*DVFYChNDMNlS_7CVq2PhSQ.png

 

https://miro.medium.com/max/2880/1*UolRlKXikCz7SFsPfSZrYQ.png

L  2

∇  y(x;w) =x w

L  2
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L2 Regularization

The effect of -regularization can be seen as limiting the effective capacity of the model.

 

Figure 1.7 of Pattern Recognition and Machine Learning.

 

 

Figure 1.8 of Pattern Recognition and Machine Learning.

L  2
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Regularizing Linear Regression

In matrix form, regularized sum of squares error for linear regression amounts to

When repeating the same calculation as in the unregularized case, we arrive at

where  is an identity matrix.

Input: Dataset ( , ), constant . 

Output: Weights  minimizing MSE of regularized linear regression.

Note that the  matrix is always regular for , so another effect of -

regularization is that the inverse always exists.

 ∥Xw−2
1 t∥ +2

 ∥w∥ .2
λ 2

(X X +T λI)w = X t,T

I

X ∈ RN×D t ∈ RN λ ∈ R+

w ∈ RD

w ← (X X +T λI) X t.−1 T

X X +T λI λ > 0 L  2
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Choosing Hyperparameters

Hyperparameters are not adapted by the learning algorithm itself.

Usually a validation set or development set is used to estimate the generalization error,
allowing to update hyperparameters accordingly. If there is not enough data (well, there is
always not enough data), more sophisticated approaches can be used.

So far, we have seen two hyperparameters,  and .

 

Figure 1.5 of Pattern Recognition and Machine Learning.

 

Figure 1.8 of Pattern Recognition and Machine Learning.

M λ
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Linear Regression

When training a linear regression model, we minimized the sum of squares error function by
computing its gradient (partial derivatives with respect to all weights) and found solution when
it is equal to zero, arriving at the following equation for optimal weights:

If  is regular, we can invert it and compute the weights as .

It can be proven (see next slide) that , so matrix 

is regular if and only if  has rank , which is equivalent to the columns of  being linearly

independent.

X Xw =T X t.T

X XT w = (X X) X tT −1 T

rank(X) = rank(X X)T X X ∈T RD×D

X D X

13/32NPFL129, Lecture 2 Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features



Linear Regression Solution Always Exists

We now show that the solution of  always exists.

Recall that the rank-nullity theorem states that for a matrix ,

Our goal is to show that . Then the solution will always exist, because

for any , .

We first show that .

If , then also , so .

If , then also , therefore . That implies 

, resulting in .

The rank-nullity theorem therefore implies that .

Finally, it is easy to see that , which combined with the equality of

ranks above proves the required equation .

X Xw =T X tT

A ∈ RV ×W

rank(A) + nullity(A) =def dim(im(A)) + dim(ker(A)) = W .

im(X X) =T im(X )T

t X t ∈T im(X X)T

ker(X X) =T ker(X)
Xt = 0 X Xt =T 0 ker(X X) ⊇T ker(X)
X Xt =T 0 t X Xt =T T 0 (Xt) (Xt) =T 0

Xt = 0 ker(X X) ⊆T ker(X)

rank(X X) =T rank(X) = rank(X )T

im(X X) ⊆T im(X )T

im(X X) =T im(X )T
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SVD Solution of Linear Regression

Now consider the case that  is singular. We already know that 

is solvable, but it does not have a unique solution (it has many solutions). Our goal in
this case will be to find the  with minimum  fulfilling the equation.

We now consider singular value decomposition (SVD) of , writing , where

 is an orthogonal matrix, i.e., ,

 is a diagonal matrix,

 is again an orthogonal matrix.

Assuming the diagonal matrix  has rank , we can write it as

where  is a regular diagonal matrix. Denoting  and  the matrix of first 

columns of  and , respectively, we can write .

X XT X Xw =T X tT

w ∥w∥

X X = UΣV T

U ∈ RN×N u  u  =i
T

j [i = j] ⇔ U U =T I ⇔ U =−1 UT

Σ ∈ RN×D

V ∈ RD×D

Σ r

Σ =   ,[
Σ  r

0
0
0]

Σ  ∈r Rr×r U  r V  r r

U V X = U  Σ  V  r r r
T
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SVD Solution of Linear Regression

Using the decomposition , we can rewrite the goal equation as

The transposition of an orthogonal matrix is its inverse. Therefore, our submatrix  fulfills 

, because  is a top left submatrix of . Analogously, .

We therefore simplify the goal equation to

Because the diagonal matrix  is regular, we can divide by it and obtain

X = U  Σ  V  r r r
T

V  Σ  U  U  Σ  V  w =r r
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r
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T
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SVD Solution of Linear Regression

We have . If the original matrix  was regular, then  and 

 is a square regular orthogonal matrix, in which case

If we denote  the diagonal matrix with  on diagonal, we can rewrite  to

Now if ,  is undetermined and has infinitely many solutions. To find the one

with smallest norm , consider the full product . Because  is orthogonal, 

, and it is sufficient to find  with smallest . We know that the first 

 elements of  are fixed by the above equation – the smallest  can be

therefore obtained by setting the last  elements to zero. Finally, we note that  is

exactly  padded with  zeros, obtaining the same solution .

