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Figure E.1 of Pattern Recognition and Machine
Learning.

Given a funtion , we can find a maximum with respect to a

vector , by investigating the critical points .

Consider now finding maximum subject to a a constraing .

Note that  is orthogonal to the surface of the

constraing, because if  and a nearby point  lie on the

surface, from the Taylor expansion 

 we get .

In the seeked maximum,  must also be orthogonal to the

constraing surface (or else moving in the direction of the derivative would increase the
value).

Therefore, there must exist  such that .

J(x)
x ∈ Rd ∇  J(x) =x 0

g(x) = 0

∇  g(x)x

x x + ε

g(x + ε) ≈ g(x) +
ε ∇  g(x)T

x ε ∇  g(x) ≈T
x 0

∇  f(x)x

λ ∇  f +x λ∇  g =x 0
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Figure E.1 of Pattern Recognition and Machine
Learning.

We therefore introduce the Lagrangian function

We can then find the maximum under the constraing by inspecting
critical points of  with respect to both  and :

 leads to ;

 is the previously derived .

L(x,λ) =def
f(x) + λg(x).

L(x,λ) x λ

 =∂λ
∂L 0 g(x) = 0

 =∂x
∂L 0 ∇  f +x λ∇  g =x 0
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Calculus of Variations

Many optimization techniques depend on minimizing a function  with respect to a

vector , by investigating the critical points .

A function of a function, , is known as a functional, for example entropy .

Similarly to partial derivatives, we can take functional derivatives of a functional  with

respect to individual values  for all points . The functional derivative of  with respect

to a function  in a point  is denoted as

For this class, we will use only the following theorem, which states that for all differentiable
functions  and differentiable functions  with continuous derivatives, it holds that

J(w)
w ∈ Rd ∇  J(w) =w 0

J [f ] H[⋅]

J [f ]
f(x) x J

f x

 J .
∂f(x)

∂

f g(f(x),x)

 g(f(x),x) dx =
∂f(x)

∂
∫  g(y,x).

∂y
∂
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Calculus of Variations

An intuitive view is to think about  as a vector of uncountably many elements (for

every value . In this interpretation the result is analogous to computing partial

derivatives of a vector :

f(x)
x)

w ∈ Rd

  g(w  ,x) =
∂w  i

∂

j

∑ j  g(w  ,x).
∂w  i

∂
i

 g(f(x),x) dx =
∂f(x)

∂
∫  g(y,x).

∂y
∂
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Continuous Distribution with Maximum Entropy

What distribution over  maximizes entropy ?

For continuous values, the entropy is an integral .

We cannot just maximize  with respect to a function , because:

the result might not be a probability distribution – we need to add a constraint that 

;

the problem is unspecified because a distribution can be shifted without changing entropy –
we add a constraing ;

because entropy increases as variance increases, we ask which distribution with a fixed

variance  has maximum entropy – adding a constraing .

R H[p] = −E  log p(x)x

H[p] = − p(x) log p(x) dx∫

H p

p(x) dx =∫ 1

E[x] = μ

σ2 Var(x) = σ2
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Function with Maximum Entropy

Lagrangian of all the constraings and the entropy function is

By expanding all definitions to integrals, we get

The functional derivative of  is:

L(p;μ,σ ) =2 λ  ( p(x) dx −1 ∫ 1) + λ  (E[x] −2 μ)+ λ  (Var(x) −3 σ )+2 H[p].

  

L(p;μ,σ ) =2 (λ  p(x) + λ  p(x)xλ  p(x)(x − μ) − p(x) log p(x)) dx−∫ 1 2 3
2

− λ  − μλ  − σ λ  .1 2
2

3

L

 L(p;μ,σ ) =
∂p(x)

∂ 2 λ  +1 λ  x +2 λ  (x −3 μ) −2 1 − log p(x) = 0.

7/26NPFL129, Lecture 5 Refresh SoftMax Derivation KernelLR Kernels SVM KKT Dual SVM Formulation



Function with Maximum Entropy

Rearrangint the functional derivative of :

we obtain

We can verify that setting ,  and  fulfils all the

constraints, arriving at

L

L(p;μ,σ ) =
∂p(x)

∂ 2 λ  +1 λ  x +2 λ  (x −3 μ) −2 1 − log p(x) = 0.

p(x) = exp(λ  +1 λ  x +2 λ  (x −3 μ) −2 1).

λ  =1 1 − log σ  2π λ  =2 0 λ  =3 −1/(2σ )2

p(x) = N (x;μ,σ ).2
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Derivation of Softmax using Maximum Entropy

Let  be training data of a -class classification,

with  and .

We want to model it using a function  so that  gives a distribution of

classes for input .

