
NPFL129, Lecture 6

Soft-margin SVM, SMO

Algorithm, Decision Trees
Milan Straka

November 25, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Kernel Linear Regression

When dimensionality of input is , one step of SGD takes .

Surprisingly, we can do better under some circumstances. We start by noting that we can write
the parameters as a linear combination of the input features .

By induction, , and assuming , after a SGD update

we get

A individual update is , and substituting for we get

D O(D)3

w φ(x)i

w = 0 = 0 ⋅∑i φ(x)i w = β ⋅∑i i φ(x)i

w ←

=

w + α (t − w φ(x))φ(x)
i

∑ i
T

i i

 (β + α(t − w φ(x)))φ(x).
i

∑ i i
T

i i

β ←i β +i α(t −i w φ(x))T
i w

β ←i β +i α(t −i β φ(x) φ(x)).∑
j

j j
T

i

2/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Kernel Linear Regression

We can formulate the alternative linear regression algorithm (it would be called a dual
formulation):

Input: Dataset (,), learning rate .

Set

Compute all values

Repeat
Update the coordinates, either according to a full gradient update:

or alternatively use single-batch SGD, arriving at:
for in random permutation of :

In vector notation, we can write .

The predictions are then performed by computing .

X = {x ,x , … ,x } ∈1 2 N RN×D t ∈ RN α ∈ R+

β ←i 0
K(x ,x) =i j φ(x) φ(x)i

T
j

β ← β + α(t − Kβ)

i {1, … ,N}

β ←i β +i α(t −i β K(x ,x))∑j j i j

β ← β + α(t − Kβ)

y(x) = w φ(x) =T
 β φ(x) φ(x)∑i i i

T

3/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Kernels

We define a kernel corresponding to a feature map as a function

There is quite a lot of theory behind kernel construction. The most often used kernels are:

polynomial kernel or degree

which corresponds to a feature map generating all combinations of up to input features;

Gaussian (or RBF) kernel

corresponding to a scalar product in an infinite-dimensional space (it is in a sense a
combination of polynomial kernels of all degrees).

φ

K(x, z) =def
φ(x) φ(z).t

d

K(x, z) = (γx z +T 1) ,d

d

K(x, z) = e ,−γ∣∣x−z∣∣2

4/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines



Figure 4.1 of Pattern Recognition and Machine Learning.

Assume we have a dataset , , feature map and model

We already know that the distance of a point to the decision

boundary is

We therefore want to maximize

However, this problem is difficult to optimize directly.

X ∈ RN×D t ∈ {−1, 1}N φ

y(x) =def
φ(x) w +T b.

x i

 =
∣∣w∣∣

∣y(x)∣i
 .

∣∣w∣∣
t y(x)i i

 [t (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)].

5/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines

Because the model is invariant to multiplying and by a constant, we can say that for the

points closest to the decision boundary, it will hold that

Then for all the points we will have and we can simplify

to

w b

t y(x) =i i 1.

t y(x) ≥i i 1

 [t (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)]

 ∣∣w∣∣ given that t y(x) ≥
w,b

arg min
2
1 2

i i 1.

6/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers as

Setting the derivatives with respect to and to zero, we get

 ∣∣w∣∣ given that t y(x) ≥
w,b

arg min
2
1 2

i i 1,

a = (a , … , a)1 N

L = ∣∣w∣∣ −
2
1 2

 a [t y(x) −
i

∑ i i i 1].

w b

w =

0 =

 a t φ(x)
i

∑ i i i

 a t

i

∑ i i

7/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints , and kernel

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point is on a boundary, or . Given that the predictions for point are

given by , we need to keep only the points on the boundary, the

so-called support vectors.

L = a −
i

∑ i a a t t K(x ,x)
2
1

i

∑
j

∑ i j i j i j

∀ :i a ≥i 0 a t =∑i i i 0 K(x, z) = φ(x) φ(z).T

a i

t y(x) − 1i i

a (t y(x) − 1)i i i

≥ 0

≥ 0

= 0.

a =i 0 x

y(x) = a t K(x,x) +∑ i i i b

8/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines

The dual formulation allows us to use non-linear kernels.

      
    
   
     
    
  
    
   


Figure 7.2 of Pattern Recognition and Machine Learning.

9/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines for Non-linearly Separable Data

  

  

  

  

  

  

  

Figure 7.3 of Pattern Recognition and Machine
Learning.

Until now, we assumed the data to be linearly separable – the
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables , one for each training instance, defined as

Therefore, signifies a point outside of margin, denotes a point inside the

margin, is a point on the decision boundary and indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

ξ ≥i 0

ξ =i {
0
∣t − y(x)∣i i

 for points fulfilling t y(x) ≥ 1,i i

 otherwise.

ξ =i 0 0 < ξ <i 1
ξ =i 1 ξ >i 1

 C ξ +
w,b

arg min
i

∑ i ∣∣w∣∣ given that t y(x) ≥
2
1 2

i i 1 − ξ and ξ ≥i i 0.

