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Kernel Linear Regression

When dimensionality of input is , one step of SGD takes .

Surprisingly, we can do better under some circumstances. We start by noting that we can write
the parameters  as a linear combination of the input features .

By induction, , and assuming , after a SGD update

we get

A individual update is , and substituting for  we get

D O(D )3

w φ(x  )i

w = 0 =  0 ⋅∑i φ(x  )i w =  β  ⋅∑i i φ(x  )i

  

w ←

=

w + α  (t  − w φ(x  ))φ(x  )
i

∑ i
T

i i

 (β  + α(t  − w φ(x  )))φ(x  ).
i

∑ i i
T

i i

β  ←i β  +i α(t  −i w φ(x  ))T
i w

β  ←i β  +i α(t  −i  β  φ(x  ) φ(x  )).∑
j

j j
T

i
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Kernel Linear Regression

We can formulate the alternative linear regression algorithm (it would be called a dual
formulation):

Input: Dataset ( , ), learning rate . 

Set 

Compute all values 

Repeat
Update the coordinates, either according to a full gradient update:

or alternatively use single-batch SGD, arriving at:
for  in random permutation of :

In vector notation, we can write .

The predictions are then performed by computing .

X = {x  ,x  , … ,x  } ∈1 2 N RN×D t ∈ RN α ∈ R+

β  ←i 0
K(x  ,x ) =i j φ(x  ) φ(x  )i

T
j

β ← β + α(t − Kβ)

i {1, … ,N}

β  ←i β +i α(t  −i  β  K(x  ,x  ))∑j j i j

β ← β + α(t − Kβ)

y(x) = w φ(x) =T
 β  φ(x  ) φ(x)∑i i i

T
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Support Vector Machines



 

Figure 4.1 of Pattern Recognition and Machine Learning.

Assume we have a dataset , , feature map  and model

We already know that the distance of a point  to the decision

boundary is

We therefore want to maximize

However, this problem is difficult to optimize directly.

X ∈ RN×D t ∈ {−1, 1}N φ

y(x) =def
φ(x) w +T b.

x  i

 =
∣∣w∣∣

∣y(x  )∣i
 .

∣∣w∣∣
t  y(x  )i i

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)].
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Support Vector Machines

Because the model is invariant to multiplying  and  by a constant, we can say that for the

points closest to the decision boundary, it will hold that

Then for all the points we will have  and we can simplify

to

w b

t  y(x  ) =i i 1.

t  y(x  ) ≥i i 1

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)]

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1.
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Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers  as

Setting the derivatives with respect to  and  to zero, we get

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1,

a = (a  , … , a  )1 N

L =  ∣∣w∣∣ −
2
1 2

 a  [t  y(x  ) −
i

∑ i i i 1].

w b

  

w =

0 =

 a  t  φ(x  )
i

∑ i i i

 a  t  

i

∑ i i
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Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints ,  and kernel 

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point is on a boundary, or . Given that the predictions for point  are

given by , we need to keep only the points on the boundary, the

so-called support vectors.

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  )
2
1

i

∑
j

∑ i j i j i j

∀  :i a  ≥i 0  a  t  =∑i i i 0 K(x, z) = φ(x) φ(z).T

  

a  i

t  y(x  ) − 1i i

a  (t  y(x  ) − 1)i i i

≥ 0

≥ 0

= 0.

a  =i 0 x

y(x) = a  t  K(x,x  ) +∑ i i i b
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Support Vector Machines

The dual formulation allows us to use non-linear kernels.

      
    
   
     
    
  
    
   


 

Figure 7.2 of Pattern Recognition and Machine Learning.
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Support Vector Machines for Non-linearly Separable Data

Until now, we assumed the data to be linearly separable – the 
hard-margin SVM variant. We now relax this condition to arrive at soft-margin SVM. The
idea is to allow points to be in the margin or even on the wrong side of the decision boundary.
We introduce slack variables , one for each training instance, defined as

Therefore,  signifies a point outside of margin,  denotes a point inside the

margin,  is a point on the decision boundary and  indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

ξ  ≥i 0

ξ  =i   {
0
∣t  − y(x  )∣i i

 for points fulfilling t  y(x  ) ≥ 1,i i

 otherwise.

