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Kernel Linear Regression

When dimensionality of input is , one step of SGD takes .

Surprisingly, we can do better under some circumstances. We start by noting that we can write
the parameters  as a linear combination of the input features .

By induction, , and assuming , after a SGD update

we get

A individual update is , and substituting for  we get

D O(D )3

w φ(x  )i

w = 0 =  0 ⋅∑i φ(x  )i w =  β  ⋅∑i i φ(x  )i

  

w ←

=

w + α  (t  − w φ(x  ))φ(x  )
i

∑ i
T

i i

 (β  + α(t  − w φ(x  )))φ(x  ).
i

∑ i i
T

i i

β  ←i β  +i α(t  −i w φ(x  ))T
i w

β  ←i β  +i α(t  −i  β  φ(x  ) φ(x  )).∑
j

j j
T

i
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Kernel Linear Regression

We can formulate the alternative linear regression algorithm (it would be called a dual
formulation):

Input: Dataset ( , ), learning rate . 

Set 

Compute all values 

Repeat
Update the coordinates, either according to a full gradient update:

or alternatively use single-batch SGD, arriving at:
for  in random permutation of :

In vector notation, we can write .

The predictions are then performed by computing .

X = {x  ,x  , … ,x  } ∈1 2 N RN×D t ∈ RN α ∈ R+

β  ←i 0
K(x  ,x ) =i j φ(x  ) φ(x  )i

T
j

β ← β + α(t − Kβ)

i {1, … ,N}

β  ←i β +i α(t  −i  β  K(x  ,x  ))∑j j i j

β ← β + α(t − Kβ)

y(x) = w φ(x) =T
 β  φ(x  ) φ(x)∑i i i

T
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Kernels

We define a kernel corresponding to a feature map  as a function

There is quite a lot of theory behind kernel construction. The most often used kernels are:

polynomial kernel or degree 

which corresponds to a feature map generating all combinations of up to  input features;

Gaussian (or RBF) kernel

corresponding to a scalar product in an infinite-dimensional space (it is in a sense a
combination of polynomial kernels of all degrees).

φ

K(x, z) =def
φ(x) φ(z).t

d

K(x, z) = (γx z +T 1) ,d

d

K(x, z) = e ,−γ∣∣x−z∣∣2
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Support Vector Machines



 

Figure 4.1 of Pattern Recognition and Machine Learning.

Assume we have a dataset , , feature map  and model

We already know that the distance of a point  to the decision

boundary is

We therefore want to maximize

However, this problem is difficult to optimize directly.

X ∈ RN×D t ∈ {−1, 1}N φ

y(x) =def
φ(x) w +T b.

x  i

 =
∣∣w∣∣

∣y(x  )∣i
 .

∣∣w∣∣
t  y(x  )i i

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)].
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Support Vector Machines

Because the model is invariant to multiplying  and  by a constant, we can say that for the

points closest to the decision boundary, it will hold that

Then for all the points we will have  and we can simplify

to

w b

t  y(x  ) =i i 1.

t  y(x  ) ≥i i 1

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)]

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1.
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Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers  as

Setting the derivatives with respect to  and  to zero, we get

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1,

a = (a  , … , a  )1 N

L =  ∣∣w∣∣ −
2
1 2

 a  [t  y(x  ) −
i

∑ i i i 1].

w b

  

w =

0 =

 a  t  φ(x  )
i

∑ i i i

 a  t  

i

∑ i i
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Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints ,  and kernel 

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point is on a boundary, or . Given that the predictions for point  are

given by , we need to keep only the points on the boundary, the

so-called support vectors.

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  )
2
1

i

∑
j

∑ i j i j i j

∀  :i a  ≥i 0  a  t  =∑i i i 0 K(x, z) = φ(x) φ(z).T

  

a  i

t  y(x  ) − 1i i

a  (t  y(x  ) − 1)i i i

≥ 0

≥ 0

= 0.

a  =i 0 x

y(x) = a  t  K(x,x  ) +∑ i i i b
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Support Vector Machines

The dual formulation allows us to use non-linear kernels.

