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Figure 7.6 of Pattern Recognition and Machine
Learning.
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Figure 7.7 of Pattern Recognition and Machine
Learning.

The idea of SVM for regression is to use an -insensitive error function

The primary formulation of the loss is then

In the dual formulation, we ideally require every example to be withing 

 of its target, but introduce two slack variables ,  to allow

outliers. We therefore minimize the loss

while requiring for every example  for .
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SVM For Regression
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Figure 7.8 of Pattern Recognition and Machine Learning.

The Langrangian after substituting for , ,  and  we get that we want to minimize

subject to

The prediction is then given by

w b ξ− ξ+

L =  (a  −
i

∑ i
+ a  )t  −i

−
i ε  (a  +

i

∑ i
+ a  ) −i

−
   (a  −

2
1

i

∑
j

∑ i
+ a  )(a  −i

−
j
+ a  )K(x  ,x  )j

−
i j

0 ≤ a  , a  ≤i
+

i
− C.

y(z) =  (a  −
i

∑ i
+ a  )K(z,x  ) +j

−
i b.

3/22NPFL129, Lecture 9 SVR TF-IDF NaiveBayes MultivariateGaussian Clustering KMeans GaussianMixture



Term Frequency – Inverse Document Frequency

To represent a document, we might consider it a bag of words, and create a feature space with
a dimension of every word. We might represent the words as:

binary indicators: 1/0 depending on whether a word is present in a document or not;
term frequency TF: relative frequency of the term in the document;

inverse document frequency IDF: we might represent the term using its self-information,
where terms with lower probability have higher weights;

TF-IDF: product of  and .

TF(t) =  

number of terms in the document
number of occurrences of t in the document

IDF(t) = log  

number of documents containing term t[optionally + 1]
number of documents

TF(t) IDF(t)
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Naive Bayes Classifier

Consider a discriminative classifier modelling probabilities

We might use Bayes theorem and rewrite it to

The so-called Naive Bayes classifier assumes all  are independent given , so we can write

as

p(C  ∣x) =k p(C  ∣x  ,x  , … ,x  ).k 1 2 D

p(C  ∣x) =k  .
p(x)

p(C  )p(x∣C  )k k
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Naive Bayes Classifier

There are several used naive Bayes classifiers, depending on the distribution :

Gaussian NB: the probability  is modelled as a normal distribution ;

Multinomial NB: the probability  is proportional to , so the

is a linear model in the log space with  and . Denoting  as

the sum of features  for a class , the probabilities  are usually estimated as

where  is a smoothing parameter accounting for terms not appearing in any document of

class .

p(x  ∣C  )i k

p(x  ∣C  )i k N (μ  ,σ  )i,k i,k
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∑ i i,k b + x wT

b = log p(C  )k w  =i log p  i,k n  i,k

x  i C  k p  i,k

p  =i,k  

 n  + αD∑j j,k
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Naive Bayes Classifier

Bernoulli NB: when the input features are binary, the  might also be a Bernoulli

distribution

Similarly to multinomial NB, the probabilities are usually estimated as

The difference with respect to Multinomial NB is that Bernoulli NB explicitly models also
an absence of terms.

Given that a Multinomial/Bernoulli NB fits  as a linear model and a logistic regression

fits  as a log-linear model, naive Bayes and logistic regression form a so-called

generative-discriminative pair, where the naive Bayes is a generative model, while logistic
regression is a discriminative model.

p(x  ∣C  )i k

p(x  ∣C  ) =i k p  ⋅i,k
x  i (1 − p  ) .i,k

(1−x  )i

p  =i,k  .
number of documents of class k + 2α

number of documents of class k with nonzero feature i + α

p(C  ,x)k

p(C  ∣x)k
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Multivariate Gaussian Distribution

Recall that

For -dimensional vector , the multivariate Gaussian distribution takes the form

N (x;μ,σ ) =2
 exp −  . 

2πσ2

1
(

2σ2

(x − μ)2

)

D x

N (x∣μ,Σ) =def
 exp −  (x − μ) Σ (x − μ) .
 (2π) ∣Σ∣D

1
(

2
1 T −1 )
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Multivariate Gaussian Distribution

The  is a covariance matrix, and it is symmetrical. If we represent it using its eigenvectors 

and _eigenvalues , we get

from which we can see that the constant surfaces of the multivariate Gaussian distribution are

ellipsoids centered at , with axes oriented at  with scaling factors .
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Figure 2.7 of Pattern Recognition and Machine Learning.
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Figure 2.8 of Pattern Recognition and Machine Learning.
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Clustering

Clustering is an unsupervised machine learning technique, which given input data tries to divide
them into some number of groups, or clusters.

The number of clusters might be given in advance, or should also be inferred.

When clustering documents, we usually use TF-IDF normalized so that each feature vector has
length 1 (i.e., L2 normalization).
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K-Means Clustering

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Let each cluster be specified by a point . Further, let  be a binary

indicator variables describing whether input example  is assigned to cluster , and let each

cluster be specified by a point , usually called the cluster center.

