SMO Algorithm

Milan Straka

甸 December 02, 2019

Charles University in Prague
Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

When dimensionality of input is D, one step of SGD takes $\mathcal{O}\left(D^{3}\right)$.
Surprisingly, we can do better under some circumstances. We start by noting that we can write the parameters \boldsymbol{w} as a linear combination of the input features $\varphi\left(\boldsymbol{x}_{i}\right)$.
By induction, $\boldsymbol{w}=0=\sum_{i} 0 \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, and assuming $\boldsymbol{w}=\sum_{i} \beta_{i} \cdot \varphi\left(\boldsymbol{x}_{i}\right)$, after a SGD update we get

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}+\alpha \sum_{i}\left(t_{i}-\boldsymbol{w}^{T} \varphi\left(\boldsymbol{x}_{i}\right)\right) \varphi\left(\boldsymbol{x}_{i}\right) \\
& =\sum_{i}\left(\beta_{i}+\alpha\left(t_{i}-\boldsymbol{w}^{T} \varphi\left(\boldsymbol{x}_{i}\right)\right)\right) \varphi\left(\boldsymbol{x}_{i}\right) .
\end{aligned}
$$

A individual update is $\beta_{i} \leftarrow \beta_{i}+\alpha\left(t_{i}-\boldsymbol{w}^{T} \varphi\left(\boldsymbol{x}_{i}\right)\right)$, and substituting for \boldsymbol{w} we get

$$
\beta_{i} \leftarrow \beta_{i}+\alpha\left(t_{i}-\sum_{j} \beta_{j} \varphi\left(\boldsymbol{x}_{j}\right)^{T} \varphi\left(\boldsymbol{x}_{i}\right)\right)
$$

We can formulate the alternative linear regression algorithm (it would be called a dual formulation):

Input: Dataset $\left(\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in \mathbb{R}^{N}\right)$, learning rate $\alpha \in \mathbb{R}^{+}$.

- Set $\beta_{i} \leftarrow 0$
- Compute all values $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\varphi\left(\boldsymbol{x}_{i}\right)^{T} \varphi\left(\boldsymbol{x}_{j}\right)$
- Repeat
- Update the coordinates, either according to a full gradient update:
- $\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}+\alpha(\boldsymbol{t}-K \boldsymbol{\beta})$
- or alternatively use single-batch SGD, arriving at:
- for i in random permutation of $\{1, \ldots, N\}$:
- $\beta_{i} \leftarrow \beta_{i}+\alpha\left(t_{i}-\sum_{j} \beta_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)$

In vector notation, we can write $\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}+\alpha(\boldsymbol{t}-K \boldsymbol{\beta})$.
The predictions are then performed by computing $y(\boldsymbol{x})=\boldsymbol{w}^{T} \varphi(\boldsymbol{x})=\sum_{i} \beta_{i} \boldsymbol{\varphi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\varphi}(\boldsymbol{x})$.

Assume we have a dataset $\boldsymbol{X} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in\{-1,1\}^{N}$, feature map φ and model

$$
y(\boldsymbol{x}) \stackrel{\text { def }}{=} \boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b
$$

We already know that the distance of a point \boldsymbol{x}_{i} to the decision boundary is

$$
\frac{\left|y\left(\boldsymbol{x}_{i}\right)\right|}{\|\boldsymbol{w}\|}=\frac{t_{i} y\left(\boldsymbol{x}_{i}\right)}{\|\boldsymbol{w}\|}
$$

We therefore want to maximize

Figure 4.1 of Pattern Recognition and Machine Learning.

$$
\underset{w, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b\right)\right] .
$$

However, this problem is difficult to optimize directly.

Because the model is invariant to multiplying \boldsymbol{w} and b by a constant, we can say that for the points closest to the decision boundary, it will hold that

$$
t_{i} y\left(\boldsymbol{x}_{i}\right)=1
$$

Then for all the points we will have $t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1$ and we can simplify

$$
\underset{w, b}{\arg \max } \frac{1}{\|\boldsymbol{w}\|} \min _{i}\left[t_{i}\left(\boldsymbol{\varphi}(\boldsymbol{x})^{T} \boldsymbol{w}+b\right)\right]
$$

to

$$
\underset{w, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1
$$

Support Vector Machines

In order to solve the constrained problem of

$$
\underset{w, b}{\arg \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1
$$

we write the Lagrangian with multipliers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right)$ as

$$
L=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i} a_{i}\left[t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right] .
$$

