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SVM For Regression

 

Figure 7.6 of Pattern Recognition and Machine
Learning.

 

Figure 7.7 of Pattern Recognition and Machine
Learning.

The idea of SVM for regression is to use an -insensitive error function

The primary formulation of the loss is then

In the dual formulation, we require every training example to be within 

 of its target, but introduce two slack variables ,  to allow

outliers. We therefore minimize the loss

while requiring for every example  for .
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SVM For Regression

 

Figure 7.8 of Pattern Recognition and Machine Learning.

The Lagrangian after substituting for , ,  and  is

subject to

The prediction is then given by
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Using RBF Kernel in Parametric Methods

The RBF kernel empirically works well, but can be used only in the kernel methods (i.e., in the
dual formulation, which is a non-parametric model), which have time complexity superlinear
with the size of the training data.

Therefore, several methods have been developed to allow using an approximation of the RBF
kernel in parametric models like logistic regression or MLP.

Generally, these methods define a mapping , generating  features from a

given input example, such that

For a given example , the features  are then used as input to a parametric classifier (or

appended to other features we construct).

The hyperparameter  affects the quality of the approximation and is usually on the order of

hundreds.

ψ : R →D RM M

K(x, z) ≈ ψ(x) ψ(z) =T
 ψ  (x)ψ  (z).

m

∑ m m

x ψ(x)

M
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Random Fourier Features

One way to approximate RBF kernel is Monte Carlo approximation of its Fourier
transform.

The Fourier transform of a real-valued integrable function  is

where the  can be considered its frequency spectrum.

The transformation is invertible, and we can recover the original function as

f

 (w)f̂ =def
  f(x)e dx,

2π
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Random Fourier Features

Now consider a shift-invariant kernel . If we knew its frequency

spectrum , we could write it as

which we can rewrite using  as

Therefore,  is an unbiased estimate of the kernel.

K(x,y) = k(x− y)
p

k(x− y) =  p(w)e dw,∫
RD

iw (x−y)T

ξ(x;w) = eiw xT

k(x− y) = p(w)e dw =∫
RD

iw (x−y)T

E  [ξ(x;w)ξ(y;w) ].w∼p
∗

ξ(x;w)ξ(y;w)∗
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Random Fourier Features

However, working with the complex numbers . Nevertheless, considering

that the kernel and the frequency spectrum is real-valued, it is enough just to consider the
real part of .

Recalling Euler formula stating that , the real part of the  product is 

, and we would like to compute it from  and , which are

the real parts of  and , respectively.

Remembering that , we can rewrite  as

In order to get rid of the last term, we introduce a bias  sampled from uniform distribution 

 and consider mappings

ξ(x;w) = eiw xT

ξ(x;w)ξ(y;w)∗

e =iθ cos θ + i sin θ ξ

cos(w (x−T y)) cos(w x)T cos(w y)T

ξ(x;w) ξ(y;w)

cos(x± y) = cosx cos y ∓ sin x sin y cosx cos y

cosx cos y =  ( cos(x−2
1 y) + cos(x+ y)).

b

U [0, 2π]

ψ(x;w, b) =def
 cos(w x+2 T b).
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Random Fourier Features

Combining the last two equations leads to

where the last equation holds because the  integrate to zero with respect to  (actually,

range  would be sufficient).

In order to decrease the variance of the estimator, we sample  values of  and  and define

  

=

=

E  [  cos(w x+ b)  cos(w y + b)]b∼U [0,2π] 2 T 2 T

E  [ cos(w x−w y) + cos(w x+w y + 2b)]b∼U [0,2π]
T T T T

cos(w (x− y)),T

cos b

[0,π]

M w b

ψ  (x;w  , b  )i i i =def
 cos(w  x+2/M i

T b  ).i
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Random Fourier Features

Lastly, we need the frequency spectrum of an RBF kernel.

It can be shown that for an RBF kernel with , the frequency spectrum is the

density function of the standard normal distribution,

To handle different values of , it is sufficient to suitably scale the input features, which we can

implement by scaling the sampled . It is therefore straightforward to verify that using

results in an approximation of an RBF kernel with scale parameter .

The disadvantage of this approach is that we sample completely randomly, not taking any data
into consideration.

γ =  2
1

p(w) = N (w; 0, 1).

γ

w

w ∼  N (0, 1)2γ

γ
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Nyström Approximation

A different approach to approximate an RBF kernel is to use a subset of data as basis.

Assume that we have a sample of  data , denoting .

Our goal is to represent  as

by using linear mappings  with parameters .

If we denote the matrix with columns  as , we can write

where  is a vector of .

