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Decision Trees

The idea of decision trees is to partition the input space into usually cuboid regions and solving
each region with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, …
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Figure 14.6 of Pattern Recognition and Machine Learning.
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Figure 14.5 of Pattern Recognition and Machine Learning.
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Regression Decision Trees

Assume we have an input dataset , . At the beginning, the decision tree is

just a single node and all input examples belong to this node. We denote  the set of training

example indices belonging to a leaf node .

For each leaf, our model will predict the average of the training examples belonging to that leaf,
.

We will use a criterion  telling us how uniform or homogeneous are the training examples

belonging to a leaf node  – for regression, we will employ the sum of squares error between

the examples belonging to the node and the predicted value in that node; this is proportional to
variance of the training examples belonging to the leaf node , multiplied by the number of the

examples. Note that even if it not mean squared error, it is sometimes denoted as MSE.
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Tree Construction

To split a node, the goal is to find a feature and its value such that when splitting a node 

into  and , the resulting regions decrease the overall criterion value the most, i.e., the

difference  is the lowest.

Usually we have several constraints, we mention on the most common ones:

maximum tree depth: we do not split nodes with this depth;
minimum examples to split: we only split nodes with this many training examples;
maximum number of leaf nodes

The tree is usually built in one of two ways:

if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner,
recursively splitting every leaf until some above constraint is invalidated;
if the maximum number of leaf nodes is give, we usually split such leaf  where the

criterion difference  is the lowest.
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Classification Decision Trees

For multi-class classification, we predict such class most frequent in the training examples
belonging to a leaf .

To define the criterions, let us denote the average probability for class  in a region  at 

.

For classification trees, one of the following two criterions is usually used:

Gini index:

Entropy Criterion
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Binary Gini as (M)SE Loss

Recall that  denotes the set of training example indices belonging to a leaf node , let 

 be the number of examples with target value 0,  be the number of examples with

target value 1, and let .

Consider sum of squares loss .

By setting the derivative of the loss to zero, we get that the  minimizing the loss fulfils 

, i.e., .

The value of the loss is then
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Entropy as NLL Loss

Again let  denote the set of training example indices belonging to a leaf node , let 

be the number of examples with target value , and let .

Consider a distribution  on  classes and non-averaged NLL loss .

By setting the derivative of the loss with respect to  to zero (using a Lagrangian with

constraint ), we get that the  minimizing the loss fulfils .

The value of the loss with respect to  is then
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Ensembling

Ensembling is combining several models with a goal of reaching higher performance.

The simplest approach is to train several independent models and then averaging their output.

Given that for independent identically distributed random values  we have

we get that

Therefore, if the models exhibit independent errors, these errors will cancel out with more
models.
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Bagging

 

Figure 7.5, page 257 of Deep Learning Book, http://deeplearningbook.org

For neural network models, the simple ensembling is usually enough, given that the loss has
many local minima, so the models tend to be quite independent just when using different
initialization.

However, algorithms with a convex loss functions usually converge to the same optimum
independent on randomization.

In these cases, we can use bagging, which stands for bootstrap aggregation.

In bagging, we construct a different dataset for
every model to be trained. We construct it
using bootstrapping – we sample as many
training instances as the original dataset has,
but with replacement.

Such dataset is sampled using the same
empirical data distribution and has the same
size, but is not identical.
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Random Forests

Bagging of data combined with random subset of features (sometimes called feature bagging).
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https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz
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Random Forests

Random Subset of Features
During each node split, only a random subset of features is considered when finding a best
split. A fresh random subset is used for every node.

Extra Trees
The so-called extra trees are even more randomized, not finding the best possible feature value
when choosing a split, but considering only boundaries with a uniform distribution within a
feature's empirical range (minimum and maximum in the training data).
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Gradient Boosting

 

Figure 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting

The original idea was to set  as a direction minimizing the residual

loss and then finding a suitable constant  so that  is as small as

possible.

L(W ) =  ℓ(t  , y(x  ))+
i

∑ i i   λ∣∣W  ∣∣
k

∑
2
1

k
2

L (W ) =(t)
 ℓ(t  , y +

i

∑ i
(t−1) f  (x  ))+t i  λ∣∣W  ∣∣

2
1

t
2

f  (x  ) ≈t i −  ∂y (x  )(t−1)
i

∂ℓ(t  ,y (x  ))i
(t−1)

i

γ  t  ℓ(t  , y +∑i i
(t−1) γ  f  (x  ))t t i

13/18NPFL129, Lecture 8 Refresh Gini and Entropy Losses Ensembling RF Gradient Boosing



Gradient Boosting

However, a more principled approach was suggested later.

Denoting

we can expand the objective  using a second-order approximation to
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Gradient Boosting

We recall that we denote indices of instances belonging to a node  as , and let us denote

the prediction for the node  as . Then we can rewrite

By setting a derivative with respect to  to zero, we get the optimal weight for a node :
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Gradient Boosting

Substituting the optimum weights to the loss, we get

which can be used as a splitting criterion.

 

Figure 2 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting
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Algorithm 1 of the paper "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting

Furthermore, gradient boosted trees frequently use:

data subsampling: either bagging, or use only a fraction of the original training;
feature bagging;
shrinkage: multiply each trained tree by a learning rate , which reduces influence of each

individual tree and leaves space for future optimization.

Implementations
There are several efficient implementations, capable of distributed processing of data larger than
available memory:

XGBoost
LightGBM

Playground
You can explore the Gradient Boosted Trees playground.

α
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https://ufal.mff.cuni.cz/~straka/courses/npfl129/1920/slides/08/gbt/