Our objective function  which we aim to minimize is

x  ,x  , … ,x  1 2 N N D
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μ  , … ,μ  1 K z  ∈i,k {0, 1}
x  i k
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J
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i,k i μ  ∣∣ .k
2
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K-Means Clustering

To find out the cluster centers  and input example assignments , we use the following

iterative algorithm (which could be considered a coordinate descent):

1. compute the best possible . It is easy to see that the smallest  is achieved by

2. compute best possible . By computing a derivative with

respect to , we get

μ  i z  i,k
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2

  otherwise.
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K-Means Clustering
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Figure 9.1 of Pattern Recognition and Machine Learning.
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K-Means Clustering
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Figure 9.2 of Pattern Recognition and Machine Learning.

It is easy to see that:

updating the cluster assignment 

 decreases the loss  or keeps

it the same;
updating the cluster centers again
decreases the loss  or keeps it

the same.

K-Means clustering therefore
converges to a local optimum.
However, it is quite sensitive to the starting initialization:

It is common practise to run K-Means algorithm multiple times with different initialization
and use the result with lowest  (scikit-learn uses n_init=10 by default).

There exist better initialization schemes, a frequently used one is k-means++, where the
first cluster center is chosen randomly and others are chosen proportionally to the square of
their distance to the nearest cluster center.

z  i,k J

J

J
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K-Means Clustering
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Figure 9.3 of Pattern Recognition and Machine Learning.
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Gaussian Mixture

Let  be a collection of  input examples, each being a -dimensional vector 

. Let , the number of target clusters, be given.

Our goal is to represent the data as a Gaussian mixture, which is a combination of  Gaussian

in the form

Therefore, each cluster is parametrized as .

Let  be a -dimensional random variable, such that exactly one  is 1, denoting

to which cluster a training example belongs. Let the marginal distribution of  be

Therefore, .

x  ,x  , … ,x  1 2 N N D

x  ∈i RD K

K

p(x) =  π  N (x∣μ  ,Σ  ).
k=1

∑
K

k k k

N (x∣μ  ,Σ  )k k

z ∈ {0, 1}K K z  k

z  k

p(z  =k 1) = π  .k

p(z) =  π  ∏k k
z  k
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Gaussian Mixture

We can write

and the probability of the whole clustering is therefore

To fit a Gaussian mixture model, we start with maximum likelihood estimation and minimize

p(x) =  p(z)p(x∣z) =
z

∑  π  N (x∣μ  ,Σ  )
k=1

∑
K

k k k

log p(X∣π,μ,Σ) =  log  π  N (x  ∣μ  ,Σ  ) .
i=1

∑
N

(
k=1

∑
K

k i k k )

L(X) = −  log  π  N (x  ∣μ  ,Σ  )
i

∑
k=1

∑
K

k i k k
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Gaussian Mixture

The derivative of the loss with respect to  gives

Denoting , setting the derivative equal to zero and multiplying by 

, we get

The  are usually called responsibilities and denote the probability . Note

that the responsibilities depend on , so the above equation is not an analytical solution for 

, but can be used as an iterative algorithm for converting to local optimum.

μ  k

 =
∂μ  k

∂L(X)
−   Σ  (x  −

i

∑
 π  N (x ∣μ ,Σ  )∑l=1

K
l i l l

π  N (x  ∣μ  ,Σ  )k i k k
k
−1

i μ  )k

r(z  ) =i,k  

 π  N (x  ∣μ  ,Σ  )∑
l=1
K

l i l l

π  N (x  ∣μ  ,Σ  )k i k k

Σ  k
−1

μ  =k  .
 r(z  )∑i i,k

 r(z  )x  ∑i i,k i

r(z  )i,k p(z  =k 1∣x  )i
μ  k

μ  k
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Gaussian Mixture

For , we again compute the derivative of the loss, which is technically complicated (we need

to compute derivative with respect a matrix, and also we need to differentiate matrix
determinant) and results in an analogous equation

To minimize the loss with respect to , we need to include the constraint , so we

form a Lagrangian , and get

from which we get  and therefore

Σ  k

Σ  =k  .
 r(z  )∑i i,k

 r(z  )(x  − μ  )(x  − μ  )∑i i,k i k i k
T

π  π  =∑k k 1
L(X) + λ  π  − 1(∑k k )

0 =   +
i

∑
 π  N (x ∣μ ,Σ  )∑l=1

K
l i l l

N (x  ∣μ  ,Σ  )i k k
λ,

π  ∝k  r(z  )∑i i,k

π  =k 1/N ⋅  r(z  ).∑
i

i,k
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Gaussian Mixture
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       

        

 

Algorithm 9.2.2 of Pattern Recognition and Machine Learning.
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Figure 9.5 of Pattern Recognition and Machine Learning.








  








  






 

Figure 2.23 of Pattern Recognition and Machine Learning.
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Figure 9.8 of Pattern Recognition and Machine Learning.
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