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Gradient Boosting Decision Trees

 

Figure 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754

The gradient boosting decision trees also train a collection of decision trees, but unlike random
forests, where the trees are trained independently, in GBDT they are trained sequentially to
correct the errors of the previous trees.

If we denote  as the

prediction function of the 

 tree, the prediction of

the whole collection is then

where  is a vector of

parameters (leaf values, to
be concrete) of the  tree.
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Gradient Boosting for Regression

Considering a regression task first, we define the overall loss as

where

 are the parameters (leaf values) of the trees;

 is an per-example loss,  for regression;

the  is the usual  regularization strength.
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Gradient Boosting for Regression

To construct the trees sequentially, we extend the definition to

In the following text, we drop the parameters of  and  for brevity.

The original idea of gradient boosting was to set  as a direction

minimizing the residual loss and then finding a suitable constant  which would minimize the

loss .
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Gradient Boosting

However, a more principled approach was later suggested. Denoting

and

we can expand the objective  using a second-order approximation to
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Gradient Boosting

Recall that we denote the indices of instances belonging to a node  as , and let us denote

the prediction for the node  as . Then we can rewrite

By setting a derivative with respect to  to zero, we get the optimal weight for a node :
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Gradient Boosting

Substituting the optimum weights to the loss, we get

which can be used as a splitting criterion.

 

Figure 2 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting

When splitting a node, the criterions of all possible splits can be effectively computed using the
following algorithm:

D

D

if
next

then

 

Modified from Algorithm 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting

Furthermore, gradient boosting trees frequently use:

data subsampling: either bagging, or (even more commonly) utilize only a fraction of the
original training data for training a single tree (with 0.5 a common value),

feature bagging;

shrinkage: multiply each trained tree by a learning rate , which reduces influence of each

individual tree and leaves space for future optimization.

α
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Binary Classification with Gradient Boosting Decision Trees

To perform classification, we train the trees to perform the linear part of a generalized linear
model.

Specifically, for a binary classification, we perform prediction by

and the per-example loss is defined as
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Multiclass Classification with Gradient Boosting Decision Trees

For multiclass classification, we need to model the full categorical output distribution.
Therefore, for each “timestep” , we train  trees , each predicting a single value of the

linear part of a generalized linear model.

Then, we perform prediction by

and the per-example loss is defined analogously as
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Multiclass Classification with Gradient Boosting Decision Trees

Tree 1 for class 1 Tree 1 for class 2 Tree 1 for class 3

Tree 2 for class 1 Tree 2 for class 2 Tree 2 for class 3

Tree 3 for class 1 Tree 3 for class 2 Tree 3 for class 3

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -18.1
instances = 84
prediction=-1.4

c_gb = -28.5
instances = 52
prediction=2.2

proline <= 755.0
c_gb = -0.0

instances = 136
prediction=-0.0

color_intensity <= 3.8
c_gb = -1.2

instances = 136
prediction=0.3

c_gb = -43.2
instances = 49
prediction=2.8

c_gb = -12.5
instances = 87
prediction=-1.1

color_intensity <= 3.9
c_gb = -0.6

instances = 136
prediction=0.2

flavanoids <= 1.2
c_gb = -1.1

instances = 136
prediction=-0.3

c_gb = -26.6
instances = 35
prediction=2.6

c_gb = -18.3
instances = 101
prediction=-1.3

flavanoids <= 1.4
c_gb = -0.6

instances = 136
prediction=-0.2

c_gb = -11.2
instances = 84
prediction=-1.2

c_gb = -13.2
instances = 52
prediction=1.4

flavanoids <= 2.3
c_gb = -0.0

instances = 136
prediction=-0.0

c_gb = -19.7
instances = 53
prediction=1.7

c_gb = -8.7
instances = 83
prediction=-1.1

alcohol <= 12.7
c_gb = -0.4

instances = 136
prediction=0.2

c_gb = -12.6
instances = 44
prediction=1.6

c_gb = -14.0
instances = 92
prediction=-1.3

hue <= 0.8
c_gb = -0.3

instances = 136
prediction=-0.2

c_gb = -9.1
instances = 76
prediction=-1.2

c_gb = -7.9
instances = 60
prediction=1.1

c_gb = -11.9
instances = 57
prediction=1.4

c_gb = -6.1
instances = 79
prediction=-1.0

c_gb = -9.5
instances = 35
prediction=1.6

c_gb = -8.3
instances = 101
prediction=-1.0
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Gradient Boosting Demo and Implementations

Playground
You can explore the Gradient Boosting Trees playground.

Implementations
Scikit-learn offers an implementation of gradient boosting decision trees,
sklearn.ensemble.GradientBoostingClassifier for classification and
sklearn.ensemble.GradientBoostingRegressor for regression.

There are additional efficient implementations, capable of distributed processing of data larger
than available memory:

XGBoost,
LightGBM, both offering scikit-learn interface, among others.
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https://ufal.mff.cuni.cz/~straka/courses/npfl129/2021/slides/10/gbt/


Supervised Machine Learning

This concludes the supervised machine learning part of our course.

We have encountered:

parametric models
generalized linear models: perceptron algorithm, linear regression, logistic regression,
multinomial (softmax) logistic regression, Poisson regression

linear models, but manual feature engineering allows solving non-linear problems

multilayer perceptron: non-linear model according to Universal approximation theorem

non-parametric models
k-nearest neighbors
kernelized linear regression
support vector machines

decision trees
can be both parametric or non-parametric depending on the constraints

generative models
naive Bayes
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