# NPFL129, Lecture 5



# Derivation of Softmax, Support Vector Machines

Milan Straka

i ■ November 18, 2019



Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



unless otherwise stated

# Lagrange Multipliers – Equality Constraints

Ú<sub>F</sub><sub>A</sub>L

Given a function  $J(\boldsymbol{x})$ , we can find a maximum with respect to a vector  $\boldsymbol{x} \in \mathbb{R}^d$ , by investigating the critical points  $\nabla_{\boldsymbol{x}} J(\boldsymbol{x}) = 0$ . Consider now finding maximum subject to a a constraing  $g(\boldsymbol{x}) = 0$ .

• Note that  $abla_{\boldsymbol{x}} g(\boldsymbol{x})$  is orthogonal to the surface of the constraing, because if  $\boldsymbol{x}$  and a nearby point  $\boldsymbol{x} + \boldsymbol{\varepsilon}$  lie on the surface, from the Taylor expansion  $g(\boldsymbol{x} + \boldsymbol{\varepsilon}) \approx g(\boldsymbol{x}) + \boldsymbol{\varepsilon}^T \nabla_{\boldsymbol{x}} g(\boldsymbol{x})$  we get  $\boldsymbol{\varepsilon}^T \nabla_{\boldsymbol{x}} g(\boldsymbol{x}) \approx 0$ .



Figure E.1 of Pattern Recognition and Machine Learning.

- In the seeked maximum,  $\nabla_{x} f(x)$  must also be orthogonal to the constraing surface (or else moving in the direction of the derivative would increase the value).
- Therefore, there must exist  $\lambda$  such that  $abla_{m{x}}f+\lambda
  abla_{m{x}}g=0.$

NPFL129, Lecture 5

Refresh SoftMax Derivation

on KernelLR

Kernels SVM

# Lagrange Multipliers – Equality Constraints



We therefore introduce the Lagrangian function

$$L(oldsymbol{x},\lambda) \stackrel{ ext{\tiny def}}{=} f(oldsymbol{x}) + \lambda g(oldsymbol{x}).$$

We can then find the maximum under the constraing by inspecting critical points of  $L(\boldsymbol{x}, \lambda)$  with respect to both  $\boldsymbol{x}$  and  $\lambda$ :

• 
$$\frac{\partial L}{\partial \lambda} = 0$$
 leads to  $g(\boldsymbol{x}) = 0$ ;

• 
$$\frac{\partial L}{\partial m{x}} = 0$$
 is the previously derived  $abla_{m{x}} f + \lambda 
abla_{m{x}} g = 0$ .



Learning.

Kernels SVM

#### **Calculus of Variations**

Many optimization techniques depend on minimizing a function J(w) with respect to a vector  $w \in \mathbb{R}^d$ , by investigating the critical points  $abla_w J(w) = 0$ .

A function of a function, J[f], is known as a **functional**, for example entropy  $H[\cdot]$ .

Similarly to partial derivatives, we can take **functional derivatives** of a functional J[f] with respect to individual values f(x) for all points x. The functional derivative of J with respect to a function f in a point x is denoted as

$$rac{\partial}{\partial f(oldsymbol{x})}J.$$

For this class, we will use only the following theorem, which states that for all differentiable functions f and differentiable functions  $g(f(\boldsymbol{x}), \boldsymbol{x})$  with continuous derivatives, it holds that

$$rac{\partial}{\partial f(oldsymbol{x})}\int g(f(oldsymbol{x}),oldsymbol{x})\,\mathrm{d}oldsymbol{x}=rac{\partial}{\partial y}g(y,oldsymbol{x}).$$

**Dual SVM Formulation** 





#### **Calculus of Variations**

An intuitive view is to think about f(x) as a vector of uncountably many elements (for every value x). In this interpretation the result is analogous to computing partial derivatives of a vector  $w \in \mathbb{R}^d$ :

$$egin{aligned} &rac{\partial}{\partial w_i}\sum_j g(w_j,oldsymbol{x}) = rac{\partial}{\partial w_i}g(w_i,oldsymbol{x}).\ &rac{\partial}{\partial f(oldsymbol{x})}\int g(f(oldsymbol{x}),oldsymbol{x})\,\mathrm{d}oldsymbol{x} = rac{\partial}{\partial y}g(y,oldsymbol{x}). \end{aligned}$$

NPFL129, Lecture 5

on KernelLR

Kernels SVM

# **Continuous Distribution with Maximum Entropy**



What distribution over  ${\mathbb R}$  maximizes entropy  $H[p] = -{\mathbb E}_x \log p(x)$ ?

