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Statistical Hypothesis Testing

Variation of a famous saying states, that there are various kinds of truth:

truth,
half-truth,

lie,

disgusting lie,

and statistics.
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Assume we have a hypothesis testable using observed data of random variables.
There are two slightly differing views on statistical hypothesis testing:
1. In the first one, we assume we have a null hypothesis Hj, and we are interested in
whether we can reject it using the observed data.

The result is statistically significant, if it is very unlikely that the observed data have
occurred given the null hypothesis.

The significance level of a test is the threshold of this unlikeliness.
2. In the second view, we have two hypotheses, a null hypothesis Hy and an alternative

hypothesis H;, and we want to distinguish among them.

We consider only two outcomes of the test:
O either we “reject” the null hypothesis, if the data is very unlikely to have occurred given

the null hypothesis; or
O we cannot reject the null hypothesis.

Note that we never “prove” the alternative hypothesis.
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Consider the courtroom trial example, which is similar to a criminal trial, where the defendant is

considered not guilty until their guilt is proven.

In this setting, Hy is “not guilty” and H; is “guilty".

Not proven guilty
Not rejecting H)

Proven guilty
Rejecting H)

Our goal is to limit the Type 1 errors — the test significance level is the type 1 error rate.
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H, is true
Truly not guilty

Correct decision

True negative

Wrong decision
False positive

Type | Error

Hj is true
Truly guilty

Wrong decision
False negative

Type Il Error

Correct decision

True positive
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| like the following analogy — if you have a theory and want to convince others that it holds,
you devise an opponent for it and let them wrestle.

If your theory wins, it may be an indication that it really holds.

However, you must choose an appropriate opponent.
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The crucial part of a statistical test is the test statistic. It is some summary of the observed
data, very often a single value (like mean), which can be used to distinguish the null and the
alternative hypothesis.

It is crucial to be able to compute the distribution of the test statistic, which allows the p-
values to be calculated.

A p-value is the probability of obtaining test statistic value at least as extreme as the one
actually observed, assuming validity of the null hypothesis. A very small p-value indicates that
the observed data are very unlikely under the null hypothesis.

Given a test statistic, we usually perform one of

® 3 one-sided right-tail test, when the p-value of t is P(test statistic > t|Hy);

® 3 one-sided left-tail test, when the p-value of t is P(test statistic < t|Hy);

® a two-sided test, when the p-value of ¢ is twice the minimum of LN

P(test statistic < t|Hy) and P(test statistic > t|Hy). For a symmetrical " 1 | |
centered distribution, P(abs(test statistic) > abs(t)|Hp) can also be used.
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Therefore, the whole procedure consists of the following steps:

Formulate the null hypothesis Hy, and optionally the alternative hypothesis H .

1.
2. Choose the test statistic.

3. Compute the observed value of the test statistic.
4,

Calculate the p-value, which is the probability of a test statistic value being at least as
extreme as the observed one, under the null hypothesis Hj.

5. Reject the null hypothesis H (in favor of the alternative hypothesis Hy), if the p-value is
less than the chosen significance level a (a standard is to use a at most 5%; common
choices include 5%, 1%, 0.5% or 0.1%, but vary a lot in different fields).
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There are several kinds of test statistics:

® one-sample tests, where we sample values from one distribution.

Common one-sample tests usually check for
O the mean of the distribution to be greater/ than and/or equal to zero;

O the goodness of fit (that the data comes from a normal or categorical distribution of
given parameters).

® two-sample tests, where we sample independently from two distributions.

® paired tests, in which case we also sample from two distributions, but the samples are
paired (i.e., evaluating several models on the same data).

In paired tests, we usually compute the difference between the paired members and perform
one-sample test on the mean of the differences.
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There are many commonly used test statistics, with different requirements and conditions. We
only mention several commonly-used ones, but it is by no means a comprehensive treatment.

® Z-Test is a test, where the test statistic can be approximated by a normal distribution. For
example, it can be used when comparing a mean of samples with known variance to a given
value.

® |n Student's t-test the test statistic follow a Student's t-distribution (where Student is the
pseudonym used by the real author W. S. Gosset), which is the distribution of a sample
mean of normally-distributed population with unknown variance.

