NPFL129, Lecture 7 ==

Soft-margin SVM, SMO

Milan Straka

m November 16, 2020

— Charles University in Prague
F//L Faculty of Mathematics and Physics @ ? ?

A Institute of Formal and Applied Linguistics

unless otherwise stated

Support Vector Machines

In order to solve the constrained problem of

1

arg min §H'w||2 given that ¢;y(x;) > 1,

w,b

we write the Lagrangian with multipliers @ = (a1, ...,an) as
1
L= 5||w||2 - Za tiy(z:) — 1].
Setting the derivatives with respect to w and b to zero, we get
w — Zaitigo(a:i),
i
0= Z az-ti.
i

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos

MultiSVM

U=

2/25

Substituting these to the Lagrangian, we get
1
L = Zai — 5 Z Zaiajtith(wi, ZBj)
1 7 7

with respect to the constraints V; : a; > 0, Y. a;t; = 0 and kernel K (x, 2) = ¢(x)? p(2).

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

a; Z 07
a; (tiy(e;) — 1) = 0.

Therefore, either a point is on a boundary, or a; = 0. Given that the predictions for point @& are
y(x) = > a;t; K(x,x;) + b, we need to keep only the points on the boundary, the so-called
support vectors. Even if SVM is nonparametric model, it stores only a subset of data.

Refresh 3 / 25

Support Vector Machines Uz

The dual formulation allows us to use non-linear kernels.

Figure 7.2 Example of synthetic data from - - . . ; ;
two classes in two dimensions

showing contours of constant \69\@

y(x) obtained from a support

vector machine having a Gaus-
sian kernel function. Also shown ¢ X x .

are the decision boundary, the
margin boundaries, and the sup-
port vectors.

1 1 1 1
Figure 7.2 of Pattern Recognition and Machine Learning.

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM 4/25

Until now, we assumed the data to be linearly separable — the
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables & > 0, one for each training instance, defined as

¢ = 0 for points fulfilling t;y(x;) > 1,
Z t; — y(ax;)| otherwise.

Therefore, & = 0 signifies a point outside of margin, 0 < & < 1 denotes a point inside the
margin, & = 1 is a point on the decision boundary and & > 1 indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

1
argminCZﬁi + §Hw\|2 given that ¢;y(x;) > 1— & and & > 0.
w,b ;

Soft-margin SVM 5/25

We again create a Lagrangian, this time with multipliers @ = (a1,...,ay) and also p =
(t1r o i)

L= Slwl +CY 6 - Y aifty(@) —1+6] - Y més

Solving for the critical points and substituting for w, b and & (obtaining an additional
constraint u; = C' — a; compared to the previous case), we obtain the Lagrangian in the form

L = ZZai — ;;;aiajtitjff(mi,wj),

which is identical to the previous case, but the constraints are a bit different:

Vi:CZaiZOand Zaiti:().

Soft-margin SVM 6/25

Support Vector Machines for Non-linearly Separable Data UriL

Using KKT conditions, we can see that the support vectors (examples with a; > 0) are the
ones with t;y(ax;) = 1 — &;, i.e., the examples on the margin boundary, inside the margin and
on the opposite side of the decision boundary.

2 B
X
O B
2t
-2
Figure 7.4 of Pattern Recognition and Machine Learning.
NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM 7/25

Note that the slack variables can be written as
& =max (0,1 — t;y(e;)),
so we can reformulate the soft-margin SVM objective using the hinge loss
def

Lhinge (t,y) = max(0,1 — ty)

to

: 1
arg min C Zﬁhinge (ti, y(mz)) - 5”"1’“2

w,b

Such formulation is analogous to a regularized loss, where C' is an inverse regularization
strength, so C' = oo implies no regularization and C' = 0 ignores the data entirely.

Hinge 8/25

For y(; w, b) = o(x)Tw + b, we have seen the following losses:

Model Objective Per-Instance Loss

Linear argmin) . Lyisg (ti7 y(a:l)) + %)‘HwHZ Lusg (8, y) = %(t —y)’
Regression |~ wb

. = t.
Logistic arg min Zz Lo NIL (ti,y(wi)) + %)\kuz LontL(t,y) = —log (o(y))
regression w,b

Softmax arg min Zz LS—NLL (ti, y(mz)) + %)‘Hw H2 ['s-NLL (t, y) = — log softmax(y)t

regression =~ Wb
: 1
SVM a,rgwrznn C Zz AChinge (tza y(wl)) + 2 Hsz thnge (t, y) = maX(O, 1— ty)

Note that Lysg(t,y) < — log (./\f(t; p=1y,o* = const)) and Lo (t,y) = LontL (¢, [y, 0]).

Hinge 9/25

Binary Classification Loss Functions Comparison Uzt

To compare various functions for binary classification, we need to formulate them all in the
same settings, with £ € {—1, 1}.

