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Kernel Linear Regression

Consider linear regression with cubic features

The SGD update of a linear regression with batch with indices  is then

φ(x) =    .
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Kernel Linear Regression

When dimensionality of input is , one step of SGD takes .

Surprisingly, we can do better under some circumstances. We start by noting that we can write
the parameters  as a linear combination of the input features .

By induction, , and assuming , after a SGD update

we get

Every  for  changes to , so after substituting for  we get

D O(D )3

w φ(x  )i

w = 0 =  0 ⋅∑i φ(x  )i w =  β  ⋅∑i i φ(x  )i

  

w ← w−   (φ(x  ) w− t  )φ(x  )
∣b∣
α

i∈b

∑ i
T

i i

←  (β  − [i ∈ b] ⋅  (φ(x  ) w− t  ))φ(x  ).
i

∑ i ∣b∣
α

i
T

i i

β  i i ∈ b β  −i  (φ(x  ) w−∣b∣
α

i
T t  )i w

β  ←i β  −i  (  (β  φ(x  ) φ(x  ))−
∣b∣
α

∑
j

j i
T

j t  ).i

3/19NPFL129, Lecture 6 KernelLR Kernels SVM KKT Dual SVM Formulation



Kernel Linear Regression

We can formulate an alternative linear regression algorithm (a so-called dual formulation):

Input: Dataset ( , ), learning rate . 

Set 

Compute all values 

Repeat until convergence
Sample a batch  (usually by generating a random permutation and splitting it)

Simultaneously for all  (the  on the right side must not be modified during

the batch update):

The predictions are then performed by computing

X = {x  ,x  , … ,x  } ∈1 2 N RN×D t ∈ RN α ∈ R+
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Bias in Kernel Linear Regression

Until now we did not consider bias. Unlike the usual formulation, where we can “hide” it in the
weights, we usually handle it manually in the dual formulation.

Specifically, if we want to include bias in kernel linear regression, we modify the predictions to

and update the bias  separately.

The bias can be updated by SGD, which is what we did in the algorithms until now; however, if
we are considering a bias of an “output layer”, we can even estimate it as the mean of the
training targets before the training of the rest of the weights.
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Kernel Trick

A single SGD update of all  then takes , given that we can evaluate scalar dot

product of  quickly.

β  i O(N )2
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Kernels

We define a kernel corresponding to a feature map  as a function

There exist quite a lot of kernels, but the most commonly used are the following:

Polynomial kernel of degree , also called homogenous polynomial kernel

which corresponds to a feature map returning all combinations of exactly  input features.

Using , we can verify that

For example, for , .
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Kernels

Polynomial kernel of degree at most , also called nonhomogenous polynomial kernel

which corresponds to a feature map generating all combinations of up to  input features.

Given that , it is not difficult to derive that

For example, for , .
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Kernels

Gaussian Radial basis function (RBF) kernel

corresponds to a scalar product in an infinite-dimensional space; it is a combination of
polynomial kernels of all degrees. Assuming  for simplicity, we get

which is a combination of polynomial kernels; therefore, the feature map corresponding to
the RBF kernel is
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Kernels

Note that the RBF kernel is a function of distance – it “weights” more similar examples more
strongly. We could interpret it as an extended version of k-nearest neighbor algorithm, one
which considers all examples, each weighted by similarity.

For illustration, we plot RBF kernel values to three points ,  and  with

different values of :

(0, −1) (1, 1) (1, −1)
γ
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Support Vector Machines

Let us return to a binary classification task. The perceptron algorithm guaranteed finding some
separating hyperplane if it existed; we now consider finding the one with maximum margin.

 

Figure 7.1 of Pattern Recognition and Machine Learning.

11/19NPFL129, Lecture 6 KernelLR Kernels SVM KKT Dual SVM Formulation



Support Vector Machines

 

Figure 4.1 of Pattern Recognition and Machine Learning.

Assume we have a dataset , , feature map  and model

We already know that the distance of a point  to the decision

boundary is

We therefore want to maximize

However, this problem is difficult to optimize directly.
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Support Vector Machines

Because the model is invariant to multiplying  and  by a constant, we can decide that for the

points closest to the decision boundary, it will hold that

Then for all the points we will have  and we can simplify

to

w b
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Lagrange Multipliers – Inequality Constraints

 

Figure E.3 of Pattern Recognition and Machine
Learning.

Given a function , we can find a maximum with respect to a vector , by

investigating the critical points . We even know how to incorporate constraints of

form . We now describe how to include inequality constraints .

We start by again forming a Lagrangian .

The optimum can either be attained for , when the constraint

is said to be inactive, or for , when the constraint is said to

be active. In the inactive case, the maximum is again a critical point of
the Lagrangian with the condition .

When maximum is on a boundary, it corresponds to a critical point with
 – but note that this time the sign of the multiplier matters,

because maximum is attained only when gradient of  is oriented away from the region 

. We therefore require  for .

In both cases, .

f(x) x ∈ Rd
∇  f(x) =x 0

g(x) = 0 g(x) ≥ 0

f(x) + λg(x)

g(x) > 0
g(x) = 0

λ = 0

λ = 0
f(x)

g(x) ≥ 0 ∇f(x) = −λ∇g(x) λ > 0

λg(x) = 0
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Karush-Kuhn-Tucker Conditions

 

Figure E.3 of Pattern Recognition and Machine
Learning.

Put together, every solution to a maximization problem of  subject

to  must be a maximum of the Lagrangian with respect to 

and the following must hold:

If there exists a  fulfilling these conditions, so does the  minimizing the Lagrangian.

Therefore, we maximize the Lagrangian with respect to , but minimize it with respect to .

Minimizing Given 

If we instead want to find constrained minimum of , we can search for maximum of 

, which results in minimizing the Lagrangian  with respect to  and

maximizing it for .
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Necessary and Sufficient KKT Conditions

The KKT conditions are necessary conditions for a maximum (resp. minimum).

However, it can be proven that in the following settings, the conditions are also sufficient:

if the objective to optimize is a concave function (resp. convex for minimization) with
respect to ;

the inequality constraints are continuously differentiable convex functions;
the equality constraints are affine functions (linear functions with an offset).

It is easy to verify that these conditions hold for the SVM optimization problem.

x
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Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers  as

Setting the derivatives with respect to  and  to zero, we get
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Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints ,  and a kernel 

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point  is on a boundary, or . Given that the prediction for  is 

, we only need to keep the training points  that are on the

boundary, the so-called support vectors. Therefore, even though SVM is a nonparametric
model, it needs to store only a subset of the training data.
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Support Vector Machines

The dual formulation allows us to use non-linear kernels.

 

Figure 7.2 of Pattern Recognition and Machine Learning.
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