We impose the following conditions on :

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N K

x  ∈i RD t  ∈i {1, 2, … ,K}

π : R →D RK π(x)
x

π

π(x)  ≥j 0

 π(x)  =
j=1

∑
K

j 1

∀  , ∀  :k∈{1,2,…,D} j∈{1,2,…,K}  π(x  )  x  =
i=1

∑
N

i j i,k  [t  =
i=1

∑
N

i = j]x  i,k
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Derivation of Softmax using Maximum Entropy

There are many such , one particularly bad is

Therefore, we want to find a more general  – we will aim for one with maximum entropy.

π

π(x) =   {
t  i

0
if there exists i : x  = x,i

otherwise.

π
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Derivation of Softmax using Maximum Entropy

We therefore want to maximize  given

,

,

.

We therefore form a Lagrangian

−   π(x  )  log(π(x  )  )∑i=1
N ∑j=1

K
i j i j

π(x)  ≥j 0
 π(x)  =∑i=j

K
j 1

∀  , ∀  :k∈{1,…,D} j∈{1,…,K}  π(x  )  x  =∑i=1
N

i j i,k  [t  =∑i=1
N

i = j]x  i,k

  

L =   λ  (  π(x  )  x  − [t  == j]x  )
k=1

∑
D

j=1

∑
K

k,j
i=1

∑
N

i j i,k i i,k

−  β  (  π(x  )  − 1)
i=1

∑
N

i

j=1

∑
K

i j

−   π(x  )  log(π(x  )  )
i=1

∑
N

j=1

∑
K

i j i j
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Derivation of Softmax using Maximum Entropy

We now compute partial derivatives of the Lagrangian, notably the values

We arrive at

Setting the Lagrangian to zero, we get  which we rewrite

to

Such a forms guarantees , which we did not include in the conditions.

 L.
∂π(x  )  i j

∂

 L =
∂π(x  )  i j

∂
λ  x  +∗,j i β  −i log(π(x  )  ) −i j 1.

λ  x  +∗,j i β  −i log(π(x  )  ) −i j 1 = 0,

π(x  )  =i j e .λ  x  +β  −1∗,j i i

π(x  )  >i j 0
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Derivation of Softmax using Maximum Entropy

In order to find out the  values, we turn to the constraint

from which we get

yielding

β  i

 π(x  )  =
j

∑ i j  e =
j

∑ λ  x  +β  −1∗,j i i 1,

e =β  i
 ,

 e∑j
λ  x  −1∗,j i

1

π(x  )  =i j  .
 e∑k
λ  x  ∗,k i

eλ  x  ∗,j i
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Kernel Linear Regression

Consider linear regression with cubic features

The SGD update for linear regression is then

φ(x) =    .

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎡

1
x  1

x  2

…
x  1

2

x  x  1 2

…
x  x  2 1

…
x  1

3

x  x  1
2

2

… ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎤

w ← w + α(t − w φ(x))φ(x).T
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Kernel Linear Regression

When dimensionality of input is , one step of SGD takes .

Surprisingly, we can do better under some circumstances. We start by noting that we can write
the parameters  as a linear combination of the input features .

By induction, , and assuming , after a SGD update

we get

A individual update is , and substituting for  we get

D O(D )3

w φ(x  )i

w = 0 =  0 ⋅∑i φ(x  )i w =  β  ⋅∑i i φ(x  )i

  

w ←

=

w + α  (t  − w φ(x  ))φ(x  )
i

∑ i
T

i i

 (β  + α(t  − w φ(x  )))φ(x  ).
i

∑ i i
T

i i

β  ←i β  +i α(t  −i w φ(x  ))T
i w

β  ←i β  +i α(t  −i  β  φ(x  ) φ(x  )).∑
j

j j
T

i
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Kernel Linear Regression

We can formulate the alternative linear regression algorithm (it would be called a dual

formulation):

Input: Dataset ( , ), learning rate . 

Set 

Compute all values 

Repeat until convergence
Update the coordinates, either according to a full gradient update:

or alternatively use single-batch SGD, arriving at:
for  in random permutation of :

In vector notation, we can write .

The predictions are then performed by computing .

X = {x  ,x  , … ,x  } ∈1 2 N RN×D t ∈ RN α ∈ R+

β  ←i 0
K(x  ,x ) =i j φ(x  ) φ(x  )i

T
j

β ← β + α(t − Kβ)

i {1, … ,N}

β  ←i β +i α(t  −i  β  K(x  ,x  ))∑j j i j

β ← β + α(t − Kβ)

y(x) = w φ(x) =T
 β  φ(x  ) φ(x)∑i i i

T
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Kernel Trick

A single SGD update of all  then takes , given that we can evaluate scalar dot

product of  quickly.

β  i O(N )2

φ(x  ) φ(x  )j
T

i

  

φ(x) φ(z) =T

=

=

1 +  x  z  +  x  x  z  z  +  x  x  x  z  z  z  

i

∑ i i

i,j

∑ i j i j

i,j,k

∑ i j k i j k

1 +  x  z  + (  x  z  ) + (  x  z  )
i

∑ i i

i

∑ i i

2

i

∑ i i

3

1 + x z + (x z) + (x z) .T T 2 T 3
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Kernels

We define a kernel corresponding to a feature map  as a function

There is quite a lot of theory behind kernel construction. The most often used kernels are:

polynomial kernel or degree 

which corresponds to a feature map generating all combinations of up to  input features;

Gaussian (or RBF) kernel

corresponding to a scalar product in an infinite-dimensional space (it is in a sense a
combination of polynomial kernels of all degrees).

