
NPFL129, Lecture 5

Derivation of Softmax, k-NN

Milan Straka

November 02, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Lagrange Multipliers – Equality Constraints

Figure E.1 of Pattern Recognition and Machine
Learning.

Given a function , we can find a maximum with respect to a

vector , by investigating the critical points .

Consider now finding maximum subject to a constraint .

Note that is orthogonal to the surface of the constraint,

because if and a nearby point lie on the surface, from

the Taylor expansion we get

.

In the seeked maximum, must also be orthogonal to the

constraint surface (or else moving in the direction of the derivative would increase the
value).

Therefore, there must exist such that .

f(x)
x ∈ Rd ∇ f(x) =x 0

g(x) = 0

∇ g(x)x

x x+ ε

g(x+ ε) ≈ g(x) + ε ∇ g(x)T
x

ε ∇ g(x) ≈T
x 0

∇ f(x)x

λ ∇ f +x λ∇ g =x 0

2/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Lagrange Multipliers – Equality Constraints

Figure E.1 of Pattern Recognition and Machine
Learning.

We therefore introduce the Lagrangian function

We can then find the maximum under the constraint by inspecting
critical points of with respect to both and :

 leads to ;

 is the previously derived .

If there are multiple equality constraints, we can use induction;
therefore, every constraint gets its own .

L(x,λ) =def
f(x) + λg(x).

L(x,λ) x λ

 =∂λ
∂L 0 g(x) = 0

 =∂x
∂L 0 ∇ f +x λ∇ g =x 0

λ

3/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Calculus of Variations

Many optimization techniques depend on minimizing a function with respect to a

vector , by investigating the critical points .

A function of a function, , is known as a functional, for example entropy .

Similarly to partial derivatives, we can take functional derivatives of a functional with

respect to individual values for all points . The functional derivative of with respect

to a function in a point is denoted as

For this course, we use only the following theorem stating that for all differentiable functions

and differentiable functions with continuous derivatives, it holds that

J(w)
w ∈ Rd ∇ J(w) =w 0

J [f] H[⋅]

J [f]
f(x) x J

f x

 J .
∂f(x)

∂

f

g(y = f(x),x)

 g(f(x),x)dx =
∂f(x)

∂
∫ ′ ′ ′

 g(y,x).
∂y
∂

4/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Calculus of Variations

An intuitive view is to think about as a vector of uncountably many elements (for

every value . In this interpretation the result is analogous to computing partial

derivatives of a vector :

f(x)
x)

w ∈ Rd

 g(w ,x) =
∂w i

∂

j

∑ j g(w ,x).
∂w i

∂
i

 g(f(x),x)dx =
∂f(x)

∂
∫ ′ ′ ′

 g(y,x).
∂y
∂

5/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

What distribution over maximizes entropy ?

For continuous values, the entropy is an integral .

We cannot just maximize with respect to a function , because:

the result might not be a probability distribution – we need to add a constraint that

;

the problem is underspecified because a distribution can be shifted without changing entropy
– we add a constraint ;

because entropy increases as variance increases, we ask which distribution with a fixed
variance has maximum entropy – adding a constraint .

R H[p] = −E [log p(x)]x

H[p] = − p(x) log p(x) dx∫

H p

p(x) dx =∫ 1

E[x] = μ

σ2 Var(x) = σ2

6/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

Lagrangian of all the constraints and the entropy function is

By expanding all definitions to integrals, we get

The functional derivative of is:

L(p(x),x,λ;μ,σ)2

L = λ (p(x) dx−1 ∫ 1) + λ (E[x] −2 μ)+ λ (Var(x) −3 σ)+2 H[p].

L(p(x),x,λ;μ,σ) =2 (λ p(x) + λ p(x)x+ λ p(x)(x− μ) − p(x) log p(x)) dx−∫ 1 2 3
2

− λ − μλ − σ λ .1 2
2

3

L

 L(p(x),x,λ;μ,σ) =
∂p(x)

∂ 2 λ +1 λ x+2 λ (x−3 μ) −2 1 − log p(x) = 0.

7/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Function with Maximum Entropy

Rearranging the functional derivative of :

we obtain

We can verify that setting , and fulfils all the

constraints, arriving at

L

 L(p(x),x,λ;μ,σ) =
∂p(x)

∂ 2 λ +1 λ x+2 λ (x−3 μ) −2 1 − log p(x) = 0.

p(x) = exp(λ +1 λ x+2 λ (x−3 μ) −2 1).

λ =1 1 − log σ 2π λ =2 0 λ =3 −1/(2σ)2

p(x) = N (x;μ,σ).2

8/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

Let be training data of a -class classification, with

 and .

We want to model it using a function so that gives a distribution of

classes for input .

We impose the following conditions on :

X = {(x , t), (x , t), … , (x , t)}1 1 2 2 N N K

x ∈i RD t ∈i {1, 2, … ,K}

π : R →D RK π(x)
x

π

∀ 1 ≤ k ≤ K : π(x) ≥k 0,

 π(x) =
k=1

∑
K

k 1,

∀ 1 ≤ j ≤ D, ∀ 1 ≤ k ≤ K : π(x) x =
i=1

∑
N

i k i,j [t =
i=1

∑
N

i = k]x .i,j

9/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

There are many such , one particularly bad is

where is a vector of zeros, except for position , which is equal to 1.