Setting the derivatives with respect to \boldsymbol{w} and b to zero, we get

$$
\begin{aligned}
\boldsymbol{w} & =\sum_{i} a_{i} t_{i} \varphi\left(\boldsymbol{x}_{i}\right) \\
0 & =\sum_{i} a_{i} t_{i}
\end{aligned}
$$

Substituting these to the Lagrangian, we get

$$
L=\sum_{i} a_{i}-\frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

with respect to the constraints $\forall_{i}: a_{i} \geq 0, \sum_{i} a_{i} t_{i}=0$ and kernel $K(\boldsymbol{x}, \boldsymbol{z})=\varphi(\boldsymbol{x})^{T} \varphi(\boldsymbol{z})$.
The solution of this Lagrangian will fulfil the KKT conditions, meaning that

$$
\begin{aligned}
a_{i} & \geq 0 \\
t_{i} y\left(\boldsymbol{x}_{i}\right)-1 & \geq 0 \\
a_{i}\left(t_{i} y\left(\boldsymbol{x}_{i}\right)-1\right) & =0
\end{aligned}
$$

Therefore, either a point is on a boundary, or $a_{i}=0$. Given that the predictions for point \boldsymbol{x} are given by $y(\boldsymbol{x})=\sum a_{i} t_{i} K\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)+b$, we need to keep only the points on the boundary, the so-called support vectors.

The dual formulation allows us to use non-linear kernels.
Figure 7.2 Example of synthetic data from two classes in two dimensions showing contours of constant $y(\mathbf{x})$ obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

Until now, we assumed the data to be linearly separable - the hard-margin SVM variant. We now relax this condition to arrive at soft-margin SVM. The idea is to allow points to be in the margin or even on the wrong side of the decision boundary. We introduce slack variables $\xi_{i} \geq 0$, one for each training instance, defined as

$$
\xi_{i}= \begin{cases}0 & \text { for points fulfilling } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1 \\ \left|t_{i}-y\left(\boldsymbol{x}_{i}\right)\right| & \text { otherwise }\end{cases}
$$

Therefore, $\xi_{i}=0$ signifies a point outside of margin, $0<\xi_{i}<1$ denotes a point inside the margin, $\xi_{i}=1$ is a point on the decision boundary and $\xi_{i}>1$ indicates the point is on the opposite side of the separating hyperplane.

Therefore, we want to optimize

$$
\underset{w, b}{\arg \min } C \sum_{i} \xi_{i}+\frac{1}{2}\|\boldsymbol{w}\|^{2} \text { given that } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
$$

We again create a Lagrangian, this time with multipliers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right)$ and also $\boldsymbol{\mu}=$ $\left(\mu_{1}, \ldots, \mu_{N}\right)$:

$$
L=\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{i} \xi_{i}-\sum_{i} a_{i}\left[t_{i} y\left(\boldsymbol{x}_{i}\right)-1+\xi_{i}\right]-\sum_{i} \mu_{i} \xi_{i}
$$

Solving for the critical points and substituting for \boldsymbol{w}, b and $\boldsymbol{\xi}$ (obtaining an additional constraint $\mu_{i}=C-a_{i}$ compared to the previous case), we obtain the Lagrangian in the form

$$
L=\sum_{i} a_{i}-\frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

which is identical to the previous case, but the constraints are a bit different:

$$
\forall_{i}: C \geq a_{i} \geq 0 \text { and } \sum_{i} a_{i} t_{i}=0
$$

Using KKT conditions, we can see that the support vectors (examples with $a_{i}>0$) are the ones with $t_{i} y\left(\boldsymbol{x}_{i}\right)=1-\xi_{i}$, i.e., the examples on the margin boundary, inside the margin and on the opposite side of the decision boundary.

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John Platt, 1998) algorithm is used.
Before we introduce it, we start by introducing coordinate descent optimization algorithm.
Consider solving unconstrained optimization problem

$$
\underset{\boldsymbol{w}}{\arg \min } L\left(w_{1}, w_{2}, \ldots, w_{D}\right)
$$

Instead of the usual SGD approach, we could optimize the weights one by one, using the following algorithm

- loop until convergence
- for i in $\{1,2, \ldots, D\}$:
- $w_{i} \leftarrow \arg \min _{w_{i}} L\left(w_{1}, w_{2}, \ldots, w_{D}\right)$
- loop until convergence
- for i in $\{1,2, \ldots, D\}$:
- $w_{i} \leftarrow \arg \min _{w_{i}} L\left(w_{1}, w_{2}, \ldots, w_{D}\right)$

If the inner $\arg \min$ can be performed efficiently, the coordinate descent can be fairly efficient.