φ

K(x, z) =def
φ(x) φ(z).t

d

K(x, z) = (γx z +T 1) ,d

d

K(x, z) = e ,−γ∣∣x−z∣∣2
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Support Vector Machines

Let us return to a binary classification task. The perceptron algorithm guaranteed finding some
separating hyperplane if it existed; we now consider finding the one with maximum margin.
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Figure 7.1 of Pattern Recognition and Machine Learning.
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Support Vector Machines



 

Figure 4.1 of Pattern Recognition and Machine Learning.

Assume we have a dataset , , feature map  and model

We already know that the distance of a point  to the decision

boundary is

We therefore want to maximize

However, this problem is difficult to optimize directly.

X ∈ RN×D t ∈ {−1, 1}N φ

y(x) =def
φ(x) w +T b.

x  i

 =
∣∣w∣∣

∣y(x  )∣i
 .

∣∣w∣∣
t  y(x  )i i

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)].
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Support Vector Machines

Because the model is invariant to multiplying  and  by a constant, we can say that for the

points closest to the decision boundary, it will hold that

Then for all the points we will have  and we can simplify

to

w b

t  y(x  ) =i i 1.

t  y(x  ) ≥i i 1

   [t  (φ(x) w +
w,b

arg max
∣∣w∣∣

1
i

min i
T b)]

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1.
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Lagrange Multipliers – Inequality Constraints
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Figure E.3 of Pattern Recognition and Machine
Learning.

Given a funtion , we can find a maximum with respect to a vector , by

investigating the critical points .

We even know how to incorporate constraints of form .

We now describe how to include inequality constraints .

The optimum can either be attained for , when the constraint

is said to be inactive, or for , when the constraint is sayd to

be active.

In the inactive case, the maximum is again a critical point of the
Langrangian, with . When maximum is on boundary, it

corresponds to a critical point with  – but note that this time the

sign of the multiplier matters, because maximum is attained only when gradient of  is

oriented away from the region . We therefore require  for .

In both cases, .

J(x) x ∈ Rd

∇  J(x) =x 0

g(x) = 0

g(x) ≥ 0

g(x) > 0
g(x) = 0

λ = 0
λ  = 0

f(x)
g(x) ≥ 0 ∇f(x) = −λ∇g(x) λ > 0

λg(x) = 0
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Karush-Khun-Tucker Conditions
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Figure E.3 of Pattern Recognition and Machine
Learning.

Therefore, the solution to a maximization problem of  subject to 

 can be found by inspecting all points where the derivation of

the Lagrangian is zero, subject to the following conditions:

Necessary and Sufficient KKT Conditions
The above conditions are necessary conditions for a minimum. However, it can be proven that
in the following settings, the conditions are also sufficient:

if the objective to optimize is a convex function,
the inequality constraings are continuously differentiable convex functions,
the equality constraints are affine functions (linear functions with an offset).

f(x)
g(x) ≥ 0

  

g(x)

λ

λg(x)

≥ 0

≥ 0

= 0
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Support Vector Machines

In order to solve the constrained problem of

we write the Lagrangian with multipliers  as

Setting the derivatives with respect to  and  to zero, we get

  ∣∣w∣∣  given that  t y(x  ) ≥
w,b

arg min
2
1 2

i i 1,

a = (a  , … , a  )1 N

L =  ∣∣w∣∣ −
2
1 2

 a  [t  y(x  ) −
i

∑ i i i 1].

w b

  

w =

0 =

 a  t  φ(x  )
i

∑ i i i

 a  t  

i

∑ i i
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Support Vector Machines

Substituting these to the Lagrangian, we get

with respect to the constraints ,  and kernel 

The solution of this Lagrangian will fulfil the KKT conditions, meaning that

Therefore, either a point is on a boundary, or . Given that the predictions for point  are

given by , we need to keep only the points on the boundary, the

so-called support vectors.

L =  a  −
i

∑ i    a  a  t  t  K(x  ,x  )
2
1

i

∑
j

∑ i j i j i j

∀  :i a  ≥i 0  a  t  =∑i i i 0 K(x, z) = φ(x) φ(z).T

  

a  i

t  y(x  ) − 1i i

a  (t  y(x  ) − 1)i i i

≥ 0

≥ 0

= 0.

a  =i 0 x

y(x) = a  t  K(x,x  ) +∑ i i i b
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Support Vector Machines

The dual formulation allows us to use non-linear kernels.

      
    
   
     
    
  
    
   


 

Figure 7.2 of Pattern Recognition and Machine Learning.
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