For continuous values, the entropy is an integral  $H[p] = -\int p(x)\log p(x)\,\mathrm{d}x$ .

We cannot just maximize H with respect to a function p, because:

- the result might not be a probability distribution we need to add a constraint that  $\int p(x) \, \mathrm{d}x = 1;$
- the problem is unspecified because a distribution can be shifted without changing entropy we add a constraing  $\mathbb{E}[x] = \mu$ ;
- because entropy increases as variance increases, we ask which distribution with a *fixed* variance  $\sigma^2$  has maximum entropy adding a constraing  $Var(x) = \sigma^2$ .

# **Function with Maximum Entropy**

Lagrangian of all the constraings and the entropy function is

$$L(p;\mu,\sigma^2) = \lambda_1 \Big(\int p(x)\,\mathrm{d}x - 1\Big) + \lambda_2 ig(\mathbb{E}[x]-\muig) + \lambda_3ig(\operatorname{Var}(x)-\sigma^2ig) + H[p].$$

By expanding all definitions to integrals, we get

$$egin{aligned} L(p;\mu,\sigma^2) &= \int \left(\lambda_1 p(x) + \lambda_2 p(x) x \lambda_3 p(x) (x-\mu)^2 - p(x) \log p(x) 
ight) \mathrm{d}x - \ &- \lambda_1 - \mu \lambda_2 - \sigma^2 \lambda_3. \end{aligned}$$

The functional derivative of L is:

$$rac{\partial}{\partial p(x)}L(p;\mu,\sigma^2)=\lambda_1+\lambda_2x+\lambda_3(x-\mu)^2-1-\log p(x)=0.$$

NPFL129, Lecture 5

KernelLR



# **Function with Maximum Entropy**

Rearrangint the functional derivative of L:

$$rac{\partial}{\partial p(x)}L(p;\mu,\sigma^2)=\lambda_1+\lambda_2x+\lambda_3(x-\mu)^2-1-\log p(x)=0.$$

we obtain

$$p(x)=\exp{\Bigl(\lambda_1+\lambda_2 x+\lambda_3 (x-\mu)^2-1\Bigr)}.$$

We can verify that setting  $\lambda_1 = 1 - \log \sigma \sqrt{2\pi}$ ,  $\lambda_2 = 0$  and  $\lambda_3 = -1/(2\sigma^2)$  fulfils all the constraints, arriving at

$$p(x) = \mathcal{N}(x; \mu, \sigma^2).$$





NPFL129, Lecture 5 Refresh

SoftMax Derivation

n KernelLR

Kernels SVM

KKT

Dual SVM Formulation

Let  $\mathbb{X} = \{(m{x}_1, t_1), (m{x}_2, t_2), \dots, (m{x}_N, t_N)\}$  be training data of a K-class classification, with  $m{x}_i \in \mathbb{R}^D$  and  $t_i \in \{1, 2, \dots, K\}$ .

We want to model it using a function  $\pi : \mathbb{R}^D \to \mathbb{R}^K$  so that  $\pi(\boldsymbol{x})$  gives a distribution of classes for input  $\boldsymbol{x}$ .

We impose the following conditions on  $\pi$ :

$$\pi(m{x})_j \ge 0 \ \sum_{j=1}^K \pi(m{x})_j = 1 \ orall_{k \in \{1,2,\ldots,D\}}, orall_{j \in \{1,2,\ldots,K\}}: \sum_{i=1}^N \pi(m{x}_i)_j x_{i,k} = \sum_{i=1}^N \Big[t_i == j\Big] x_{i,k}$$

NPFL129, Lecture 5

Refresh

KernelLR

Kernels SVM



<sup>Ú</sup>F<sub>A</sub>L

There are many such  $\pi$ , one particularly bad is

$$\pi(oldsymbol{x}) = egin{cases} t_i & ext{if there exists } i:oldsymbol{x}_i = oldsymbol{x}, \ 0 & ext{otherwise.} \end{cases}$$

Therefore, we want to find a more general  $\pi$  – we will aim for one with maximum entropy.