® MSE: (ty — 1)?, because it is (y — 1) for t = 1 and (y + 1) (—y —1)% for t = —1,

AH

® LR: —logo(ty), because it is o(y) fort =1 and 1 — o(y) = o(—y) for t = —1,
® SVM: max(0,1 — ty).
30 Comparison of binary losses with {-1,1} targets
. —— Misclassification Error
—— Mean Squared Error
2.5 —— Sigmoid NLL
—— Hinge Loss
2.0 A
Z 151
1.0 \
- \\
0.0 T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
ty
NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM 10/25

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John
Platt, 1998) algorithm is used.

Before we introduce it, we start by introducing coordinate descent optimization algorithm.

Consider solving unconstrained optimization problem

arg min L(w;, ws, ..., wp).
w

Instead of the usual SGD approach, we could optimize the weights one by one, using the
following algorithm

® |oop until convergence

o for¢in{1,2,...,D}:
" w; < argmin, L(w;,ws,...,wp)

SMO 11/25

® |oop until convergence
o for¢in{1,2,...,D}:
" w; < argmin, L(w;,ws,...,wp)

If the inner arg min can be performed efficiently, the
coordinate descent can be fairly efficient.

Note that we might want to choose w; in different

order, for example by trying to choose w; providing the |

largest decrease of L.

The Kernel linear regression dual formulation was in

fact trained by a coordinate descent — updating a single 7|

B; corresponds to updating weights for a single

example.

SMO

In soft-margin SVM, we try to maximize
1
L = Zai — 5 ZZaiajtith(wi, ZBj)
1 7 7

with respect to a;, such that

Vi:CZaiZOand Zaiti:O.

The KKT conditions for the solution can be reformulated (while staying equivalent) as

a; > 0= t;y(x;) <1, becausea; > 0= t;y(x;) =1 — & and we have §; > 0,
a; < C = tyy(xe;) > 1, becausea; < C = p; >0=§& =0and t;y(x;) > 1— &,
0 <a; <C=ty(x;) =1, acombination of both.

SMO 13/25

At its core, the SMO algorithm is just a coordinate descent.

It tries to find a; fulfilling the KK'T conditions — once they are all satisfied, an optimum has

been reached, given that for soft-margin SVM the KKT conditions are sufficient conditions for

optimality (for soft-margin SVM, the loss is convex and the inequality constraints are not only
convex, but even affine).

However, note that because of the Z a;t; = 0 constraint, we cannot optimize just one a;,
because a single a; is determined from the others. Therefore, in each step, we pick two a;, a;
coefficients and try to maximize the loss while fulfilling the constraints.

® |oop until convergence (until Vi : a; < C = t;y(e;) > 1 and a; > 0 = ty(x;) < 1)
o for¢in{l,2,...,N}:
® choose j #4in {1,2,...,N}
" a;,a; < argmax,, , L(ai,as,...,an), while respecting the constraints:
u OSCLZ'SC,OSCLJ'SC, Ziaiti:O

SMO 14/25

The SMO is an efficient algorithm, because we can compute the update to a;, a; efficiently,
because there exists an closed form solution.

Assume that we are updating a; and a,;. Then using the condition Zk aipt, = 0 we can write
a;t; = — Zk#i ayty. Given that t? = 1 and denoting { = — Zk#i kj @k lE, We get

a; =t (¢ — ajt;).

Maximizing L(a) with respect to a; and a; then amounts to maximizing a quadratic function
of a;, which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing a;, a; such that the L can
be maximized the most.

SMO 15/25

Input: Dataset (X € RV*P ¢t ¢ {—1,1}), kernel K, regularization parameter C,
tolerance tol, max_passes_without_as_changing value

® |nitialize a; < 0, b < 0, passes < 0
® while passes < maz_passes_without_as_changing (or we run out of patience):
o changed_as < 0
© forzinl,2,...,N:
m Fo— y(wz) — 1;
mjf (ai < (C —toland t; E; < —tOZ) or (ai > tol and t; E; > tOl):
® Choose j #* ¢ randomly
" Try updating a;, a; to maximize L(ai,az,...,an) such that 0 < ap < C
and ZZ a;t; = 0; if successful, set b fo fulfil the KKT conditions and set
changed_as <— changed_as+ 1

o if changed_as = 0: passes < passes + 1

O else: passes < (
SMO

16/25

Sequential Minimal Optimization Update Rules

We already know that a; = t;(¢ — a;t;).

To find a; optimizing the loss L, we use the formula for locating a vertex of a parabola

8L/8aj
02L/da;’

new

which is in fact one Newton-Raphson iteration step.

. def . . .
Denoting E; = y(a;) — t;, we can compute the first derivative as

OL

—— —t.(E;, — E.
80;3‘ ,7(])
and the second derivative as
0°L
92 2K (x;, x;) — K(z;, z;) — K(x;, ;).
J

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM

U=

17/25

If the second derivative is negative, we know that the vertex is really a maximum, in which case
we get

| E; — E,
J zK(CBi,CBj) — K(wzawz) - K(wﬁwj).

new
J

a; " < a;—1

However, our maximization is constrained — it must hold that 0 < a; < C and 0 < a; < C.

Recalling that a; = —t;t;a; + const, we can plot the dependence of
a; and a;. If for example —¢;¢; = 1 and a;-lew > (C, we need to find

the “right-most” solution fulfilling both a; < C and a; < C. Such a

solution is either:

® when a"®V is clipped to C, as in the green case in the example,
] g

® when a®*¢V is clipped so that a"V = C (the purple case in the
; PP i purp

example), in which case a;*" = a; + (C — a;).

SMO

Sequential Minimal Optimization Update Rules Urzt

If we consider both ¢;¢t; = +1 and a;*" <0, a7V > C', we get that the value maximizing the
new

Lagrangian is a;°" clipped to range (L, H], where

ti =t; = L = max(0,a; + a; — C), H = min(C, a; + a;)
t; #t; = L = max(0,a; — a;), H = min(C,C + a; — a;).
new
J

compute it efficiently as

After obtaining a;“" we can compute a; " . Remembering that a; = —t;t;a; + const, we can

new

a;

<— a; — titj (a;-lew — aj).

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM 19/25

To arrive at the bias update, we consider the KKT condition that for 0 < a;-‘ew < C, it must
hold that ¢;y(2;) = 1. Combining it with b= E; +t; — >, ait; K (x;, ;), we get the
following value

bneW =b— E (oW ai)K(azi, a:j) — tj(ar}ew — aj)K(a:j, iBj).

@; J

Analogously for 0 < a*V < C we get

bnew —b— E (?ew — az-)K(a:z-, CBz) — tj(a}lew — aj)K(a:j, 213@)

Finally, if a;°", a;*" € {0,C}, we know that all values between b; and b; fulfil the KKT
conditions. We therefore arrive at the following update for bias:

(pev if 0<a’ <C
phev — 4 puew if 0 < a;lew < C
bI-leW bI.leW .
\ 5 otherwise.
SMO

20/25

Input: Dataset (X € RV*P ¢t ¢ {—1,1}), kernel K, regularization parameter C,
tolerance tol, max_passes_without_as_changing value

® Try updating a;, a; and b to fulfil the KKT conditions:
© Find a; maximizing L, in which we express a; using a;.
® Such L is a quadratic function of a;.
® |f the second derivative of L is not negative, stop.

© Clipajsothat 0 <a; < Cand0<a; <C.
= |f we did not make enough progress (the new a; is very similar), revert the value
of a; and stop.

© Compute corresponding a;.
© Compute b appropriate to the updated a;, a;.

SMO 21/25

Assume we have a dataset with IV training examples, each with D features. Also assume the

used feature map ¢ generates F' features.

Property Primal Formulation Dual Formulation

Parameters F N

Model size F s - D for s support vectors
Usual training time ¢+ N - F for c iterations between Q(ND) and O(N?D)
Inference time O(F) ©(s - D) for s support vectors

Primal vs Dual 22/25

SVM With RBF UrzL

The SVM algorithm with RBF kernel implements a better variant of k-NN algorithm, weighting
“evidence” of training data points according to their distance.
) 2

O -
A
N"S"a
<6
o0
0.5 s

0 025 05 0.75 1 0 025 05 o075 =~ 1

Figure 1.19 of Pattern Recognition and Machine Learning. Figure 1.20 of Pattern Recognition and Machine Learning.

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos MultiSVM 23/25

Demos

SVM Demos

® https://cs.stanford.edu/~karpathy/svmjs/demo/

MLP Demos

® https://cs.stanford.edu/~karpathy/svmjs/demo/demonn.html

® https://playground.tensorflow.org

NPFL129, Lecture 7 Refresh Soft-margin SVM Hinge SMO Primal vs Dual Demos

MultiSVM

U=

24/25

https://cs.stanford.edu/~karpathy/svmjs/demo/
https://cs.stanford.edu/~karpathy/svmjs/demo/demonn.html
https://playground.tensorflow.org/

There are two general approaches for building a K -class classifier by combining several binary
classifiers:

® one-versus-rest scheme: K binary classifiers are constructed, the i-th separating instances

of class 7 from all others; during prediction, the one with highest probability is chosen
O the binary classifiers need to return calibrated probabilities (not SVM)

® one-versus-one scheme: (12{) binary classifiers are constructed, one for each (i, j) pair of
class indices; during prediction, the class with the majority of votes wins (used by SVM)
However, voting suffers from serious difficulties,

because there usually exist regions which are
ambiguous.

MultiSVM

25/25