Note that we might want to choose w_{i} in different order, for example by trying to choose w_{i} providing the largest decrease of L.

In soft-margin SVM, we try to minimize

$$
L=\sum_{i} a_{i}-\frac{1}{2} \sum_{i} \sum_{j} a_{i} a_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

such that

$$
\forall_{i}: C \geq a_{i} \geq 0 \text { and } \sum_{i} a_{i} t_{i}=0
$$

The KKT conditions for the solution can be reformulated (while staying equivalent) as

$$
\begin{aligned}
a_{i}>0 & \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right) \leq 1, \quad \text { because } a_{i}>0 \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right)=1-\xi_{i} \text { and we have } \xi_{i} \geq 0, \\
a_{i}<C & \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1, \text { because } a_{i}<C \Rightarrow \mu_{i}>0 \Rightarrow \xi_{i}=0 \text { and } t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1-\xi_{i}, \\
0<a_{i}<C & \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right)=1, \text { a combination of both. }
\end{aligned}
$$

At its core, the SMO algorithm is just a coordinate descent.
It tries to find such α_{i} fulfilling the KKT conditions - for soft-margin SVM, KKT conditions are sufficient conditions for optimality (the loss is convex and inequality constraints affine). However, note that because of the $\sum a_{i} t_{i}=0$ constraint we cannot optimize just one a_{i}, because a single a_{i} is determined from the others.

Therefore, in each step we pick two a_{i}, a_{j} coefficients and try to minimize the loss while fulfilling the constraints.

- loop until convergence (until $\forall i: a_{i}<C \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right) \geq 1$ and $a_{i}>0 \Rightarrow t_{i} y\left(\boldsymbol{x}_{i}\right) \leq 1$)
- for i in $\{1,2, \ldots, D\}$, for $j \neq i$ in $\$\{1,2, \ldots, \mathrm{D}\}$:
- $a_{i}, a_{j} \leftarrow \arg \min _{a_{i}, a_{j}} L\left(a_{1}, a_{2}, \ldots, a_{D}\right)$ such that $C \geq a_{i} \geq 0, \sum_{i} a_{i} t_{i}=0$

The SMO is an efficient algorithm, because we can compute the update to a_{i}, a_{j} efficiently, because there exists an closed form solution.
Assume that we are updating a_{i} and a_{j}. Then from the $\sum_{k} a_{k} t_{k}=0$ condition we can write $a_{i} t_{i}=-\sum_{k \neq i} a_{k} t_{k}$. Given that $t_{i}^{2}=1$ and denoting $\zeta=-\sum_{k \neq i, k \neq j} a_{k} t_{k}$, we get

$$
a_{i}=t_{i}\left(\zeta-a_{j} t_{j}\right)
$$

Minimizing $L(\boldsymbol{a})$ with respect to a_{i} and a_{j} then amounts to minimizing a quadratic function of a_{j}, which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing a_{i}, a_{j} such that the L can be minimized the most.

Input: Dataset $\left(\boldsymbol{X} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in\{-1,1\}^{N}\right)$, kernel \boldsymbol{K}, regularization parameter C, tolerance tol, max_passes_without_a_changing value

- Initialize $a_{i} \leftarrow 0, b \leftarrow 0$, passes $\leftarrow 0$
- while passes < max_passes_without_a_changing:
- changed_as $\leftarrow 0$
- for i in $1,2, \ldots, N$:
- $E_{i} \leftarrow y\left(\boldsymbol{x}_{i}\right)-t_{i}$
- if ($a_{i}<C$ and $t_{i} E_{i}<-t o l$) or ($a_{i}>0$ and $t_{i} E_{i}>t o l$):
- Choose $j \neq i$ randomly
- Update a_{i}, a_{j} and b
- changed_as \leftarrow changed_as +1
- if changed_as $=0$: passes \leftarrow passes +1
- else: passes $\leftarrow 0$