NPFL129, Lecture 5 Refresh

KernelLR

Kernels SVM



We therefore want to maximize  $-\sum_{i=1}^N \sum_{j=1}^K \pi(\boldsymbol{x}_i)_j \log(\pi(\boldsymbol{x}_i)_j)$  given

- $\pi({m x})_j \geq 0$ ,
- $\sum_{i=j}^K \pi(oldsymbol{x})_j = 1$ ,
- $\forall_{k \in \{1, \dots, D\}}, \forall_{j \in \{1, \dots, K\}} : \sum_{i=1}^{N} \pi(\boldsymbol{x}_i)_j x_{i,k} = \sum_{i=1}^{N} \left[ t_i == j \right] x_{i,k}.$

We therefore form a Lagrangian

Refresh

$$egin{aligned} L = \sum_{k=1}^D \sum_{j=1}^K \lambda_{k,j} \Big(\sum_{i=1}^N \pi(oldsymbol{x}_i)_j x_{i,k} - ig[t_i == jig] x_{i,k} \Big) \ &- \sum_{i=1}^N eta_i \Big(\sum_{j=1}^K \pi(oldsymbol{x}_i)_j - 1\Big) \ &- \sum_{i=1}^N \sum_{j=1}^K \pi(oldsymbol{x}_i)_j \log(\pi(oldsymbol{x}_i)_j) \end{aligned}$$

NPFL129, Lecture 5

SoftMax Derivation

Kernels SVM

KernelLR



We now compute partial derivatives of the Lagrangian, notably the values

We arrive at

NPFL129, Lecture 5

$$rac{\partial}{\partial \pi(oldsymbol{x}_i)_j}L = oldsymbol{\lambda}_{*,j}oldsymbol{x}_i + eta_i - \log(\pi(oldsymbol{x}_i)_j) - 1.$$

 $\frac{\partial}{\partial \pi(\boldsymbol{x}_i)_i} L.$ 

Setting the Lagrangian to zero, we get  $\lambda_{*,j} x_i + \beta_i - \log(\pi(x_i)_j) - 1 = 0$ , which we rewrite to

$$\pi(oldsymbol{x}_i)_j = e^{oldsymbol{\lambda}_{*,j}oldsymbol{x}_i + eta_i - 1}.$$

Such a forms guarantees  $\pi(\boldsymbol{x}_i)_j > 0$ , which we did not include in the conditions.

Refresh SoftMax Derivation

on KernelLR

Kernels SVM



In order to find out the  $\beta_i$  values, we turn to the constraint

$$\sum_j \pi(oldsymbol{x}_i)_j = \sum_j e^{oldsymbol{\lambda}_{st,j}oldsymbol{x}_i + eta_i - 1} = 1,$$

 $\langle \sum \rangle$ 

from which we get

$$e^{eta_i} = rac{1}{\sum_j e^{oldsymbol{\lambda}_{st,j}oldsymbol{x}_i-1}},$$

yielding

$$\pi(oldsymbol{x}_i)_j = rac{e^{oldsymbol{\lambda}_{st,j}oldsymbol{x}_i}}{\sum_k e^{oldsymbol{\lambda}_{st,k}oldsymbol{x}_i}}.$$

NPFL129, Lecture 5

SoftMax Derivation

Refresh

on KernelLR

Kernels SVM

#### **Kernel Linear Regression**

Consider linear regression with cubic features

$$arphi(oldsymbol{x}) = egin{bmatrix} 1 \ x_1 \ x_2 \ \cdots \ x_1^2 \ x_1 x_2 \ \cdots \ x_2 x_1 \ \cdots \ x_2 x_1 \ \cdots \ x_1^3 \ x_1^2 x_2 \ \cdots \ x_1^3 \ x_1^2 x_2 \ \cdots \end{bmatrix}$$
 .