M x  , … ,x  1 M K  =i,j K(x  ,x  )i j

K(x,y)

K(x,y) ≈  ψ  (x;v  )ψ  (y;v  )
m=1

∑
M

m m m m

ψ  (y;v  ) =m m  v  K(y,x  )∑i m,i i v  ∈m RM

v  , … ,v  1 M V ∈ RM×M

ψ(y;V ) = V K(y,x  ),T
∗

K(y,x  )∗ K(y,x  ), … ,K(y,x  )1 M

10/25NPFL129, Lecture 8 SVR KernelApprox RFF Nyström TF-IDF NaiveBayes GenerativeAndDiscriminative MAP



Nyström Approximation

In order to construct our approximation, we choose  such that our approximation is exact for

all data . Therefore, it must hold that

We can rewrite the condition for all indices as .

Therefore, we would like  to be something like .

V

x  , … ,x  1 M

K  =i,j (V K  ) V K  .T
i
T T

j

K = K V V KT T

V K−1/2
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Nyström Approximation

Because the kernel is a real symmetric matrix, it has an eigenvalue decomposition

where  is an orthogonal matrix and  is a diagonal one.

Therefore, we can take , where

It is then straightforward to show that the required equation holds.

The overall kernel is therefore approximated by computing the kernel values of a given point
and the chosen data subset, multiplied by . Empirically, the approximation works usually

better than random Fourier features, because it concentrates more on the part of the space
populated by the data.

K = UDU ,T

U D

V = UD U−1/2 T

D  =i,i
−1/2

  {
0

D  i,i
−1/2

if  D  = 0,i,i

otherwise.

V
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Nyström Approximation

On the previous page, we computed square roots of the diagonal matrix , which exist

only if the values on the diagonal are non-negative.

However, the matrix  is positive semi-definite for any kernel, and a matrix is positive

semi-definite iff all its eigenvalues are non-negative.

To show that the matrix  is positive semi-definite, we use the fact that the corresponding

kernel is defined as a scalar product of the feature map :

D
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Term Frequency – Inverse Document Frequency

To represent a document, we might consider it a bag of words, and create a feature space with
a dimension for every unique word. We can represent a word in a document as:

binary indicators: 1/0 depending on whether a word is present in a document or not;
term frequency (TF): relative frequency of a term in a document;

inverse document frequency (IDF): we could also represent a term using self-information
of a probability of a random document containing it (therefore, terms with lower document
probability have higher weights);

TF-IDF: empirically, product  is a feature reflecting quite well how important is a

word to a document in a corpus (used by 83% text-based recommender systems in 2015).

TF(t) =  

number of terms in the document
number of occurrences of t in the document

IDF(t) = log  =
number of documents containing t (optionally + 1)

number of documents
I(P (d ∋ t))

TF ⋅ IDF
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Naive Bayes Classifier

Consider a discriminative classifier modelling probabilities

We might use Bayes' theorem and rewrite it to

The so-called Naive Bayes classifier assumes all  are independent given , so we can write

as

p(C  ∣x) =k p(C  ∣x  ,x  , … ,x  ).k 1 2 D

p(C  ∣x) =k  .
p(x)

p(C  )p(x∣C  )k k

x  i C  k

p(x∣C  ) =k p(x  ∣C  )p(x  ∣C  ,x  )p(x  ∣C  ,x  ,x  ) ⋯ p(x  ∣C  ,x  , …)1 k 2 k 1 3 k 1 2 D k 1

p(C  ∣x) ∝k p(C  )  p(x  ∣C  ).k

i

∏ i k
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Naive Bayes Classifier

There are several used naive Bayes classifiers, depending on the distribution .

Gaussian NB

The probability  is modeled as a normal distribution .

The parameters  and  are estimated directly from the data. However, the variances are

usually smoothed (increased) by a given constant  to avoid too sharp distributions.

The default value of  in Scikit-learn is  times the largest variance of all features.

Gaussian NB is useful if we expect a continuous feature has normal distribution for a given .

p(x  ∣C  )i k

p(x  ∣C  )i k N (μ  ,σ  )i,k i,k
2

μ  i,k σ  i,k
2

α

α 10−9

C  k
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Gaussian Naive Bayes Example

 

Means and standard deviations estimated by Gaussian NB on a subset of the MNIST dataset.

17/25NPFL129, Lecture 8 SVR KernelApprox RFF Nyström TF-IDF NaiveBayes GenerativeAndDiscriminative MAP



Multinomial Distribution

We have already discussed Bernoulli distribution and categorical distribution.

The binomial distribution is a generalization of Bernoulli distribution, where we perform 

independent binary trials, each with fixed probability of success. The binomial distribution gives
the probability of a given number of successes.

It is parametrized with a success probability  and a number of trials ,

it is denoted as  and the probability of  successes is .

The multinomial distribution can be seen as a generalization of both the binomial and
categorical distributions. Assuming we are performing  independent trials, each with 

outcomes, where the outcomes have fixed probability, the multinomial distribution gives the
probability of every possible combination of successes of every category.

It is parametrized with a probability distribution  and a number of trials , and

the probability of  outcomes of category  is .