Therefore, we want to find a more general – consequently, we turn to the principle of

maximum entropy and search for with maximum entropy.

π

π(x) = {
1 t i

1 0

if there exists i : x = x,i

otherwise,

1 i i

π

π

10/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

We want to maximize given

,

,

.

We therefore form a Lagrangian (ignoring the first inequality constraint):

− π(x) log(π(x))∑i=1
N ∑k=1

K
i k i k

∀ 1 ≤ i ≤ N, ∀ 1 ≤ k ≤ K : π(x) ≥i k 0
∀ 1 ≤ i ≤ N : π(x) =∑k=1

K
i k 1

∀ 1 ≤ j ≤ D, ∀ 1 ≤ k ≤ K : π(x) x =∑i=1
N

i k i,j [t =∑i=1
N

i = k]x i,j

L = λ (π(x) x − [t == k]x)
j=1

∑
D

k=1

∑
K

j,k
i=1

∑
N

i k i,j i i,j

+ β (π(x) − 1)
i=1

∑
N

i

k=1

∑
K

i k

− π(x) log(π(x)).
i=1

∑
N

k=1

∑
K

i k i k

11/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

We now compute partial derivatives of the Lagrangian, notably the values

We arrive at

Setting the Lagrangian to zero, we get which we

rewrite to

Such a forms guarantees , which we did not include in the conditions.

 L.
∂π(x) i k

∂

 L =
∂π(x) i k

∂
x λ +i
T

∗,k β −i log(π(x)) −i k 1.

x λ +i
T

∗,k β −i log(π(x)) −i k 1 = 0,

π(x) =i k e .x λ +β −1i
T

∗,k i

π(x) >i k 0

12/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Derivation of Softmax using Maximum Entropy

In order to find out the values, we turn to the constraint

from which we get

yielding

β i

 π(x) =
k

∑ i k e =
k

∑ x λ +β −1i
T

∗,k i 1,

e =βi
 ,

 e∑k
x λ −1i
T

∗,k

1

π(x) =i k e =x λ +β −1i
T

∗,k i
 =

 e∑k′
x λ i
T

∗,k′

ex λ i
T

∗,k

softmax(x λ) .i k

13/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

When evaluating binary classification, we have used accuracy so far.

However, there are other metric we might want to consider.
One of them is -score.

Consider the following confusion matrix:

Target positive Target negative

Predicted

positive
True Positive (TP) False Positive (FP)

Predicted

negative
False Negative (FN) True Negative (TN)

Accuracy can be computed as

F 1

accuracy = .
TP+ TN+ FP+ FN

TP+ TN

14/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1
relevant elements

selected elements

false positivestrue positives

false negatives true negatives

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Precision = Recall =

How many selected

items are relevant?

How many relevant

items are selected?

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Target positive Target negative

Predicted

positive
True Positive (TP) False Positive (FP)

Predicted

negative
False Negative (FN) True Negative (TN)

In some cases, we are mostly interested in positive examples.

We define precision (percentage of correct predictions in
predicted examples) and recall (percentage of correct
predictions in the gold examples) as

precision =

recall =

 ,
TP+ FP
TP

 .
TP+ FN
TP

15/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-scoreF 1

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

The precision and recall go “against each other”:
increasing the classifier threshold usually increases
recall and decreases precision, and vice versa.

We therefore define a single -score as a

harmonic mean of precision and recall:

F 1

F =1

=

=

precision + recall−1 −1
2

precision + recall
2 ⋅ precision ⋅ recall

 .
TP+ FP+ TP+ FN
TP + TP

16/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

General -scoreF β

The score can be generalized to score, which can be used as a metric when recall is

times more important than precision; favoring recall and favoring precision are

commonly used.

The formula for is

F 1 F β β

F 2 F 0.5

F β

F =β

=

=

precision + β recall−1 2 −1
1 + β2

β ⋅ precision + recall2

(1 + β) ⋅ precision ⋅ recall2

 .
TP+ FP+ β (TP+ FN)2

TP + β TP2

17/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

General -scoreF β

You may wonder why is used in the formula

instead of just .

Quoting C. J. van Rijsbergen from his book Information Retrieval, 1979:

What we want is therefore a parameter to characterise the measurement function in

such a way that we can say: it measures the effectiveness of retrieval with respect to a
user who attaches times as much importance to recall as precision. The simplest way I

know of quantifying this is to specify the ratio at which the user is

willing to trade an increment in precision for an equal loss in recall.

It is straightforward to verify that indeed implies .

β2

F =β

precision + β recall−1 2 −1
1 + β2

β

β

β

recall/precision

 =∂precision
∂F β

 ∂recall
∂F β

 =precision
recall β

18/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Precision-Recall Curve

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

Changing the threshold in logistic regression allows
us to trade off precision for recall and vice versa.
Therefore, we can tune it on the development set
to achieve highest possible score, if required.