      
    
   
     
    
  
    
   


 

Figure 7.2 of Pattern Recognition and Machine Learning.
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Support Vector Machines for Non-linearly Separable Data

  

  

  

  

  

  

  

 

Figure 7.3 of Pattern Recognition and Machine
Learning.

Until now, we assumed the data to be linearly separable – the 
hard-margin SVM variant. We now relax this condition to arrive at
soft-margin SVM. The idea is to allow points to be in the margin
or even on the wrong side of the decision boundary. We introduce
slack variables , one for each training instance, defined as

Therefore,  signifies a point outside of margin,  denotes a point inside the

margin,  is a point on the decision boundary and  indicates the point is on the

opposite side of the separating hyperplane.

Therefore, we want to optimize

ξ  ≥i 0

ξ  =i   {
0
∣t  − y(x  )∣i i

 for points fulfilling t  y(x  ) ≥ 1,i i

 otherwise.

ξ  =i 0 0 < ξ  <i 1
ξ  =i 1 ξ  >i 1

 C  ξ  +
w,b

arg min
i

∑ i  ∣∣w∣∣  given that  t  y(x  ) ≥
2
1 2

i i 1 − ξ   and ξ  ≥i i 0.
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Support Vector Machines for Non-linearly Separable Data

We again create a Lagrangian, this time with multipliers  and also 

:

Solving for the critical points and substituting for ,  and  (obtaining an additional

constraint  compared to the previous case), we obtain the Lagrangian in the form

which is identical to the previous case, but the constraints are a bit different:

a = (a  , … , a  )1 N μ =
(μ  , … ,μ  )1 N

L =  ∣∣w∣∣ +
2
1 2 C  ξ  −

i

∑ i  a  [t  y(x  ) −
i

∑ i i i 1 + ξ  ]−i  μ  ξ  .
i

∑ i i

w b ξ

μ  =i C − a  i

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  ),
2
1

i

∑
j

∑ i j i j i j

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.
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Support Vector Machines for Non-linearly Separable Data

Using KKT conditions, we can see that the support vectors (examples with ) are the

ones with , i.e., the examples on the margin boundary, inside the margin and

on the opposite side of the decision boundary.

  







 

Figure 7.4 of Pattern Recognition and Machine Learning.

a  >i 0
t  y(x  ) =i i 1 − ξ  i
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SGD-like Formulation of Soft-Margin SVM

Note that the slack variables can be written as

so we can reformulate the soft-margin SVM objective using hinge loss

to

Such formulation is analogous to a regularized loss, where  is an inverse regularization

strength, so  implies no regularization and  ignores the data entirely.

ξ  =i max (0, 1 − t  y(x  )),i i

L  (t, y)hinge =
def

max(0, 1 − ty)

 C  L  (t  , y(x  ))+
w,b

arg min
i

∑ hinge i i  ∣∣w∣∣ .
2
1 2

C

C = ∞ C = 0
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Comparison of Linear and Logistic Regression and SVM

For , we have seen the following losses:

Model Objective Per-Instance Loss

Linear 

Regression

Logistic 

regression

Softmax 

regression

SVM

Note that  and that .

f(x;w, b) =def
φ(x) w +T b

  L  (t  , f (x  )) +
w,b

arg min∑
i MSE i i  λ∥w∥2

1 2
L  (t, y) =MSE  (t −2

1 y)2

  L  (t  , f (x  )) +
w,b

arg min∑
i σ-NLL i i  λ∥w∥2

1 2
L  (t, y) =σ-NLL − log (

σ(y) +t

(1 − σ(y))1−t)

  L  (t  , f (x  )) +
W ,b

arg min∑
i s-NLL i i  λ∥w∥2

1 2
L  (t, y) =s-NLL − log softmax(y)  t

 C  L  (t  , f (x  )) +
w,b

arg min ∑
i hinge i i  ∥w∥2

1 2
L  (t, y) =hinge max(0, 1 − ty)

L  (t, y) ∝MSE − log (N (t; μ = y, σ =2 1)) L  (t, y) =σ-NLL L  (t, [y, 0])s-NLL
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Binary Classification Loss Functions Comparison

To compare various functions for binary classification, we need to formulate them all in the
same settings, with .

