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Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers  as

Setting the derivatives with respect to  and  to zero, we get
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Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints ,  and kernel 

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point is on a boundary, or . Given that the predictions for point  are

, we need to keep only the points on the boundary, the so-called

support vectors. Even if SVM is nonparametric model, it stores only a subset of data.
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Support Vector Machines

The dual formulation allows us to use non-linear kernels.

 

Figure 7.2 of Pattern Recognition and Machine Learning.
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Support Vector Machines for Non-linearly Separable Data

 

Figure 7.3 of Pattern Recognition and Machine
Learning.

Until now, we assumed the data to be linearly separable – the 
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables , one for each training instance, defined as

Therefore,  signifies a point outside of margin,  denotes a point inside the

margin,  is a point on the decision boundary and  indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

ξ  ≥i 0

ξ  =i   {
0
∣t  − y(x  )∣i i

 for points fulfilling t  y(x  ) ≥ 1,i i

 otherwise.

ξ  =i 0 0 < ξ  <i 1
ξ  =i 1 ξ  >i 1

 C  ξ  +
w,b

arg min
i

∑ i  ∥w∥  given that  t  y(x  ) ≥
2
1 2

i i 1 − ξ   and ξ  ≥i i 0.
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Support Vector Machines for Non-linearly Separable Data

We again create a Lagrangian, this time with multipliers  and also 

:

Solving for the critical points and substituting for ,  and  (obtaining an additional

constraint  compared to the previous case), we obtain the Lagrangian in the form

which is identical to the previous case, but the constraints are a bit different:

a = (a  , … , a  )1 N μ =
(μ  , … ,μ  )1 N

L =  ∥w∥ +
2
1 2 C  ξ  −

i

∑ i  a  [t  y(x  ) −
i

∑ i i i 1 + ξ  ]−i  μ  ξ  .
i

∑ i i

w b ξ

μ  =i C − a  i

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  ),
2
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i

∑
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∑ i j i j i j

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.
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Support Vector Machines for Non-linearly Separable Data

Using KKT conditions, we can see that the support vectors (examples with ) are the

ones with , i.e., the examples on the margin boundary, inside the margin and

on the opposite side of the decision boundary.

 

Figure 7.4 of Pattern Recognition and Machine Learning.

a  >i 0
t  y(x  ) =i i 1 − ξ  i
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SGD-like Formulation of Soft-Margin SVM

Note that the slack variables can be written as

so we can reformulate the soft-margin SVM objective using the hinge loss

to

Such formulation is analogous to a regularized loss, where  is an inverse regularization

strength, so  implies no regularization and  ignores the data entirely.

ξ  =i max (0, 1 − t  y(x  )),i i

L  (t, y)hinge =
def

max(0, 1 − ty)

 C  L  (t  , y(x  ))+
w,b

arg min
i

∑ hinge i i  ∥w∥ .
2
1 2

C

C = ∞ C = 0
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Comparison of Linear and Logistic Regression and SVM

For , we have seen the following losses:

Model Objective Per-Instance Loss

Linear 

Regression

Logistic 

regression

Softmax 

regression

SVM

Note that  and .

y(x;w, b) =def
φ(x) w+T b

  L  (t  , y(x  )) +
w,b

arg min∑
i MSE i i  λ∥w∥2

1 2
L  (t, y) =MSE  (t −2

1 y)2

  L  (t  , y(x  )) +
w,b

arg min∑
i σ-NLL i i  λ∥w∥2

1 2
L  (t, y) =σ-NLL − log (

σ(y) ⋅t

(1 − σ(y))1−t)

  L  (t  , y(x  )) +
W ,b

arg min∑
i s-NLL i i  λ∥w∥2

1 2
L  (t, y) =s-NLL − log softmax(y)  t

 C  L  (t  , y(x  )) +
w,b

arg min ∑
i hinge i i  ∥w∥2

1 2
L  (t, y) =hinge max(0, 1 − ty)

L  (t, y) ∝MSE − log (N (t;μ = y, σ =2 const)) L  (t, y) =σ-NLL L  (t, [y, 0])s-NLL
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Binary Classification Loss Functions Comparison

To compare various functions for binary classification, we need to formulate them all in the
same settings, with .

MSE: , because it is  for  and  for ,

LR: , because it is  for  and  for ,

SVM: .

t ∈ {−1, 1}

(ty − 1)2 (y − 1)2 t = 1 (y + 1) =2 (−y − 1)2 t = −1
− log σ(ty) σ(y) t = 1 1 − σ(y) = σ(−y) t = −1

max(0, 1 − ty)
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Sequential Minimal Optimization Algorithm

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John
Platt, 1998) algorithm is used.

Before we introduce it, we start by introducing coordinate descent optimization algorithm.