ξ  =i 0 0 < ξ  <i 1
ξ  =i 1 ξ  >i 1

 C  ξ  +
w,b

arg min
i

∑ i  ∣∣w∣∣  given that  t  y(x  ) ≥
2
1 2

i i 1 − ξ   and ξ  ≥i i 0.
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Support Vector Machines for Non-linearly Separable Data

We again create a Lagrangian, this time with multipliers  and also 

:

Solving for the critical points and substituting for ,  and  (obtaining an additional

constraint  compared to the previous case), we obtain the Lagrangian in the form

which is identical to the previous case, but the constraints are a bit different:

a = (a  , … , a  )1 N μ =
(μ  , … ,μ  )1 N

L =  ∣∣w∣∣ +
2
1 2 C  ξ  −

i

∑ i  a  [t  y(x  ) −
i

∑ i i i 1 + ξ  ]−i  μ  ξ  .
i

∑ i i

w b ξ

μ  =i C − a  i

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  ),
2
1

i

∑
j

∑ i j i j i j

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.
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Support Vector Machines for Non-linearly Separable Data

Using KKT conditions, we can see that the support vectors (examples with ) are the

ones with , i.e., the examples on the margin boundary, inside the margin and

on the opposite side of the decision boundary.

  







 

Figure 7.4 of Pattern Recognition and Machine Learning.

a  >i 0
t  y(x  ) =i i 1 − ξ  i

11/22NPFL129, Lecture 7 Refresh SMO AlgorithmSketch UpdateRules MultiSVM



Sequential Minimal Optimization Algorithm

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John
Platt, 1998) algorithm is used.

Before we introduce it, we start by introducing coordinate descent optimization algorithm.

Consider solving unconstrained optimization problem

Instead of the usual SGD approach, we could optimize the weights one by one, using the
following algorithm

loop until convergence
for  in :

 L(w  ,w  , … ,w  ).
w

arg min 1 2 D

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D
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Sequential Minimal Optimization Algorithm
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




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











 

CS229 Lecture 3 Notes, http://cs229.stanford.edu/notes/cs229-notes3.pdf

loop until convergence
for  in :

If the inner  can be performed efficiently, the

coordinate descent can be fairly efficient.

Note that we might want to choose  in different

order, for example by trying to choose  providing the

largest decrease of .

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D

arg min

w  i

w  i

L
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Sequential Minimal Optimization Algorithm

In soft-margin SVM, we try to minimize

such that

The KKT conditions for the solution can be reformulated (while staying equivalent) as

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  ),
2
1

i

∑
j

∑ i j i j i j

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.

  

a  > 0i

a  < Ci

0 < a  < Ci

⇒ t  y(x  ) ≤ 1,   because a  > 0 ⇒ t  y(x  ) = 1 − ξ   and we have ξ  ≥ 0,i i i i i i i

⇒ t  y(x  ) ≥ 1,   because a  < C ⇒ μ  > 0 ⇒ ξ  = 0 and t  y(x  ) ≥ 1 − ξ  ,i i i i i i i i

⇒ t  y(x  ) = 1,   a combination of both.i i
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Sequential Minimal Optimization Algorithm

At its core, the SMO algorithm is just a coordinate descent.

It tries to find such  fulfilling the KKT conditions – for soft-margin SVM, KKT conditions

are sufficient conditions for optimality (the loss is convex and inequality constraints affine).

However, note that because of the  constraint we cannot optimize just one ,

because a single  is determined from the others.

Therefore, in each step we pick two  coefficients and try to minimize the loss while

fulfilling the constraints.

loop until convergence (until  and )

for  in , for  in ${1, 2, …, D}:

 such that , 

α  i

a  t  =∑ i i 0 a  i

a  i

a  , a  i j

∀i : a  <i C ⇒ t  y(x  ) ≥i i 1 a  >i 0 ⇒ t  y(x ) ≤i i 1
i {1, 2, … ,D} j  = i

a  , a  ←i j arg min  L(a  , a  , … , a  )a  ,a  i j 1 2 D C ≥ a  ≥i 0  a  t  =∑i i i 0
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Sequential Minimal Optimization Algorithm

The SMO is an efficient algorithm, because we can compute the update to  efficiently,

because there exists an closed form solution.

Assume that we are updating  and . Then from the  condition we can write 

. Given that  and denoting , we get

Minimizing  with respect to  and  then amounts to minimizing a quadratic function of

, which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing  such that the  can

be minimized the most.

a  , a  i j

a  i a  j  a  t  =∑k k k 0
a  t  =i i −  a  t  ∑k  =i k k t  =i

2 1 ζ = −  a  t  ∑k  =i,k  =j  k k

a =i t  (ζ −i a  t  ).j j

L(a) a  i a  j

a  j

a  , a  i j L
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Sequential Minimal Optimization Algorithm Sketch

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value 

Initialize , , 

while :

for  in :

if (  and ) or (  and ):

Choose  randomly

Update ,  and 

if : 

else: 

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a  ←i 0 b ← 0 passes ← 0
passes < max_passes_without_a_changing

changed_as ← 0
i 1, 2, … ,N
E  ←i y(x  ) −i t  i

a  <i C t  E  <i i −tol a  >i 0 t  E  >i i tol

j  = i

a  i a  j b

changed_as ← changed_as+ 1

changed_as = 0 passes ← passes+ 1
passes ← 0
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Sequential Minimal Optimization Algorithm Sketch

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value 

Update , , :

Express  using 

Find  optimizing the loss L quadratic with respect to 

Clip  so that 

Compute corresponding 

Compute  matching to updated , 

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a  i a  j b

a  i a  j

a  j a  j

a  j 0 ≤ a  , a  ≤i j C

a  i

b a  i a  j
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Sequential Minimal Optimization Update Rules

We already know that 

To find  optimizing the loss , we use the formula for locating a vertex of a parabola

which is in fact one Newton-Raphson iteration step.

Denoting , we can compute the first derivative as

and the second derivative as

a  =i t  (ζ −i a  t  ).j j

a  j L

a  ←j
new a  −j  ,

∂ L/∂a  

2
j
2

∂L/∂aj

E  j =
def

y(x  ) −j t  j

 =
∂a  j

∂L
t  (E  −j i E  )j

 =
∂a  j

2
∂ L2

2K(x  ,x  ) −i j K(x  ,x  ) −i i K(x  ,x  ).j j
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Sequential Minimal Optimization Update Rules

If the second derivative is positive, we know that the vertex is really a minimum, in which case
we get

We then clip  so that , by clipping  to range  with

Finally we set

a  ←j
new a  −j t   .j 2K(x  ,x  ) − K(x  ,x  ) − K(x  ,x  )i j i i j j

E  − E  i j

a  j 0 ≤ a  , a  ≤i j C a  j [L,H]

  

t  = t  i j

t   = t  i  j

⇒ L = max(0, a  + a  − C),H = min(C, a  + a  )i j i j

⇒ L = max(0, a  − a  ),H = min(C,C + a  − a  ).j i j i

a  ←i
new a  −i t  t  (a  −i j j

new a  ).j
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Sequential Minimal Optimization Update Rules

To arrive at the bias update, we consider the KKT condition that for  it must

hold that . Combining it with with , we get the

following value

Analogously for  we get

Finally, if , we know that all values between  and  fulfil the KKT

conditions. We therefore arrive at the following update for bias:

0 < a  <j
new C

t  y(x  ) =j j 1 b = E  +j t  −j  a  t  K(x  ,x  )∑l l l j l

b  =j b − E  −j t  (a  −i i
new a )K(x  ,x  ) −i i j t  (a  −j j

new a )K(x  ,x  ).j j j

0 < a  <i
new C

b  =i b − E  −i t  (a  −i i
new a )K(x  ,x  ) −i i i t  (a  −j j

new a )K(x  ,x  ).j j i

a  , a  ∈j
new

i
new {0,C} b  i b  j

b =new
   

⎩⎪⎪
⎨
⎪⎪⎧b  i

b  j

 2
b  +b  i j

if  0 < a  < Ci
new

if  0 < a  < Cj
new

otherwise.
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Multiclass SVM
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Figure 4.2 of Pattern Recognition and Machine Learning.

There are two general approach for building a -class classifier by combining several binary

classifiers:

one-versus-rest scheme:  binary classifiers are constructed, the -th separating instances

of class  from all others; during prediction, the one with highest probability is chosen

the binary classifiers need to return calibrated probabilities (not SVM)

one-versus-one scheme:  binary classifiers are constructed, one for each  pair of

class indices; during prediction, the class with the majority of votes wins (used by SVM)

However, both of the above approaches suffer
from serious difficulties, because training the
binary classifiers separately creates usually
several regions which are ambiguous.

K

K i

i

 ( 2
K) (i, j)
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