Therefore, the t-test is used when comparing a mean of samples with unknown variance to
a given value, or to a mean of samples from another distribution with the same sample size
and variance.

® Chi-squared test utilizes a test statistic with a chi-squared distribution, which is a
distribution of a sum of squares of k independent normally distributed variables.

The essential Pearson's chi-squared test can be used to evaluate a goodness of fit of k
random categorical samples with respect to a given categorical distribution.
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A multiple comparisons problem (or multiple testing problem) arises, if we consider many
statistical hypotheses tests using the same observed data.
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Multiple Comparisons Problem
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Multiple Comparisons Problem
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Usually, the problem is that we perform many
statistical tests and only report the ones with
statistically significant results.
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Even world-class researchers make mistakes in multiple comparisons problem. Consider the paper

Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic
Salmon: An Argument For Proper Multiple Comparisons Correction

Functional magnetic resonance imaging (fMRI) is a technique for monitoring brain activity via
measuring the changes in blood oxygenation. The measurement is performed for every voxel in
the brain; the authors claim that 130k voxels are common in a single fMRI measurement.

The correlation is usually computed for every voxel, and usually a cluster of some number of
neighboring voxels, all of which must pass statistically significant test, is required.

However, with such a large number of voxels, a positive result can be caused by chance without
some multiple comparison correction.
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The authors perform the following experiment. Citing:

One mature Atlantic Salmon (Salmo salar) participated in the fMRI study. The salmon
measured approximately 18 inches long, weighed 3.8 Ibs, and was not alive at the time
of scanning. It is not known if the salmon was male or female, but given the post-
mortem state of the subject this was not thought to be a critical variable.

The task administered to the salmon involved completing an open-ended mentalizing
task. The salmon was shown a series of photographs depicting human individuals in
social situations with a specified emotional valence, either socially inclusive or socially
exclusive. The salmon was asked to determine which emotion the individual in the photo

must have been experiencing.
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t-value

Fig. 1. Sagittal and axial images of significant brain voxels in the task > rest contrast. The parameters for this comparison
were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold. Two clusters were observed in the salmon central
nervous system. One cluster was observed in the medial brain cavity and another was observed in the upper spinal column.

A t-contrast was used to test for regions with significant BOLD signal change during the
presentation of photos as compared to rest. The relatively low extent threshold value was
chosen due to the small size of the salmon’s brain relative to voxel size. Several active voxels
were observed in a cluster located within the salmon’s brain cavity (see Fig. 1). The size of this
cluster was 81 mm> with a cluster-level significance of p = 0.001.
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The authors claim that:

Sadly, while methods for multiple comparisons correction are included in every major
neuroimaging software package these techniques are not always invoked in the analysis
of functional imaging data. For the year 2008 only 74% of articles in the journal
Neurolmage reported results from a general linear model analysis of fMRI data that
utilized multiple comparisons correction (193/260 studies). Other journals we examined
were Cerebral Cortex (67.5%, 54/80 studies), Social Cognitive and Affective
Neuroscience (60%, 15/25 studies), Human Brain Mapping (75.4%, 43/57 studies), and
the Journal of Cognitive Neuroscience (61.8%, 42/68 studies). ... The issue is not
limited to published articles, as proper multiple comparisons correction is somewhat rare
during neuroimaging conference presentations. During one poster session at a recent
neuroscience conference only 21% of the researchers used multiple comparisons
correction in their research (9/42). A further, more insidious problem is that some
researchers would apply correction to some contrasts but not to others depending on the
results of each comparison.
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There are several ways to handle the multiple comparison problem; one of the easiest (but often
overly conservative) is to limit the family-wise error rate, which is the probability of at least
one type 1 error in the family.

FWER — P(LiJ (pi < a))

One way of controlling the family-wise error rate is the Bonferroni correction, which rejects
the null hypothesis of a test in the family of size m when p; < .

Assuming such a correction and utilizing the Boole's inequality P(|J; 4;) < >°; P(4;), we
get that

FWER:P(U(ng—)) ZP(ng—)—m:; a.