10/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines for Non-linearly Separable Data

We again create a Lagrangian, this time with multipliers and also

:

Solving for the critical points and substituting for , and (obtaining an additional

constraint compared to the previous case), we obtain the Lagrangian in the form

which is identical to the previous case, but the constraints are a bit different:

a = (a , … , a)1 N μ =
(μ , … ,μ)1 N

L = ∣∣w∣∣ +
2
1 2 C ξ −

i

∑ i a [t y(x) −
i

∑ i i i 1 + ξ]−i μ ξ .
i

∑ i i

w b ξ

μ =i C − a i

L = a −
i

∑ i a a t t K(x ,x),
2
1

i

∑
j

∑ i j i j i j

∀ :i C ≥ a ≥i 0 and a t =
i

∑ i i 0.

11/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Support Vector Machines for Non-linearly Separable Data

Using KKT conditions, we can see that the support vectors (examples with) are the

ones with , i.e., the examples on the margin boundary, inside the margin and

on the opposite side of the decision boundary.

  







Figure 7.4 of Pattern Recognition and Machine Learning.

a >i 0
t y(x) =i i 1 − ξ i

12/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

SGD-like Formulation of Soft-Margin SVM

Note that the slack variables can be written as

so we can reformulate the soft-margin SVM objective using hinge loss

to

Such formulation is analogous to a regularized loss, where is an inverse regularization

strength, so implies no regularization and ignores the data entirely.

ξ =i max (0, 1 − t y(x)),i i

L (t, y)hinge =
def

max(0, 1 − ty)

 C L (t , y(x))+
w,b

arg min
i

∑ hinge i i ∣∣w∣∣ .
2
1 2

C

C = ∞ C = 0

13/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Comparison of Linear and Logistic Regression and SVM

For , we have seen the following losses:

Model Objective Per-Instance Loss

Linear

Regression

Logistic

regression

Softmax

regression

SVM

Note that and that .

f(x;w, b) =def
φ(x) w +T b

 L (t , f (x)) +
w,b

arg min∑
i MSE i i λ∥w∥2

1 2
L (t, y) =MSE (t −2

1 y)2

 L (t , f (x)) +
w,b

arg min∑
i σ-NLL i i λ∥w∥2

1 2
L (t, y) =σ-NLL − log (

σ(y) +t

(1 − σ(y))1−t)

 L (t , f (x)) +
W ,b

arg min∑
i s-NLL i i λ∥w∥2

1 2
L (t, y) =s-NLL − log softmax(y) t

 C L (t , f (x)) +
w,b

arg min ∑
i hinge i i ∥w∥2

1 2
L (t, y) =hinge max(0, 1 − ty)

L (t, y) ∝MSE − log (N (t; μ = y, σ =2 1)) L (t, y) =σ-NLL L (t, [y, 0])s-NLL

14/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Binary Classification Loss Functions Comparison

To compare various functions for binary classification, we need to formulate them all in the
same settings, with .

MSE: , because it is for and for

LR: , because it is for and for

SVM:

t ∈ {−1, 1}

(ty − 1)2 (y − 1)2 t = 1 (−y − t)2 t = −1
σ(ty) σ(y) t = 1 1 − σ(y) = σ(−y) t = −1

max(0, 1 − ty)

15/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John
Platt, 1998) algorithm is used.

Before we introduce it, we start by introducing coordinate descent optimization algorithm.

Consider solving unconstrained optimization problem

Instead of the usual SGD approach, we could optimize the weights one by one, using the
following algorithm

loop until convergence
for in :

 L(w ,w , … ,w).
w

arg min 1 2 D

i {1, 2, … ,D}
w ←i arg min L(w ,w , … ,w)w i 1 2 D

16/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm

         





















CS229 Lecture 3 Notes, http://cs229.stanford.edu/notes/cs229-notes3.pdf

loop until convergence
for in :

If the inner can be performed efficiently, the

coordinate descent can be fairly efficient.

Note that we might want to choose in different

order, for example by trying to choose providing the

largest decrease of .

i {1, 2, … ,D}
w ←i arg min L(w ,w , … ,w)w i 1 2 D

arg min

w i

w i

L

17/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm

In soft-margin SVM, we try to minimize

such that

The KKT conditions for the solution can be reformulated (while staying equivalent) as

L = a −
i

∑ i a a t t K(x ,x),
2
1

i

∑
j

∑ i j i j i j

∀ :i C ≥ a ≥i 0 and a t =
i

∑ i i 0.

a > 0i

a < Ci

0 < a < Ci

⇒ t y(x) ≤ 1, because a > 0 ⇒ t y(x) = 1 − ξ and we have ξ ≥ 0,i i i i i i i

⇒ t y(x) ≥ 1, because a < C ⇒ μ > 0 ⇒ ξ = 0 and t y(x) ≥ 1 − ξ ,i i i i i i i i

⇒ t y(x) = 1, a combination of both.i i

18/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm

At its core, the SMO algorithm is just a coordinate descent.

It tries to find such fulfilling the KKT conditions – for soft-margin SVM, KKT conditions

are sufficient conditions for optimality (the loss is convex and inequality constraints affine).