V  w =r
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r
T X XT r = D

V  r

w = V  Σ  U  t.r r
−1

r
T
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w = VΣ U t.+ T
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∥w∥ V wT V
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SVD Solution of Linear Regression and Pseudoinverses

The solution to a linear regression with sum of squares error function is tightly connected
to matrix pseudoinverses. If a matrix  is singular or rectangular, it does not have an

exact inverse, and  does not have an exact solution.

However, we can consider the so-called Moore-Penrose pseudoinverse

to be the closest approximation to an inverse, in the sense that we can find the best solution
(with smallest MSE) to the equation  by setting .

Alternatively, we can define the pseudoinverse of a matrix  as

which can be verified to be the same as our SVD formula.

X

Xw = b

X+ =def
VΣ U+ T

Xw = b w = X b+

X

X =+
  XY −

Y ∈RD×N
arg min ∥

∥ I    =N∥
∥
F

  Y X −
Y ∈RD×N
arg min ∥

∥ I    D∥
∥
F
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Random Variables

A random variable  is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation  stands for a random variable  having a distribution .

For discrete variables, the probability that  takes a value  is denoted as  or explicitly as 

. All probabilities are non-negative and sum of probabilities of all possible values of 

is .

For continuous variables, the probability that the value of  lies in the interval  is given by 

, where  is the probability density function, which is always non-negative and

integrates to 1 over the range of all values of .

x

x ∼ P x P

x x P (x)
P (x = x) x

 P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b
p(x)

x
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Joint, Conditional, Marginal Probability

For two random variables, joint probability
distribution is a distribution of all possible pairs of
outputs (and analogously for more than two):

Marginal distribution is a distribution of one
(or a subset) of the random variables and can be
obtained by summing over the other variable(s):

Conditional distribution is a distribution of one (or a subset) of the random variables, given
that another event has already occurred:

If  or , random variables  and  are independent.

P (x = x  , y =2 y  ).1

P (x = x  ) =2  P (x =∑
y

x  , y =2 y).

P (x = x  ∣y =2 y  ) =1 P (x = x  , y =2 y  )/P (y =1 y  ).1

P (x, y) = P (x) ⋅ P (y) P (x∣y) = P (x) x y
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Random Variables

Expectation
The expectation of a function  with respect to discrete probability distribution  is

defined as:

For continuous variables it is computed as:

If the random variable is obvious from context, we can write only  or even .

Expectation is linear, i.e.,

f(x) P (x)

E  [f(x)]x∼P =def
 P (x)f(x).

x

∑

E  [f(x)]x∼p =
def

 p(x)f(x) dx.∫
x

E  [x]P E[x]

E  [αf(x) +x βg(x)] = αE  [f(x)] +x βE  [g(x)].x
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Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

because .

Variance is connected to , the second moment of a random variable – it is in fact a

centered second moment.

μ = E[x]

  

Var(x)

Var(f(x))

E (x− E[x]) , or more generally,=def
[

2
]

E (f(x) − E[f(x)]) .=def
[

2
]

Var(x) = E x − 2xE[x] + (E[x]) =[ 2 2
] E x −[ 2] (E[x]) ,

2

E[2xE[x]] = 2(E[x])2

E[x ]2

22/32NPFL129, Lecture 2 Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features



Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of
some random value(s).

For example, we might estimate mean of random variable by sampling a value according to its
probability distribution.

Bias of an estimator is the difference of the expected value of the estimator and the true value
being estimated:

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

As an example, consider estimating  by generating a single sample  from  and

returning . Such an estimate is unbiased, because , which is

exactly the true estimated value.

bias = E[estimate] − true estimated value.

E  [f(x)]P x P

f(x) E[estimate] = E  [f(x)]P
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Estimators and Bias

If we have a sequence of estimates, it also might happen that the bias converges to zero.
Consider the well known sample estimate of variance. Given  independent and

identically distributed random variables, we might estimate mean and variance as

Such estimate is biased, because , but the bias converges to zero with

increasing .

Also, an unbiased estimator does not necessarily have small variance – in some cases it can have
large variance, so a biased estimator with smaller variance might be preferred.

x  , … , x  1 n

 =μ̂   x  ,    =
n

1
∑

i
i σ̂2

  (x  −
n

1
∑

i
i  ) .μ̂ 2

E[ ] =σ̂2 (1 −  )σ
n
1 2

n
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Gradient Descent

 

Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org

Sometimes it is more practical to search for the best model weights in an
iterative/incremental/sequential fashion. Either because there is too much data, or the direct
optimization is not feasible.

Assuming we are minimizing an error function

we may use gradient descent:

The constant  is called a learning rate and

specifies the “length” of a step we perform in
every iteration of the gradient descent.

 E(w),
w

arg min

w ← w− α∇  E(w)w

α
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Gradient Descent Variants

Consider an error function computed as an expectation over the dataset:

(Standard/Batch) Gradient Descent: We use all training data to compute .

Stochastic (or Online) Gradient Descent: We estimate  using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: The minibatch SGD is a trade-off between gradient descent and SGD –
the expectation in  is estimated using  random independent examples from the

training data.

E(w) = E  L(y(x;w), t),   so that  ∇  E(w) =(x,t)∼   p̂data w E  ∇  L(y(x;w), t).(x,t)∼   p̂data w

∇  E(w)w

∇  E(w)w

∇  E(w) ≈w ∇  L(y(x;w), t)  for randomly chosen  (x, t)  from     .w p̂data

∇  E(w)w B

∇  E(w) ≈w   ∇  L(y(x  ;w), t  )  for randomly chosen  (x  , t  )  from     .
B

1

i=1

∑
B

w i i i i p̂data
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Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate  of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function  is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates  fulfills the following conditions:

Note that the third condition implies that .

For non-convex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding a global minimum of an arbitrary function is at least NP-hard.

α  i

J(w) ∇  E(w)w

w  ←i+1 w  −i α  J(w  ).i i

L

α  i

∀i : α  >i 0,     α  =
i

∑ i ∞,     α  <
i

∑ i
2 ∞.

α  →i 0
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Gradient Descent Convergence

Convex functions mentioned on a previous slide are such that for  and real ,

 

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

 

https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function is convex iff its second derivative is always non-negative.

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are ,  and .

x  ,x  1 2 0 ≤ t ≤ 1

f(tx  +1 (1 − t)x  ) ≤2 tf(x  ) +1 (1 − t)f(x  ).2

x2 ex − log x
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Solving Linear Regression using SGD

To apply SGD on linear regression, we usually minimize one half of mean squared error:

If we also include  regularization, we get

We then estimate the expectation by a minibatch of examples with indices  as

which gives us an estimate of a gradient

E(w) = E  [  (y(x;w) −(x,t)∼   p̂data 2
1 t) ] =2 E  [  (x w−(x,t)∼   p̂data 2

1 T t) ].2

L  2

E(w) = E  [  (x w−(x,t)∼   p̂data 2
1 T t) ]+2

 ∥w∥ .2
λ 2

b

  (  (x  w−
i∈b

∑
∣b∣
1

2
1

i
T t  ) ) +i

2
 ∥w∥ ,2

λ 2

∇  E(w) ≈w   ((x  w−
i∈b

∑
∣b∣
1

i
T t  )x  ) +i i λw.
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Solving Linear Regression using SGD

The computed gradient allows us to formulate the following algorithm for solving linear
regression with minibatch SGD.

Input: Dataset ( , ), learning rate ,  strength . 

Output: Weights  which hopefully minimize regularized MSE of linear regression.

repeat until convergence (or until our patience runs out):
sample a minibatch of examples with indices 

either uniformly randomly,
or we may want to process all training instances before repeating them, which can
be implemented by generating a random permutation and then splitting it to
minibatch-sizes chunks

the most common option; one pass through the data is called an epoch

X ∈ RN×D t ∈ RN α ∈ R+ L  2 λ ∈ R
w ∈ RD

w ← 0

b

w ← w− α   ((x  w−∑i∈b ∣b∣
1

i
T t )x )−i i αλw
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Features

Recall that the input instance values are usually the raw observations and are given. However,
we might extend them suitably before running a machine learning algorithm, especially if the
algorithm is linear or otherwise limited and cannot represent arbitrary function. Such instance
representations is called features.

We already saw this in the example from the previous lecture, where even if our training
examples were  and , we performed the linear regression using features :

 

Figure 1.4 of Pattern Recognition and Machine Learning.

x t (x ,x , … ,x )0 1 M
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Features

Generally, it would be best if we have machine learning algorithms processing only the raw
inputs. However, many algorithms are capable of representing only a limited set of functions (for
example linear ones), and in that case, feature engineering plays a major part in the final model
performance. Feature engineering is a process of constructing features from raw inputs.

Commonly used features are:

polynomial features of degree : Given features , we might consider all

products of  input values. Therefore, polynomial features of degree 2 would consist of 

 and of .

categorical one-hot features: Assume for example that a day in a week is represented on
the input as an integer value of 1 to 7, or a breed of a dog is expressed as an integer value
of 0 to 366. Using these integral values as input to linear regression makes little sense –
instead it might be better to learn weights for individual days in a week or for individual dog
breeds. We might therefore represent input classes by binary indicators for every class, giving
rise to one-hot representation, where input integral value  is represented as 

binary values, which are all zero except for the -th one, which is one.

p (x  ,x  , … ,x  )1 2 D

p

x  ∀ii
2 x  x  ∀i =i j  j

1 ≤ v ≤ L L

v

32/32NPFL129, Lecture 2 Refresh Regularization Hyperparameters SVD Solution Random Variables SGD LR-SGD Features