The SGD update for linear regression is then

$$oldsymbol{w} \leftarrow oldsymbol{w} + lphaig(t - oldsymbol{w}^Tarphi(oldsymbol{x})ig)arphi(oldsymbol{x}).$$

NPFL129, Lecture 5

KernelLR Ker

Kernels SVM



#### **Kernel Linear Regression**



When dimensionality of input is D, one step of SGD takes  $\mathcal{O}(D^3)$ .

Surprisingly, we can do better under some circumstances. We start by noting that we can write the parameters w as a linear combination of the input features  $\varphi(x_i)$ .

By induction,  $w = 0 = \sum_i 0 \cdot \varphi(x_i)$ , and assuming  $w = \sum_i \beta_i \cdot \varphi(x_i)$ , after a SGD update we get

$$egin{aligned} oldsymbol{w} &\leftarrow oldsymbol{w} + lpha \sum_i ig(t_i - oldsymbol{w}^T arphi(oldsymbol{x}_i)ig) arphi(oldsymbol{x}_i) \ &= \sum_i ig(eta_i + lphaig(t_i - oldsymbol{w}^T arphi(oldsymbol{x}_i)ig)ig) arphi(oldsymbol{x}_i). \end{aligned}$$

A individual update is  $\beta_i \leftarrow \beta_i + lpha \Big( t_i - oldsymbol{w}^T arphi(oldsymbol{x}_i) \Big)$ , and substituting for  $oldsymbol{w}$  we get

$$eta_i \leftarrow eta_i + lpha \Big( t_i - \sum_j eta_j arphi(oldsymbol{x}_j)^T arphi(oldsymbol{x}_i) \Big).$$

NPFL129, Lecture 5

Refresh

Kernels SVM

#### **Kernel Linear Regression**

We can formulate the alternative linear regression algorithm (it would be called a *dual formulation*):

Input: Dataset ( $m{X} = \{m{x}_1, m{x}_2, \dots, m{x}_N\} \in \mathbb{R}^{N imes D}$ ,  $m{t} \in \mathbb{R}^N$ ), learning rate  $lpha \in \mathbb{R}^+$ .

• Set  $\beta_i \leftarrow 0$ 

NPFL129, Lecture 5

- Compute all values  $K(oldsymbol{x}_i,oldsymbol{x}_j)=arphi(oldsymbol{x}_i)^Tarphi(oldsymbol{x}_j)$
- Repeat until convergence

Refresh

- Update the coordinates, either according to a full gradient update:
  - $\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} + \alpha (\boldsymbol{t} K \boldsymbol{\beta})$
- $^{\circ}$  or alternatively use single-batch SGD, arriving at:

SoftMax Derivation

• for i in random permutation of  $\{1, \ldots, N\}$ :

• 
$$\beta_i \leftarrow \beta_i + \alpha \Big( t_i - \sum_j \beta_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) \Big)$$

In vector notation, we can write  $oldsymbol{eta} \leftarrow oldsymbol{eta} + lpha(oldsymbol{t} - Koldsymbol{eta}).$ 

KernelLR

The predictions are then performed by computing  $y(\boldsymbol{x}) = \boldsymbol{w}^T \varphi(\boldsymbol{x}) = \sum_i \beta_i \boldsymbol{\varphi}(\boldsymbol{x}_i)^T \boldsymbol{\varphi}(\boldsymbol{x})$ .