Consider solving unconstrained optimization problem

Instead of the usual SGD approach, we could optimize the weights one by one, using the
following algorithm

loop until convergence
for  in :

 L(w  ,w  , … ,w  ).
w

arg min 1 2 D

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D
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Sequential Minimal Optimization Algorithm

 

CS229 Lecture 3 Notes, http://cs229.stanford.edu/notes/cs229-notes3.pdf

loop until convergence
for  in :

If the inner  can be performed efficiently, the

coordinate descent can be fairly efficient.

Note that we might want to choose  in different

order, for example by trying to choose  providing the

largest decrease of .

The Kernel linear regression dual formulation was in
fact trained by a coordinate descent – updating a single

 corresponds to updating weights for a single

example.

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D

arg min

w  i

w  i

L

β  i
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Sequential Minimal Optimization Algorithm

In soft-margin SVM, we try to maximize

with respect to , such that

The KKT conditions for the solution can be reformulated (while staying equivalent) as

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  )
2
1

i

∑
j

∑ i j i j i j

a  i

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.

  

a  > 0i

a  < Ci

0 < a  < Ci

⇒ t  y(x  ) ≤ 1,   because a  > 0 ⇒ t  y(x  ) = 1 − ξ   and we have ξ  ≥ 0,i i i i i i i

⇒ t  y(x  ) ≥ 1,   because a  < C ⇒ μ  > 0 ⇒ ξ  = 0 and t  y(x  ) ≥ 1 − ξ  ,i i i i i i i i

⇒ t  y(x  ) = 1,   a combination of both.i i
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Sequential Minimal Optimization Algorithm

At its core, the SMO algorithm is just a coordinate descent.

It tries to find  fulfilling the KKT conditions – once they are all satisfied, an optimum has

been reached, given that for soft-margin SVM the KKT conditions are sufficient conditions for
optimality (for soft-margin SVM, the loss is convex and the inequality constraints are not only
convex, but even affine).

However, note that because of the  constraint, we cannot optimize just one ,

because a single  is determined from the others. Therefore, in each step, we pick two 

coefficients and try to maximize the loss while fulfilling the constraints.

loop until convergence (until  and )

for  in :

choose  in 

, while respecting the constraints:

, , 

a  i

a  t  =∑ i i 0 a  i

a  i a  , a  i j

∀i : a  <i C ⇒ t  y(x  ) ≥i i 1 a  >i 0 ⇒ t  y(x ) ≤i i 1
i {1, 2, … ,N}

j = i {1, 2, … ,N}
a  , a  ←i j arg max  L(a  , a  , … , a  )a  ,a  i j 1 2 N

0 ≤ a  ≤i C 0 ≤ a  ≤j C  a  t  =∑i i i 0
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Sequential Minimal Optimization Algorithm

The SMO is an efficient algorithm, because we can compute the update to  efficiently,

because there exists an closed form solution.

Assume that we are updating  and . Then using the condition  we can write 

. Given that  and denoting , we get

Maximizing  with respect to  and  then amounts to maximizing a quadratic function

of , which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing  such that the  can

be maximized the most.

a  , a  i j

a  i a  j  a  t  =∑k k k 0
a  t  =i i −  a  t  ∑k=i k k t  =i

2 1 ζ = −  a  t  ∑k=i,k=j  k k

a =i t  (ζ −i a  t  ).j j

L(a) a  i a  j

a  j

a  , a  i j L
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Sequential Minimal Optimization Algorithm Part I

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value

Initialize , , 

while  (or we run out of patience):

for  in :

if (  and ) or (  and ):

Choose  randomly

Try updating ,  to maximize  such that 

and ; if successful, set  fo fulfil the KKT conditions and set 

if : 

else: 

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_as_changing

a  ←i 0 b ← 0 passes ← 0
passes < max_passes_without_as_changing

changed_as ← 0
i 1, 2, … ,N
E  ←i y(x  ) −i t  i

a  <i C − tol t  E  <i i −tol a  >i tol t  E  >i i tol

j = i

a  i a  j L(a  , a  , … , a  )1 2 N 0 ≤ a  ≤k C

 a  t  =∑i i i 0 b

changed_as ← changed_as+ 1

changed_as = 0 passes ← passes+ 1
passes ← 0

16/25NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM



Sequential Minimal Optimization Update Rules

We already know that 

To find  optimizing the loss , we use the formula for locating a vertex of a parabola

which is in fact one Newton-Raphson iteration step.

Denoting , we can compute the first derivative as

and the second derivative as

a  =i t  (ζ −i a  t  ).j j

a  j L

a  ←j
new a  −j  ,

∂ L/∂a  

2
j
2

∂L/∂aj

E  j =
def
y(x  ) −j t  j

 =
∂a  j

∂L
t  (E  −j i E  )j

 =
∂a  j

2
∂ L2

2K(x  ,x  ) −i j K(x  ,x  ) −i i K(x  ,x  ).j j
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Sequential Minimal Optimization Update Rules

If the second derivative is negative, we know that the vertex is really a maximum, in which case
we get

However, our maximization is constrained – it must hold that  and .