MSE: , because it is  for  and  for 

LR: , because it is  for  and  for 

SVM: 

t ∈ {−1, 1}

(ty − 1)2 (y − 1)2 t = 1 (−y − t)2 t = −1
σ(ty) σ(y) t = 1 1 − σ(y) = σ(−y) t = −1

max(0, 1 − ty)
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Sequential Minimal Optimization Algorithm

To solve the dual formulation of a SVM, usually Sequential Minimal Optimization (SMO; John
Platt, 1998) algorithm is used.

Before we introduce it, we start by introducing coordinate descent optimization algorithm.

Consider solving unconstrained optimization problem

Instead of the usual SGD approach, we could optimize the weights one by one, using the
following algorithm

loop until convergence
for  in :

 L(w  ,w  , … ,w  ).
w

arg min 1 2 D

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D
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Sequential Minimal Optimization Algorithm

         





















 

CS229 Lecture 3 Notes, http://cs229.stanford.edu/notes/cs229-notes3.pdf

loop until convergence
for  in :

If the inner  can be performed efficiently, the

coordinate descent can be fairly efficient.

Note that we might want to choose  in different

order, for example by trying to choose  providing the

largest decrease of .

i {1, 2, … ,D}
w ←i arg min  L(w  ,w  , … ,w  )w  i 1 2 D

arg min

w  i

w  i

L

17/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree



Sequential Minimal Optimization Algorithm

In soft-margin SVM, we try to minimize

such that

The KKT conditions for the solution can be reformulated (while staying equivalent) as

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  ),
2
1

i

∑
j

∑ i j i j i j

∀  :i C ≥ a  ≥i 0 and   a  t  =
i

∑ i i 0.

  

a  > 0i

a  < Ci

0 < a  < Ci

⇒ t  y(x  ) ≤ 1,   because a  > 0 ⇒ t  y(x  ) = 1 − ξ   and we have ξ  ≥ 0,i i i i i i i

⇒ t  y(x  ) ≥ 1,   because a  < C ⇒ μ  > 0 ⇒ ξ  = 0 and t  y(x  ) ≥ 1 − ξ  ,i i i i i i i i

⇒ t  y(x  ) = 1,   a combination of both.i i

18/27NPFL129, Lecture 6 Refresh Soft-margin SVN SMO Primal vs Dual DecisionTree



Sequential Minimal Optimization Algorithm

At its core, the SMO algorithm is just a coordinate descent.

It tries to find such  fulfilling the KKT conditions – for soft-margin SVM, KKT conditions

are sufficient conditions for optimality (the loss is convex and inequality constraints affine).

However, note that because of the  constraint we cannot optimize just one ,

because a single  is determined from the others.

Therefore, in each step we pick two  coefficients and try to minimize the loss while

fulfilling the constraints.

loop until convergence (until  and )

for  in , for  in ${1, 2, …, D}:

 such that , 

α  i

a  t  =∑ i i 0 a  i

a  i

a  , a  i j

∀i : a  <i C ⇒ t  y(x  ) ≥i i 1 a  >i 0 ⇒ t  y(x ) ≤i i 1
i {1, 2, … ,D} j  = i

a  , a  ←i j arg min  L(a  , a  , … , a  )a  ,a  i j 1 2 D C ≥ a  ≥i 0  a  t  =∑i i i 0
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Sequential Minimal Optimization Algorithm

The SMO is an efficient algorithm, because we can compute the update to  efficiently,

because there exists an closed form solution.

Assume that we are updating  and . Then from the  condition we can write 

. Given that  and denoting , we get

Minimizing  with respect to  and  then amounts to minimizing a quadratic function of

, which has an analytical solution.