Input: Dataset $\left(\boldsymbol{X} \in \mathbb{R}^{N \times D}, \boldsymbol{t} \in\{-1,1\}^{N}\right)$, kernel \boldsymbol{K}, regularization parameter C, tolerance tol, max_passes_without_a_changing value

- Update a_{i}, a_{j}, b :
- Express a_{i} using a_{j}
- Find a_{j} optimizing the loss L quadratic with respect to a_{j}
- Clip a_{j} so that $0 \leq a_{i}, a_{j} \leq C$
- Compute corresponding a_{i}
- Compute b matching to updated a_{i}, a_{j}

We already know that $a_{i}=t_{i}\left(\zeta-a_{j} t_{j}\right)$.
To find a_{j} optimizing the loss L, we use the formula for locating a vertex of a parabola

$$
a_{j}^{\mathrm{new}} \leftarrow a_{j}-\frac{\partial L / \partial a_{j}}{\partial^{2} L / \partial a_{j}^{2}},
$$

which is in fact one Newton-Raphson iteration step.
Denoting $E_{j} \stackrel{\text { def }}{=} y\left(\boldsymbol{x}_{j}\right)-t_{j}$, we can compute the first derivative as

$$
\frac{\partial L}{\partial a_{j}}=t_{j}\left(E_{i}-E_{j}\right)
$$

and the second derivative as

$$
\frac{\partial^{2} L}{\partial a_{j}^{2}}=2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)
$$

If the second derivative is positive, we know that the vertex is really a minimum, in which case we get

$$
a_{j}^{\text {new }} \leftarrow a_{j}-t_{j} \frac{E_{i}-E_{j}}{2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)}
$$

We then clip a_{j} so that $0 \leq a_{i}, a_{j} \leq C$, by clipping a_{j} to range $[L, H]$ with

$$
\begin{aligned}
& t_{i}=t_{j} \Rightarrow L=\max \left(0, a_{i}+a_{j}-C\right), H=\min \left(C, a_{i}+a_{j}\right) \\
& t_{i} \neq t_{j} \Rightarrow L=\max \left(0, a_{j}-a_{i}\right), H=\min \left(C, C+a_{j}-a_{i}\right)
\end{aligned}
$$

Finally we set

$$
a_{i}^{\text {new }} \leftarrow a_{i}-t_{i} t_{j}\left(a_{j}^{\text {new }}-a_{j}\right)
$$

To arrive at the bias update, we consider the KKT condition that for $0<a_{j}^{\text {new }}<C$ it must hold that $t_{j} y\left(\boldsymbol{x}_{j}\right)=1$. Combining it with with $b=E_{j}+t_{j}-\sum_{l} a_{l} t_{l} K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$, we get the following value

$$
b_{j}=b-E_{j}-t_{i}\left(a_{i}^{\text {new }}-a_{i}\right) K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-t_{j}\left(a_{j}^{\text {new }}-a_{j}\right) K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)
$$

Analogously for $0<a_{i}^{\text {new }}<C$ we get

$$
b_{i}=b-E_{i}-t_{i}\left(a_{i}^{\text {new }}-a_{i}\right) K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-t_{j}\left(a_{j}^{\text {new }}-a_{j}\right) K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}\right)
$$

Finally, if $a_{j}^{\text {new }}, a_{i}^{\text {new }} \in\{0, C\}$, we know that all values between b_{i} and b_{j} fulfil the KKT conditions. We therefore arrive at the following update for bias:

$$
b^{\text {new }}= \begin{cases}b_{i} & \text { if } 0<a_{i}^{\text {new }}<C \\ b_{j} & \text { if } 0<a_{j}^{\text {new }}<C \\ \frac{b_{i}+b_{j}}{2} & \text { otherwise }\end{cases}
$$

There are two general approach for building a K-class classifier by combining several binary classifiers:

- one-versus-rest scheme: K binary classifiers are constructed, the i-th separating instances of class i from all others; during prediction, the one with highest probability is chosen
- the binary classifiers need to return calibrated probabilities (not SVM)
- one-versus-one scheme: $\binom{K}{2}$ binary classifiers are constructed, one for each (i, j) pair of class indices; during prediction, the class with the majority of votes wins (used by SVM) However, both of the above approaches suffer from serious difficulties, because training the binary classifiers separately creates usually several regions which are ambiguous.