1

Note that there exist other more powerful methods like Holm-Bonferroni or Sidak correction.
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The goal of model comparison is to test whether some model will deliver better perfomance on
unseen data than another one.

However, we usually only have a single fixed-size test set. For the rest of the lecture, we assume
the test set instances are independently sampled from the data generating distribution.

Even if comparing the models on the given test set is unbiased, we would like to obtain some
significance level of the result.

Therefore, we perform a statistical test with alternative hypothesis that a model y is better
than a model z; therefore, the null hypothesis is that the model y is the same or worse than the
model z.

However, we only have one sample (the result of a model on the test set). We therefore turn to
bootstrap resampling.
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In order to obtain multiple samples of model performance, we exploit the fact that the test set
consists of multiple examples.

Therefore, we can generate different test sets by bootstrap resampling. Notably, we obtain a
same-sized test set by sampling the original test set examples with replacement. Naturally, we
can easily measure the performance of any given model on such generated test set.

Input: Test set {(@&1,t1),..., (2N, tn)}, model predictions {y(x1),...,y(xn)}, a metric
E, number of resamplings R.
Output: R samples of model performance.

e performances < |]
® repeat R times:
O sample IV test set examples with replacements, together with corresponding model

predictions
O measure the performance of the sampled data using the metric &/ and append the

result to performances
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When using bootstrap resampling on a single model, we can measure the confidence intervals of
model performance.

For a given confidence level (95% is the most common value), the confidence interval is an
estimate of a value range of some unknown parameter (like a mean performance of some model
on unseen data), such that the confidence interval contains the true value of the unknown
parameter with the frequency given by the confidence level.

When given the empirical distribution of model performances produced by bootstrap resampling,
we can estimate the 95% confidence interval as a range from the 2.5 percentile and 97.5
percentile of the empirical distribution (the so-called percentile bootstrap).
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To perform the model comparison statistical test, we could use a two-sample test. However,
such a test does not consider the fact that some of the inputs might be more difficult than
others, and takes into account cases when a weaker model achieves higher performance on a
simpler test set than a stronger model on a more difficult test set.

Instead, we perform a paired bootstrap test. Our alternative hypothesis is that the mean of the
model performance differences is larger than zero, and the null hypothesis is that it is less or
equal to zero. We then repeatedly sample a test set with repetition and compute the difference
of the model performances on the sampled test set, obtaining a distribution of differences under
the true distribution.

However, to perform the statistical test, we require the distribution of the differences under the
null hypothesis. One way of obtaining this distribution is to assume that the distribution of
differences is translation invariant, under which assumption we obtain the wanted distribution as
the mean-centered bootstrap distribution. Finally, assuming symmetry, we can estimate the p-
value as the ratio of the bootstrapped differences which are less or equal to zero. (See
permutation tests for a different way of estimating the p-values.)
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Input: Test set {(@1,t1),..., (®N,tn)}, model predictions {y(®1),...,y(xN)},
model predictions {z(®1),...,2(®n)}, a metric E, number of resamplings R.
Output: Estimated p-value assuming that the model y performance is worse or equal to z.

o differences < ||
® repeat R times:

O sample N test set examples with replacements, together with the corresponding
predictions of the models

O measure the performances of the models ¥y and z on the sampled data using the
metric E and append their difference to differences

® return the ratio of the differences which are less or equal to zero
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Paired Bootstrap Test

For illustration, consider models for the isnt_it_ironic competition utilizing either 3 (red)

or 4 (green) in-word character n-grams. On the left, there are distributions of the individual
model performances, while on the right there is a distribution of their differences.
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The histograms are generated using 50 bins and 500 resamplings.
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Paired Bootstrap Test

For illustration, consider models for the isnt_it_ironic competition utilizing either 3 (red)
or 4 (green) in-word character n-grams. On the left, there are distributions of the individual

model performances, while on the right there is a distribution of their differences.
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The histograms are generated using 50 bins and 5000 resamplings.
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Paired Bootstrap Test

For illustration, consider models for the isnt_it_ironic competition utilizing either 4 (red)
or 5 (green) in-word character n-grams. On the left, there are distributions of the individual

model performances, while on the right there is a distribution of their differences.
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