Kernels



#### **Kernel Trick**



A single SGD update of all  $\beta_i$  then takes  $\mathcal{O}(N^2)$ , given that we can evaluate scalar dot product of  $\varphi(\boldsymbol{x}_j)^T \varphi(\boldsymbol{x}_i)$  quickly.

$$egin{aligned} arphi(oldsymbol{x})^Tarphi(oldsymbol{z}) =& 1 + \sum_i x_i z_i + \sum_{i,j} x_i x_j z_i z_j + \sum_{i,j,k} x_i x_j x_k z_i z_j z_k \ =& 1 + \sum_i x_i z_i + ig(\sum_i x_i z_iig)^2 + ig(\sum_i x_i z_iig)^3 \ =& 1 + oldsymbol{x}^Toldsymbol{z} + ig(oldsymbol{x}^Toldsymbol{z})^2 + ig(oldsymbol{x}^Toldsymbol{z})^3. \end{aligned}$$

NPFL129, Lecture 5

KernelLR

Kernels SVM

#### Kernels



We define a kernel corresponding to a feature map  $\varphi$  as a function

$$K(oldsymbol{x},oldsymbol{z}) \stackrel{ ext{def}}{=} arphi(oldsymbol{x})^t arphi(oldsymbol{z}).$$

There is quite a lot of theory behind kernel construction. The most often used kernels are:

• polynomial kernel or degree d

$$K(oldsymbol{x},oldsymbol{z}) = (\gamma oldsymbol{x}^T oldsymbol{z}+1)^d,$$

which corresponds to a feature map generating all combinations of up to d input features;

• Gaussian (or RBF) kernel

Refresh

SoftMax Derivation

NPFL129, Lecture 5

$$K(oldsymbol{x},oldsymbol{z})=e^{-\gamma||oldsymbol{x}-oldsymbol{z}||^2},$$

KKT

SVM

**Dual SVM Formulation** 

corresponding to a scalar product in an infinite-dimensional space (it is in a sense a combination of polynomial kernels of all degrees).

Kernels

KernelLR

Let us return to a binary classification task. The perceptron algorithm guaranteed finding some separating hyperplane if it existed; we now consider finding the one with *maximum margin*.





**Figure 7.1** The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision boundary, as shown on the right. The location of this boundary is determined by a subset of the data points, known as support vectors, which are indicated by the circles.

Figure 7.1 of Pattern Recognition and Machine Learning.



Assume we have a dataset  $m{X} \in \mathbb{R}^{N imes D}$  ,  $m{t} \in \{-1,1\}^N$  , feature map arphi and model

$$y(oldsymbol{x}) \stackrel{ ext{def}}{=} oldsymbol{arphi}(oldsymbol{x})^T oldsymbol{w} + b.$$

We already know that the distance of a point  $oldsymbol{x}_i$  to the decision boundary is

$$rac{|y(oldsymbol{x}_i)|}{||oldsymbol{w}||} = rac{t_i y(oldsymbol{x}_i)}{||oldsymbol{w}||}.$$

We therefore want to maximize

Refresh

$$rgmax_{w,b} rac{1}{||oldsymbol{w}||} \min_i ig[ t_i(oldsymbol{arphi}(oldsymbol{x})^Toldsymbol{w}+b) ig].$$

However, this problem is difficult to optimize directly.



Figure 4.1 of Pattern Recognition and Machine Learning.

NPFL129, Lecture 5

KernelLR

Kernels SVM

Because the model is invariant to multiplying  $\boldsymbol{w}$  and b by a constant, we can say that for the points closest to the decision boundary, it will hold that

$$t_i y(oldsymbol{x}_i) = 1.$$

Then for all the points we will have  $t_i y({m x}_i) \geq 1$  and we can simplify

$$rgmax_{w,b} rac{1}{||oldsymbol{w}||} \min_i \left[ t_i(oldsymbol{arphi}(oldsymbol{x})^Toldsymbol{w}+b) 
ight]$$

to

$$rgmin_{w,b}rac{1}{2}||oldsymbol{w}||^2 ext{ given that } t_iy(oldsymbol{x}_i)\geq 1.$$

NPFL129, Lecture 5

KernelLR

Kernels SVM



# Lagrange Multipliers – Inequality Constraints



Given a function  $J(\boldsymbol{x})$ , we can find a maximum with respect to a vector  $\boldsymbol{x} \in \mathbb{R}^d$ , by investigating the critical points  $\nabla_{\boldsymbol{x}} J(\boldsymbol{x}) = 0$ .

We even know how to incorporate constraints of form  $g(\boldsymbol{x}) = 0$ .

We now describe how to include inequality constraints  $g(\boldsymbol{x}) \geq 0$ .