Both these distributions can be extended to a continuous numbers of trials and successes using
the gamma function .

n

p ∈ [0, 1] n ∈ {1, 2, …}
B(n, p) k  p (1 −(

k
n) k p)n−k

n k

p n ∈ {1, 2, …}
x  k k  p  p  ⋯ p  (

x  x  … x  1 2 k

n ) 1
x  1

2
x  2

k
x  k

Γ
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Naive Bayes Classifier

Multinomial NB

When the distribution  is multinomial, , so the

is a linear model in the log space with  and . The constant 

depends on  and its value is not needed neither for estimation nor prediction.

Denoting  as the sum of features  for a class , the probabilities  are usually

estimated as

where  is a smoothing parameter accounting for terms not appearing in any document of class

 (we can view it as a pseudocount given to every term in every document).

p(x∣C  )k p(x∣C  ) =k   p  

 x  !∏i i

(  x  )!∑i i ∏i i,k
x  i

log p(C  ∣x) +k c = log p(C  ) +k  log p  =∑
i i,k

x  i log p(C  ) +k  x  log p  =∑
i

i i,k b+ x wT

b = log p(C  )k w  =i log p  i,k c

x

n  i,k x  i C  k p  i,k

p  =i,k  

 n  + αD∑j j,k

n  + αi,k

α

C  k
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Naive Bayes Classifier

Bernoulli NB

When the input features are binary, the  might also be a Bernoulli distribution

and as in the Multinomial NB case, we can write

Similarly to the Multinomial NB, the probabilities are usually estimated as

The difference with respect to Multinomial NB is that Bernoulli NB explicitly models also the
absence of terms by , while  is used in Multinomial NB. However, the cost is

that the input features must be binary (so for example TF-IDF cannot be used).

p(x  ∣C  )i k

p(x  ∣C  ) =i k p  ⋅i,k
x  i (1 − p  ) ,i,k

(1−x  )i

log p(C  ∣x) +k c = log p(C  ) +k  (x  log  +∑
i

i 1−p  i,k

p  i,k log(1 − p  )) =i,k b+ x w.T

p  =i,k  .
number of documents of class k + 2α

number of documents of class k with nonzero feature i + α

(1 − p  )i,k p  =i,k
0 1
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Naive Bayes Example

 

Probabilities estimated by Bernoulli NB on a subset of the MNIST dataset.

 

Probabilities estimated by multinomial NB on a subset of the MNIST dataset.

 

Means estimated by Gaussian NB on a subset of the MNIST dataset.
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Naive Bayes Classifier as a Generative Model

Given that a Multinomial/Bernoulli NB fits  as a linear model and a logistic

regression also fits  as a linear model, naive Bayes and logistic regression form a

so-called generative-discriminative pair, where the naive Bayes is a generative model, while
logistic regression is a discriminative model.

log p(C  ,x)k

log p(C  ∣x)k
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Generative and Discriminative Models

So far, most of our models have been discriminative, modeling a conditional distribution 

 (predicting some output distribution). Empirically, such models usually perform better in

classification tasks, but because they do not estimate the probability of , it might be difficult

for them to recognize outliers (out-of-distribution data).

On the other hand, the generative models estimate a joint distribution , often by

employing Bayes' theorem and estimating . They therefore model the probability of

the data being generated by an outcome, and only transform it to  during prediction.

The term generative comes from a (theoretical) possibility of “generating” random instances
(either of  or  given ). However, just being able to evaluate  does not necessarily

mean there must be an efficient procedure of actually sampling (generating) .

In recent years, generative modeling combined with deep neural networks created a new family
of deep generative models like VAE or GAN, which can in fact efficiently generate samples from

.

p(t∣x)
x

p(t,x)
p(x∣t) ⋅ p(t)

p(t∣x)

(x, t) x t p(x∣t)
x

p(x)
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Maximum A Posteriori Estimation

We already discussed maximum likelihood estimation

Instead, we may want to maximize maximum a posteriori (MAP) point estimate:

Using Bayes' theorem

we get

w  =MLE  p(X;w) =
w

arg max  p(X∣w).
w

arg max

w  =MAP  p(w∣X)
w

arg max

p(w∣X) =  ,
p(X)

p(X∣w)p(w)

w  =MAP  p(X∣w)p(w).
w

arg max
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L2 Regularization as MAP

Another way to arrive at L2 regularization is to employ the MAP estimation and assume that
the prior probabilities  of the parameter values (our preference among the models) is 

.

Then

By substituting the probability of the Gaussian prior, we get

p(w)
N (w; 0,σ )2

  

w  MAP =  p(X∣w)p(w)
w

arg max

=   p(x  ∣w)p(w)
w

arg max∏
i=1

N

i

=   (− log p(x  ∣w) − log p(w)).
w

arg min∑
i=1

N

i

w =MAP   − log p(x  ∣w)−  log(2πσ ) +
w

arg min
i=1

∑
N

i 2
1 2

 .
2σ2

∥w∥2
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