Note that the real SMO algorithm has several heuristics for choosing  such that the  can

be minimized the most.

a  , a  i j

a  i a  j  a  t  =∑k k k 0
a  t  =i i −  a  t  ∑k  =i k k t  =i

2 1 ζ = −  a  t  ∑k  =i,k  =j  k k

a =i t  (ζ −i a  t  ).j j

L(a) a  i a  j

a  j

a  , a  i j L
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Sequential Minimal Optimization Algorithm Sketch

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value 

Initialize , , 

while :

for  in :

if (  and ) or (  and ):

Choose  randomly

Update ,  and 

if : 

else: 

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a  ←i 0 b ← 0 passes ← 0
passes < max_passes_without_a_changing

changed_as ← 0
i 1, 2, … ,N
E  ←i y(x  ) −i t  i

a  <i C t  E  <i i −tol a  >i 0 t  E  >i i tol

j  = i

a  i a  j b

changed_as ← changed_as+ 1

changed_as = 0 passes ← passes+ 1
passes ← 0
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Sequential Minimal Optimization Algorithm Sketch

Input: Dataset ( , ), kernel , regularization parameter ,

tolerance ,  value 

Update , , :

Express  using 

Find  optimizing the loss L quadratic with respect to 

Clip  so that 

Compute corresponding 

Compute  matching to updated , 

X ∈ RN×D t ∈ {−1, 1}N K C

tol max_passes_without_a_changing

a  i a  j b

a  i a  j

a  j a  j

a  j 0 ≤ a  , a  ≤i j C

a  i

b a  i a  j
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Primal versus Dual Formulation

Assume we have a dataset with  training examples, each with  features. Also assume the

used feature map  generates  features.

Property Primal Formulation Dual Formulation

Parameters

Model size  for  support vectors

Usual training time  for  iterations between  and 

Inference time  for  support vectors

N D

φ F

F N

F s ⋅ D s

c ⋅ N ⋅ F c Ω(ND) O(N D)2

Θ(F ) Θ(s ⋅ D) s
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Decision Trees

The idea of decision trees is to partition the input space into usually cuboid regions and solving
each region with a simpler model.

We focus on Classification and Regression Trees (CART; Breiman et al., 1984), but there
are additional variants like ID3, C4.5, …





 



   

 

 

 

   

Figure 14.6 of Pattern Recognition and Machine Learning.

 

    

    

    

    

    

 

Figure 14.5 of Pattern Recognition and Machine Learning.
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Regression Decision Trees

Assume we have an input dataset , . At the beginning, the decision tree is

just a single node and all input examples belong to this node. We denote  the set of training

example indices belonging to a leaf node .

For each leaf, our model will predict the average of the training examples belonging to that leaf,
.

We will use a criterion  telling us how uniform or homogeneous are the training examples

belonging to a leaf node  – for regression, we will employ the sum of squares error between

the examples belonging to the node and the predicted value in that node; this is proportional to
variance of the training examples belonging to the leaf node , multiplied by the number of the

examples. Note that even if it not mean squared error, it is sometimes denoted as MSE.

X ∈ RN×D t ∈ RN

I  T

T

 =t̂T   t  ∣I  ∣T

1 ∑i∈I  T i

c  T

T

T

c  (T )SE =
def

 (t  −
i∈I  T

∑ i  ) , where   =t̂T
2 t̂T   t  .

∣I  ∣T

1

i∈I  T

∑ i
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Tree Construction

To split a node, the goal is to find a feature and its value such that when splitting a node 

into  and , the resulting regions decrease the overall criterion value the most, i.e., the

difference  is the lowest.

Usually we have several constraints, we mention on the most common ones:

maximum tree depth: we do not split nodes with this depth;
minimum examples to split: we only split nodes with this many training examples;
maximum number of leaf nodes

The tree is usually built in one of two ways:

if the number of leaf nodes is unlimited, we usually build the tree in a depth-first manner,
recursively splitting every leaf until some above constraint is invalidated;
if the maximum number of leaf nodes is give, we usually split such leaf  where the

criterion difference  is the lowest.

T
T  L T  R

c  +T  L
c  −T  R

c  T

T
c  +T  L

c  −T  R
c  T
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Classification Decision Trees

For multi-class classification, we predict such class most frequent in the training examples
belonging to a leaf .

To define the criterions, let us denote the average probability for class  in a region  at 

.

For classification trees, one of the following two criterions is usually used:

Gini index:

Entropy Criterion

T

k T

p  (k)T

c  (T )Gini =def ∣I  ∣  p  (k)(1 −T

k

∑ T p  (k))T

c  (T )entropy =def ∣I  ∣H(p  ) =T T −∣I  ∣  p  (k) log p  (k)T

k

∑ T T
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