The optimum can either be attained for  $g(\boldsymbol{x}) > 0$ , when the constraint is said to be *inactive*, or for  $g(\boldsymbol{x}) = 0$ , when the constraint is sayd to be *active*.

In the inactive case, the maximum is again a critical point of the Langrangian, with  $\lambda = 0$ . When maximum is on boundary, it corresponds to a critical point with  $\lambda \neq 0$  – but note that this time the sign of the multiplier matters, because maximum is attained only when gradient of  $f(\boldsymbol{x})$  is oriented away from the region  $g(\boldsymbol{x}) \geq 0$ . We therefore require  $\nabla f(\boldsymbol{x}) = -\lambda \nabla g(\boldsymbol{x})$  for  $\lambda > 0$ . In both cases,  $\lambda g(\boldsymbol{x}) = 0$ .



KernelLR

# Karush-Khun-Tucker Conditions

Therefore, the solution to a maximization problem of f(x) subject to  $g(x) \ge 0$  can be found by inspecting all points where the derivation of the Lagrangian is zero, subject to the following conditions:

$$egin{aligned} g(oldsymbol{x}) &\geq 0 \ \lambda &\geq 0 \ \lambda g(oldsymbol{x}) &= 0 \end{aligned}$$



# **Necessary and Sufficient KKT Conditions**

The above conditions are necessary conditions for a minimum. However, it can be proven that in the following settings, the conditions are also **sufficient**:

- if the objective to optimize is a *convex* function,
- the inequality constraings are continuously differentiable convex functions,
- the equality constraints are affine functions (linear functions with an offset).

NPFL129, Lecture 5

R Kernels

In order to solve the constrained problem of

$$rgmin_{w,b}rac{1}{2}||oldsymbol{w}||^2 ext{ given that } t_iy(oldsymbol{x}_i)\geq 1,$$

we write the Lagrangian with multipliers  $oldsymbol{a} = (a_1, \ldots, a_N)$  as

$$L=rac{1}{2}||oldsymbol{w}||^2-\sum_i a_iig[t_iy(oldsymbol{x}_i)-1ig].$$

Setting the derivatives with respect to  $oldsymbol{w}$  and b to zero, we get

$$oldsymbol{w} = \sum_i a_i t_i arphi(oldsymbol{x}_i) 
onumber \ 0 = \sum_i a_i t_i$$

NPFL129, Lecture 5 Refresh

SoftMax Derivation

KernelLR

Kernels SVM

KKT

Dual SVM Formulation



NPFL129, Lecture 5



Substituting these to the Lagrangian, we get

SoftMax Derivation

Refresh

$$L = \sum_i a_i - rac{1}{2} \sum_i \sum_j a_i a_j t_i t_j K(oldsymbol{x}_i,oldsymbol{x}_j)$$

with respect to the constraints  $\forall_i : a_i \geq 0$ ,  $\sum_i a_i t_i = 0$  and kernel  $K(\boldsymbol{x}, \boldsymbol{z}) = \varphi(\boldsymbol{x})^T \varphi(\boldsymbol{z})$ . The solution of this Lagrangian will fulfil the KKT conditions, meaning that

$$a_i \geq 0 \ t_i y(oldsymbol{x}_i) - 1 \geq 0 \ a_iig(t_i y(oldsymbol{x}_i) - 1ig) = 0.$$

Therefore, either a point is on a boundary, or  $a_i = 0$ . Given that the predictions for point  $\boldsymbol{x}$  are given by  $y(\boldsymbol{x}) = \sum a_i t_i K(\boldsymbol{x}, \boldsymbol{x}_i) + b$ , we need to keep only the points on the boundary, the so-called **support vectors**.

Kernels

SVM

KKT

Dual SVM Formulation

KernelLR



The dual formulation allows us to use non-linear kernels.

**Figure 7.2** Example of synthetic data from two classes in two dimensions showing contours of constant  $y(\mathbf{x})$  obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.



Figure 7.2 of Pattern Recognition and Machine Learning.

NPFL129, Lecture 5

tion KernelLR

Kernels SVM