However, note that because of the constraint we cannot optimize just one ,

because a single is determined from the others.

Therefore, in each step we pick two coefficients and try to minimize the loss while

fulfilling the constraints.

loop until convergence (until and)

for in , for in ${1, 2, …, D}:

 such that ,

α i

a t =∑ i i 0 a i

a i

a , a i j

∀i : a <i C ⇒ t y(x) ≥i i 1 a >i 0 ⇒ t y(x) ≤i i 1
i {1, 2, … ,D} j = i

a , a ←i j arg min L(a , a , … , a)a ,a i j 1 2 D C ≥ a ≥i 0 a t =∑i i i 0

19/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm

The SMO is an efficient algorithm, because we can compute the update to efficiently,

because there exists an closed form solution.

Assume that we are updating and . Then from the condition we can write

. Given that and denoting , we get

Minimizing with respect to and then amounts to minimizing a quadratic function of

, which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing such that the can

be minimized the most.

a , a i j

a i a j a t =∑k k k 0
a t =i i − a t ∑k =i k k t =i

2 1 ζ = − a t ∑k =i,k =j  k k

a =i t (ζ −i a t).j j

L(a) a i a j

a j

a , a i j L

20/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm Sketch

Input: Dataset (,), kernel , regularization parameter ,

tolerance , value

Initialize , ,

while :

for in :

if (and) or (and):

Choose randomly

Update , and

if :

else:

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a ←i 0 b ← 0 passes ← 0
passes < max_passes_without_a_changing

changed_as ← 0
i 1, 2, … ,N
E ←i y(x) −i t i

a <i C t E <i i −tol a >i 0 t E >i i tol

j = i

a i a j b

changed_as ← changed_as+ 1

changed_as = 0 passes ← passes+ 1
passes ← 0

21/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Sequential Minimal Optimization Algorithm Sketch

Input: Dataset (,), kernel , regularization parameter ,

tolerance , value

Update , , :

Express using

Find optimizing the loss L quadratic with respect to

Clip so that

Compute corresponding

Compute matching to updated ,

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a i a j b

a i a j

a j a j

a j 0 ≤ a , a ≤i j C

a i

b a i a j

22/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Primal versus Dual Formulation

Assume we have a dataset with training examples, each with features. Also assume the

used feature map generates features.

Property Primal Formulation Dual Formulation

Parameters

Model size for support vectors

Usual training time for iterations between and

Inference time for support vectors

N D

φ F

F N

F s ⋅ D s

c ⋅ N ⋅ F c Ω(ND) O(N D)2

Θ(F) Θ(s ⋅ D) s

23/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Decision Trees

The idea of decision trees is to partition the input space into usually cuboid regions and solving
each region with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, …





 



   

 

 

 

 

Figure 14.6 of Pattern Recognition and Machine Learning.

    

    

    

    

    

Figure 14.5 of Pattern Recognition and Machine Learning.

24/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Regression Decision Trees

Assume we have an input dataset , . At the beginning, the decision tree is

just a single node and all input examples belong to this node. We denote the set of training

example indices belonging to a leaf node .

For each leaf, our model will predict the average of the training examples belonging to that leaf,
.

We will use a criterion telling us how uniform or homogeneous are the training examples

belonging to a leaf node – for regression, we will employ the sum of squares error between

the examples belonging to the node and the predicted value in that node; this is proportional to
variance of the training examples belonging to the leaf node , multiplied by the number of the

examples. Note that even if it not mean squared error, it is sometimes denoted as MSE.

X ∈ RN×D t ∈ RN

I T

T

 =t̂T t ∣I ∣T

1 ∑i∈I T i

c T

T

T

c (T)SE =
def

 (t −
i∈I T

∑ i) , where =t̂T
2 t̂T t .

∣I ∣T

1

i∈I T

∑ i

25/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Tree Construction

To split a node, the goal is to find a feature and its value such that when splitting a node

into and , the resulting regions decrease the overall criterion value the most, i.e., the

difference is the lowest.

Usually we have several constraints, we mention on the most common ones:

maximum tree depth: we do not split nodes with this depth;
minimum examples to split: we only split nodes with this many training examples;
maximum number of leaf nodes

The tree is usually built in one of two ways:

if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner,
recursively splitting every leaf until some above constraint is invalidated;
if the maximum number of leaf nodes is give, we usually split such leaf where the

criterion difference is the lowest.

T
T L T R

c +T L
c −T R

c T

T
c +T L

c −T R
c T

26/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

Classification Decision Trees

For multi-class classification, we predict such class most frequent in the training examples
belonging to a leaf .

To define the criterions, let us denote the average probability for class in a region at

.

For classification trees, one of the following two criterions is usually used:

Gini index:

Entropy Criterion

T

k T

p (k)T

c (T)Gini =def ∣I ∣ p (k)(1 −T

k

∑ T p (k))T

c (T)entropy =def ∣I ∣H(p) =T T −∣I ∣ p (k) log p (k)T

k

∑ T T

27/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree

