Kernel Methods, SVM

Milan Straka

甸 November 09, 2020

Consider linear regression with cubic features

$$
\varphi(\boldsymbol{x})=\left[\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
\cdots \\
x_{1}^{2} \\
x_{1} x_{2} \\
\cdots \\
x_{2} x_{1} \\
\cdots \\
x_{1}^{3} \\
x_{1}^{3} x_{2} \\
\cdots
\end{array}\right]
$$

The SGD update of a linear regression with batch with indices \boldsymbol{b} is then

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}-\frac{\alpha}{|\boldsymbol{b}|} \sum_{i \in \boldsymbol{b}}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right) \varphi\left(\boldsymbol{x}_{i}\right)
$$

When dimensionality of input is D, one step of SGD takes $\mathcal{O}\left(D^{3}\right)$.
Surprisingly, we can do better under some circumstances. We start by noting that we can write the parameters \boldsymbol{w} as a linear combination of the input features $\varphi\left(\boldsymbol{x}_{i}\right)$.
By induction, $\boldsymbol{w}=0=\sum_{i} 0 \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, and assuming $\boldsymbol{w}=\sum_{i} \beta_{i} \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, after a SGD update we get

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\frac{\alpha}{|\boldsymbol{b}|} \sum_{i \in \boldsymbol{b}}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right) \varphi\left(\boldsymbol{x}_{i}\right) \\
& \leftarrow \sum_{i}\left(\beta_{i}-[i \in \boldsymbol{b}] \cdot \frac{\alpha}{|\boldsymbol{b}|}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right)\right) \varphi\left(\boldsymbol{x}_{i}\right) .
\end{aligned}
$$

Every β_{i} for $i \in \boldsymbol{b}$ changes to $\beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\varphi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}-t_{i}\right)$, so after substituting for \boldsymbol{w} we get

$$
\beta_{i} \leftarrow \beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\sum_{j}\left(\beta_{j} \varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)\right)-t_{i}\right) .
$$

We can formulate an alternative linear regression algorithm (a so-called dual formulation):
Input: Dataset $\left(\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in \mathbb{R}^{N}\right)$, learning rate $\alpha \in \mathbb{R}^{+}$.

- Set $\beta_{i} \leftarrow 0$
- Compute all values $\boldsymbol{K}_{i, j}=\varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)$
- Repeat until convergence
- Sample a batch \boldsymbol{b} (usually by generating a random permutation and splitting it)
- Simultaneously for all $i \in \boldsymbol{b}$ (the β_{j} on the right side must not be modified during the batch update):
- $\beta_{i} \leftarrow \beta_{i}-\frac{\alpha}{|\boldsymbol{b}|}\left(\sum_{j}\left(\beta_{j} \boldsymbol{K}_{i, j}\right)-t_{i}\right)$

The predictions are then performed by computing

$$
y(\boldsymbol{z})=\varphi(\boldsymbol{z})^{T} \boldsymbol{w}=\sum_{i} \beta_{i} \boldsymbol{\varphi}(\boldsymbol{z})^{T} \boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right) .
$$

Until now we did not consider bias. Unlike the usual formulation, where we can "hide" it in the weights, we usually handle it manually in the dual formulation.
Specifically, if we want to include bias in kernel linear regression, we modify the predictions to

$$
y(\boldsymbol{z})=\varphi(\boldsymbol{z})^{T} \boldsymbol{w}+b=\sum_{i} \beta_{i} \boldsymbol{\varphi}(\boldsymbol{z})^{T} \boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)+b
$$

and update the bias b separately.
The bias can be updated by SGD, which is what we did in the algorithms until now; however, if we are considering a bias of an "output layer", we can even estimate it as the mean of the training targets before the training of the rest of the weights.

A single SGD update of all β_{i} then takes $\mathcal{O}\left(N^{2}\right)$, given that we can evaluate scalar dot product of $\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$ quickly.

$$
\begin{aligned}
\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z}) & =1+\sum_{i} x_{i} z_{i}+\sum_{i, j} x_{i} x_{j} z_{i} z_{j}+\sum_{i, j, k} x_{i} x_{j} x_{k} z_{i} z_{j} z_{k} \\
& =1+\sum_{i} x_{i} z_{i}+\left(\sum_{i} x_{i} z_{i}\right)^{2}+\left(\sum_{i} x_{i} z_{i}\right)^{3} \\
& =1+\boldsymbol{x}^{T} \boldsymbol{z}+\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{2}+\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{3}
\end{aligned}
$$

We define a kernel corresponding to a feature map φ as a function

$$
K(\boldsymbol{x}, \boldsymbol{z}) \stackrel{\text { def }}{=} \varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})
$$

There exist quite a lot of kernels, but the most commonly used are the following:

- Polynomial kernel of degree d, also called homogenous polynomial kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}\right)^{d}
$$

which corresponds to a feature map returning all combinations of exactly d input features. Using $\left(a_{1}+\ldots+a_{k}\right)^{d}=\sum_{n_{i} \geq 0, \sum n_{i}=d}\binom{d}{n_{1}, \ldots, n_{k}} a_{1}^{n_{1}} \cdots a_{k}^{n_{k}}$, we can verify that

$$
\varphi(\boldsymbol{x})=\left(\sqrt{\gamma^{d}\binom{d}{n_{1}, \ldots, n_{D}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{n_{i} \geq 0, \sum n_{i}=d}
$$

For example, for $d=2, \varphi\left(x_{1}, x_{2}\right)=\gamma\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$.

- Polynomial kernel of degree at most d, also called nonhomogenous polynomial kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}+1\right)^{d}
$$

which corresponds to a feature map generating all combinations of up to d input features. Given that $\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}+1\right)^{d}=\sum_{i}\binom{d}{i}\left(\gamma \boldsymbol{x}^{T} \boldsymbol{z}\right)^{i}$, it is not difficult to derive that

$$
\varphi(\boldsymbol{x})=\left(\sqrt{\gamma^{d-n_{D+1}}\binom{d}{n_{1}, \ldots, n_{D+1}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{n_{i} \geq 0, \sum_{i=1}^{D+1} n_{i}=d}
$$

For example, for $d=2, \varphi\left(x_{1}, x_{2}\right)=\left(1, \sqrt{2 \gamma} x_{1}, \sqrt{2 \gamma} x_{2}, \gamma x_{1}^{2}, \sqrt{2} \gamma x_{1} x_{2}, \gamma x_{2}^{2}\right)$.

- Gaussian Radial basis function (RBF) kernel

$$
K(\boldsymbol{x}, \boldsymbol{z})=e^{-\gamma\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}
$$

corresponds to a scalar product in an infinite-dimensional space; it is a combination of polynomial kernels of all degrees. Assuming $\gamma=1$ for simplicity, we get

$$
e^{-\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}=e^{-\|\boldsymbol{x}\|^{2}+2 \boldsymbol{x}^{T} \boldsymbol{z}-\|\boldsymbol{z}\|^{2}}=\sum_{d=0}^{\infty} \frac{\left(2 \boldsymbol{x}^{T} \boldsymbol{z}\right)^{d}}{d!} e^{-\|\boldsymbol{x}\|^{2}-\|\boldsymbol{z}\|^{2}}=\sum_{d=0}^{\infty} \frac{2^{d} e^{-\|\boldsymbol{x}\|^{2}-\|\boldsymbol{z}\|^{2}}}{d!}\left(\boldsymbol{x}^{T} \boldsymbol{z}\right)^{d},
$$

which is a combination of polynomial kernels; therefore, the feature map corresponding to the RBF kernel is

$$
\varphi(\boldsymbol{x})=\left(e^{-\gamma\|\boldsymbol{x}\|^{2}} \sqrt{\frac{(2 \gamma)^{d}}{d!}\binom{d}{n_{1}, \ldots, n_{D}}} x_{1}^{n_{1}} \cdots x_{D}^{n_{D}}\right)_{d=0,1, \ldots, \infty, n_{i} \geq 0, \sum_{i=1}^{D} n_{i}=d}
$$

Note that the RBF kernel is a function of distance - it "weights" more similar examples more strongly. We could interpret it as an extended version of k-nearest neighbor algorithm, one which considers all examples, each weighted by similarity.
For illustration, we plot RBF kernel values to three points $(0,-1),(1,1)$ and $(1,-1)$ with different values of γ :

Let us return to a binary classification task. The perceptron algorithm guaranteed finding some separating hyperplane if it existed; we now consider finding the one with maximum margin.

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision boundary, as shown on the right. The location of this boundary is determined by a subset of the data points, known as support vectors, which are indicated by the circles.

Assume we have a dataset $\boldsymbol{X} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in\{-1,1\}^{N}$, feature map φ and model

$$
y(\boldsymbol{x}) \stackrel{\text { def }}{=} \boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b
$$

We already know that the distance of a point \boldsymbol{x}_{i} to the decision boundary is

$$
\frac{\left|y\left(\boldsymbol{x}_{i}\right)\right|}{\|\boldsymbol{w}\|}=\frac{t_{i} y\left(\boldsymbol{x}_{i}\right)}{\|\boldsymbol{w}\|}
$$

We therefore want to maximize

Figure 4.1 of Pattern Recognition and Machine Learning.

$$
\underset{w, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{w}+b\right)\right] .
$$

However, this problem is difficult to optimize directly.