Recalling that , we can plot the dependence of 

 and . If for example  and , we need to find

the “right-most” solution fulfilling both  and . Such a

solution is either:

when  is clipped to , as in the green case in the example,

when  is clipped so that  (the purple case in the

example), in which case .

a  ←j
new a  −j t   .j 2K(x  ,x  ) − K(x  ,x  ) − K(x  ,x  )i j i i j j

E  − E  i j

0 ≤ a  ≤i C 0 ≤ a  ≤j C

a  =i −t  t  a  +i j j const
a  i a  j −t  t  =i j 1 a  >j

new C

a  ≤i C a  ≤j C

a  j
new C

a  j
new a  =i

new C

a  =j
new a  +j (C − a  )i
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Sequential Minimal Optimization Update Rules

If we consider both  and , , we get that the value maximizing the

Lagrangian is  clipped to range , where

After obtaining  we can compute . Remembering that , we can

compute it efficiently as

t  t  =i j ±1 a  <j
new 0 a  >j

new C

a  j
new [L,H]

  

t  = t  i j

t  = t  i  j

⇒ L = max(0, a  + a  − C),H = min(C, a  + a  )i j i j

⇒ L = max(0, a  − a  ),H = min(C,C + a  − a  ).j i j i

a  j
new a  i

new a  =i −t  t  a  +i j j const

a  ←i
new a  −i t  t  (a  −i j j

new a  ).j
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Sequential Minimal Optimization Update Rules

To arrive at the bias update, we consider the KKT condition that for , it must

hold that . Combining it with , we get the

following value

Analogously for  we get

Finally, if , we know that all values between  and  fulfil the KKT

conditions. We therefore arrive at the following update for bias:

0 < a  <j
new C

t  y(x  ) =j j 1 b = E  +j t  −j  a  t  K(x  ,x  )∑l l l j l

b  =j
new b− E  −j t  (a  −i i

new a  )K(x  ,x  ) −i i j t  (a  −j j
new a  )K(x  ,x  ).j j j

0 < a  <i
new C

b  =i
new b− E  −i t  (a  −i i

new a  )K(x  ,x  ) −i i i t  (a  −j j
new a  )K(x  ,x  ).j j i

a  , a  ∈j
new

i
new {0,C} b  i b  j

b =new
   

⎩⎪⎪
⎨
⎪⎪⎧b  i

new

b  j
new

 2
b  +b  i

new
j
new

if  0 < a  < Ci
new

if  0 < a  < Cj
new

otherwise.
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Sequential Minimal Optimization Algorithm Part II

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value 

Try updating ,  and  to fulfil the KKT conditions:

Find  maximizing , in which we express  using .

Such  is a quadratic function of .

If the second derivative of  is not negative, stop.

Clip  so that  and .

If we did not make enough progress (the new  is very similar), revert the value

of  and stop.

Compute corresponding .

Compute  appropriate to the updated , .

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_as_changing

a  i a  j b

a  j L a  i a  j

L a  j

L

a  j 0 ≤ a  ≤i C 0 ≤ a  ≤j C

a  j

a  j

a  i

b a  i a  j
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Primal versus Dual Formulation

Assume we have a dataset with  training examples, each with  features. Also assume the

used feature map  generates  features.

Property Primal Formulation Dual Formulation

Parameters

Model size  for  support vectors

Usual training time  for  iterations between  and 

Inference time  for  support vectors

N D

φ F

F N

F s ⋅ D s

c ⋅ N ⋅ F c Ω(ND) O(N D)2

Θ(F ) Θ(s ⋅ D) s
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SVM With RBF

The SVM algorithm with RBF kernel implements a better variant of k-NN algorithm, weighting
“evidence” of training data points according to their distance.

 

Figure 1.19 of Pattern Recognition and Machine Learning.

 

Figure 1.20 of Pattern Recognition and Machine Learning.
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Demos

SVM Demos
https://cs.stanford.edu/~karpathy/svmjs/demo/

MLP Demos
https://cs.stanford.edu/~karpathy/svmjs/demo/demonn.html

https://playground.tensorflow.org

24/25NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM

https://cs.stanford.edu/~karpathy/svmjs/demo/
https://cs.stanford.edu/~karpathy/svmjs/demo/demonn.html
https://playground.tensorflow.org/


Multiclass SVM

 

Figure 4.2 of Pattern Recognition and Machine Learning.

There are two general approaches for building a -class classifier by combining several binary

classifiers:

one-versus-rest scheme:  binary classifiers are constructed, the -th separating instances

of class  from all others; during prediction, the one with highest probability is chosen

the binary classifiers need to return calibrated probabilities (not SVM)

one-versus-one scheme:  binary classifiers are constructed, one for each  pair of

class indices; during prediction, the class with the majority of votes wins (used by SVM)

However, voting suffers from serious difficulties,
because there usually exist regions which are
ambiguous.

K

K i

i

 ( 2
K) (i, j)
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