Also, if we want to evaluate -score without

considering a specific threshold, the area under
curve (AUC) is sometimes used as a metric.

F 1

F 1

19/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

-Score in Multiclass ClassificationF 1

To extend -score to multiclass classification, we expect one of the classes to be negative and

the others different kinds of positive. For each of the positive classes, we compute the same
confusion matrix as in the binary case (considering all other labels as negative ones), and then
combine the results in one of the following ways:

micro-averaged (or just micro): we first sum all the TP, FP and FN of the

individual binary classifications and compute the final -score (this way, the frequency of

the individual classes is taken into account);

macro-averaged (or just macro): we first compute the -scores of the individual

binary classifications and then compute an unweighted average (therefore, the frequency of
the classes is ignored).

F 1

F 1 F 1

F 1

F 1 F 1 F 1

20/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

ROC Curve

The precision-recall curve is useful when we are interested in the positive examples (i.e., we are
ignoring true negative instances). In case we want to consider also the true negatives, we might
instead use the Receiver Operating Characteristic (ROC) curve.

In the ROC curve, we consider two measures of a binary classifier under changing threshold:

true positive rate or sensitivity (probability of detection): ;

false positive rate or 1-specificity (probability of false alarm): ;

https://modtools.files.wordpress.com/2020/01/roc_pr-1.png

TP

FN TN

FP

TP

FP
TN

FN

0% 100%P(FP)

100%

P(TP)

https://upload.wikimedia.org/wikipedia/commons/4/4f/ROC_curves.svg

 =target positives
TP

TP+FN
TP

 =target negatives
FP

FP+TN
FP

21/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Binary Confusion Metric Measures Overview

Target positive Target negative

Predicted positive True Positive (TP)
False Positive (FP)

Type I Error

precision

Predicted negative
False Negative (FN)

Type II Error
True Negative (TN)

true positive rate, recall,

sensitivity

false positive rate

specificity

-score =

accuracy =

TP+FP
TP

 1

TP+FN
TP

 1

FP+TN
FP

 1

TN+FP
TN

 1

F 1 =precision+recall
2⋅precision⋅recall

TP+FP+TP+FN
TP + TP

 2

TP+FP+FN+TN
TP+TN

 1
 1

22/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

Parametric and Nonparametric Models

All the machine learning models which we discussed so far are parametric, because they use a
fixed number of parameters (usually depending on the number of features, for multiclass

classification, hidden layer in MLPs, …).

However, there also exist nonparametric models. Even if the name seems to suggest they do
not have any parameters, they have a non-fixed number of parameters, because the number of
parameters usually depend on the size of the training data – therefore, the model size usually
grows with the size of the training data.

K

23/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

???

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

A simple but sometimes effective nonparametric method for
both classification and regression is -nearest neighbors

algorithm.

The training phase of the -nearest neighbors algorithm is

trivial, it consists of only storing the whole train set (the
so-called lazy learning).

For a given test example, the main idea is to use the
targets of the most similar training data to perform the
prediction.

k

k

24/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

???

https://upload.wikimedia.org/wikipedia/commons/e/e7/KnnClassification.svg

Several hyperparameters influence the behaviour of the
prediction phase:

k: consider most similar training examples (higher

usually decrease variance, but increase bias);

metric: a function used to find the nearest neighbors;
common choices are metrics based on norms (with

usual values of being , , ,). For ,

the distance is measured as , where

weights: optionally, more similar examples can be considered with bigger weights:
uniform: all nearest neighbors are considered equally;

inverse: the weight of an example is proportional to the inverse of distance;
softmax: the weights are proportional to of negative distances.

k k

L p

p 1 2 3 ∞ x,y ∈ RD
∥x− y∥ p

∥x∥ =p (∣x ∣) ;∑
i

i
p

1/p

k

softmax
25/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

Regression

To perform regression when nearest neighbors have values and weights , we predict

Classification

For uniform weights, we can use voting during prediction – the most frequent class is predicted
(with ties broken arbitrarily).

Otherwise, we weight the categorical distributions (with the training target classes

represented using one-hot encoding), predicting a distribution

The predicted class is then the one with largest probability, i.e., .

k t i w i

t = ⋅
i

∑
 w ∑j j

w i
t .i

t ∈i RK

t = ⋅
i

∑
 w ∑j j

w i
t .i

arg max w t k∑i i i,k

26/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

k-Nearest Neighbors

A trivial implementation of the -nearest neighbors algorithm is extremely demanding during

the inference, requiring to measure distances of a given example to all training instances.

However, several data structures capable of speeding up the -nearest neighbor search exist, like

- trees, which allow both a static or dynamic construction and can perform nearest

neighbor queries of uniformly random points in logarithmic time on average, but which
become inefficient for high-dimensional data;

ball trees, R-trees, …

k

k

k d

27/27NPFL129, Lecture 5 LagrangeM NAsMaxEnt SoftMax F-score ROC (Non)ParametricModels k-NN