Because the model is invariant to multiplying \boldsymbol{w} and b by a constant, we can decide that for the points closest to the decision boundary, it will hold that

$$
t_{i} y\left(\boldsymbol{x}_{i}\right)=1
$$

Then for all the points we will have $t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1$ and we can simplify

$$
\underset{\boldsymbol{w}, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b\right)\right]
$$

to

$$
\underset{\boldsymbol{w}, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1 .
$$

Given a function $f(\boldsymbol{x})$, we can find a maximum with respect to a vector $\boldsymbol{x} \in \mathbb{R}^{d}$, by investigating the critical points $\nabla_{\boldsymbol{x}} f(\boldsymbol{x})=0$. We even know how to incorporate constraints of form $g(\boldsymbol{x})=0$. We now describe how to include inequality constraints $g(\boldsymbol{x}) \geq 0$.
We start by again forming a Lagrangian $f(\boldsymbol{x})+\lambda g(\boldsymbol{x})$.
The optimum can either be attained for $g(\boldsymbol{x})>0$, when the constraint is said to be inactive, or for $g(\boldsymbol{x})=0$, when the constraint is said to be active. In the inactive case, the maximum is again a critical point of the Lagrangian with the condition $\lambda=0$.

When maximum is on a boundary, it corresponds to a critical point with Figure E.3 of Pattem Recognition and Machine $\lambda \neq 0$ - but note that this time the sign of the multiplier matters, because maximum is attained only when gradient of $f(\boldsymbol{x})$ is oriented away from the region $g(\boldsymbol{x}) \geq 0$. We therefore require $\nabla f(\boldsymbol{x})=-\lambda \nabla g(\boldsymbol{x})$ for $\lambda>0$.
In both cases, $\lambda g(\boldsymbol{x})=0$.

Put together, every solution to a maximization problem of $f(\boldsymbol{x})$ subject to $g(\boldsymbol{x}) \geq 0$ must be a maximum of the Lagrangian with respect to \boldsymbol{x} and the following must hold:

$$
\begin{aligned}
g(\boldsymbol{x}) & \geq 0 \\
\lambda & \geq 0 \\
\lambda g(\boldsymbol{x}) & =0
\end{aligned}
$$

If there exists a λ fulfilling these conditions, so does the λ minimizing the Lagrangian. Therefore, we maximize the Lagrangian with respect to \boldsymbol{x}, but minimize it with respect to λ.

Minimizing Given $f(\boldsymbol{x})$

If we instead want to find constrained minimum of $f(\boldsymbol{x})$, we can search for maximum of $-f(\boldsymbol{x})$, which results in minimizing the Lagrangian $f(\boldsymbol{x})-\lambda g(\boldsymbol{x})$ with respect to \boldsymbol{x} and maximizing it for λ.

The KKT conditions are necessary conditions for a maximum (resp. minimum). However, it can be proven that in the following settings, the conditions are also sufficient:

- if the objective to optimize is a concave function (resp. convex for minimization) with respect to \boldsymbol{x};
- the inequality constraints are continuously differentiable convex functions;
- the equality constraints are affine functions (linear functions with an offset).

It is easy to verify that these conditions hold for the SVM optimization problem.

In order to solve the constrained problem of

$$
\underset{\boldsymbol{w}, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1
$$

we write the Lagrangian with multipliers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right)$ as

$$
L=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i} a_{i}\left[t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right] .
$$

Setting the derivatives with respect to \boldsymbol{w} and b to zero, we get

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{i} a_{i} t_{i} \varphi\left(\boldsymbol{x}_{i}\right) \\
0 & =\sum_{i} a_{i} t_{i}
\end{aligned}
$$

Substituting these to the Lagrangian, we get

$$
L=\sum_{i} a_{i}-\frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

with respect to the constraints $a_{i} \geq 0, \sum_{i} a_{i} t_{i}=0$ and a kernel $K(\boldsymbol{x}, \boldsymbol{z})=\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$.
The solution of this Lagrangian will fulfil the KKT conditions, meaning that

$$
\begin{aligned}
a_{i} & \geq 0 \\
t_{i} y\left(\boldsymbol{x}_{i}\right)-1 & \geq 0 \\
a_{i}\left(t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right) & =0
\end{aligned}
$$

Therefore, either a point \boldsymbol{x}_{i} is on a boundary, or $a_{i}=0$. Given that the prediction for \boldsymbol{x} is $y(\boldsymbol{x})=\sum_{i} a_{i} t_{i} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)+b$, we only need to keep the training points \boldsymbol{x}_{i} that are on the boundary, the so-called support vectors. Therefore, even though SVM is a nonparametric model, it needs to store only a subset of the training data.

The dual formulation allows us to use non-linear kernels.
Figure 7.2 Example of synthetic data from two classes in two dimensions showing contours of constant $y(\mathbf{x})$ obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

