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Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. Logistic regression can in fact handle also more than two classes, which we will see

shortly.

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is a sigmoid function

Can be trained using an SGD algorithm.
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Sigmoid Function

The sigmoid function has values in range , it is monotonically increasing and it has a

derivative of  at .
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Logistic Regression

To give some meaning to the sigmoid function, starting with

we can arrive at

where the prediction of the model  is called a logit and it is a logarithm of odds of the

two classes probabilities.

P (C  ∣x) =1 σ(f(x;w)) =  

1 + e−f (x;w)

1

f(x;w) = log  ,(
P (C  ∣x)0

P (C  ∣x)1 )

f(x;w)
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Logistic Regression

To train the logistic regression , we use MLE (the maximum likelihood

estimation). Note that .

Therefore, the loss for a batch  is

Input: Input dataset ( , ), learning rate . 

until convergence (or until patience is over), process batch of  examples:

y(x;w) = x wT

P (C  ∣x;w) =1 σ(y(x;w))

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

L(X) =   − log(P (C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1} α ∈ R+

w ← 0
N

g ← −   ∇  log(P (C  ∣x  ;w)
N
1 ∑i w t  i i

w ← w − αg

5/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy



Linearity in Logistic Regression
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Figure 4.12 of Pattern Recognition and Machine Learning.
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Multiclass Logistic Regression

To extend the binary logistic regression to a multiclass case with  classes, we:

Generate multiple outputs, notably  outputs, each with its own set of weights, so that

Generalize the sigmoid function to a  function, such that

Note that the original sigmoid function can be written as

The resulting classifier is also known as multinomial logistic regression, maximum entropy
classifier or softmax regression.
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Multiclass Logistic Regression

Note that as defined, the multiclass logistic regression is overparametrized. It is possible to
generate only  outputs and define , which is the approach used in binary logistic

regression.

In this settings, analogously to binary logistic regression, we can recover the interpretation of
the model outputs  (i.e., the  inputs) as logits:

However, in all our implementations, we will use weights for all  outputs.

K − 1 z  =K 0

y(x;W ) softmax

y(x;W )  =i log  .(
P (C  ∣x;w)K

P (C  ∣x;w)i )

K
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Multiclass Logistic Regression

Using the  function, we naturally define that

We can then use MLE and train the model using stochastic gradient descent.

Input: Input dataset ( , ), learning rate . 

until convergence (or until patience is over), process batch of  examples:

softmax

P (C  ∣x;W ) =i softmax(W  x)i =i  .
 e∑j
W  xj

eW  xi

X ∈ RN×D t ∈ {0, 1, … ,K − 1} α ∈ R+

w ← 0
N

g ← −   ∇  log(P (C  ∣x  ;w)
N
1 ∑i w t  i i

w ← w − αg
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Multiclass Logistic Regression
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Figure 4.3 of Pattern Recognition and Machine Learning.

Note that the decision regions of the binary/multiclass logistic regression are convex (and
therefore connected).

To see this, consider  and  in the same decision

region .

Any point  lying on the line connecting them is their

linear combination, , and from

the linearity of  it follows that

Given that  was the largest among  and

also given that  was the largest among , it

must be the case that  is the largest among all .

x  A x  B

R  k

x

x = λx  +A (1 − λ)x  B

y(x) = Wx

y(x) = λy(x  ) +A (1 − λ)y(x  ).B

y  (x  )k A y(x  )A

y  (x  )k B y(x  )B

y  (x)k y(x)
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Mean Square Error as MLE

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance  – the most general such a distribution is the normal distribution.σ2
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Mean Square Error as MLE

Therefore, assume our model generates a distribution

Now we can apply MLE and get

P (y∣x;w) = N (y; f(x;w),σ ).2

  

 P (X;w) =
w

arg max

=

=

=

  − log P (y  ∣x  ;w)
w

arg min
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∑
m

i i

−   log  e
w

arg min
i=1

∑
m

 

2πσ2

1 −  2σ2
(y  −f (x  ;w))i i

2

−  m log(2πσ ) +  −  
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∑
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∑
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∑
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Multilayer Perceptron
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Multilayer Perceptron

There is a weight on each edge, and an activation function  is performed on the hidden layers,

and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write:

f

h  =i f  w  x  + b  (
j

∑ i,j j i)

h = f Wx + b( )
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Multilayer Perceptron and Biases





























 

 

 

Figure 5.1 of Pattern Recognition and Machine Learning.
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Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)

sigmoid (logistic regression model if there are no hidden layers)

 (maximum entropy model if there are no hidden layers)

σ(x) =def
 

1 + e−x

1

softmax

softmax(x) ∝ ex

softmax(x)  i =def
 

 e∑j
x  j

ex  i
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Neural Network Activation Functions

Hidden Layers
none (does not help, composition of linear mapping is a linear mapping)

 (but works badly – nonsymmetrical, )

result of making  symmetrical and making derivation in zero 1

ReLU

σ  (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)
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Training MLP

The multilayer perceptron can be trained using an SGD algorithm:

Input: Input dataset ( , ), learning rate . 

until convergence (or until patience is over), process batch of  examples:

X ∈ RN×D t ∈ {0, +1} α ∈ R+

w ← 0
N

g ← ∇    − log p(y  ∣x  ;w)w N
1 ∑j j j

w ← w − αg
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Training MLP – Computing the Derivatives

Assume a network with an input of size , then weights , hidden layer with size 

 and activation , weights , and finally an output layer of size  with

activation .
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Training MLP – Computing the Derivatives

(to be finished later)
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Universal Approximation Theorem '89

Let  be a nonconstant, bounded and nondecreasing continuous function.  

(Later a proof was given also for .)

Then for any  and any continuous function  on  there exists an 

 and , such that if we denote

then for all 

φ(x)
φ = ReLU

ε > 0 f [0, 1]m N ∈ N, v  ∈i

R, b  ∈i R w  ∈i Rm

F (x) =  v  φ(w  ⋅
i=1

∑
N

i i x + b  )i

x ∈ [0, 1]m

∣F (x) − f(x)∣ < ε.
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Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

 

https://miro.medium.com/max/844/1*lihbPNQgl7oKjpCsmzPDKw.png

However, we can create a sequence of  linear segments as a sum of  ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tanget and the tangent of the
approximation until this point.

k k
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Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function  (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

We can prove  can be arbitrarily close to a hard threshold by compressing it horizontally.

 

https://hackernoon.com/hn-images/1*N7dfPwbiXC-Kk4TCbfRerA.png

Then we approximate the original function using a series of straight line segments

 

https://hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJhl_fomg.png
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φ
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Lagrange Multipliers – Equality Constraints
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Figure E.1 of Pattern Recognition and Machine
Learning.

Given a funtion , we can find a maximum with respect to a

vector , by investigating the critical points .

Consider now finding maximum subject to a constraint .

Note that  is orthogonal to the surface of the

constraing, because if  and a nearby point  lie on the

surface, from the Taylor expansion 

 we get .

In the seeked maximum,  must also be orthogonal to the

constraing surface (or else moving in the direction of the derivative would increase the
value).

Therefore, there must exist  such that .

J(x)
x ∈ Rd ∇  J(x) =x 0

g(x) = 0

∇  g(x)x

x x + ε

g(x + ε) ≈ g(x) +
ε ∇  g(x)T

x ε ∇  g(x) ≈T
x 0

∇  f(x)x

λ ∇  f +x λ∇  g =x 0
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Lagrange Multipliers – Equality Constraints
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Figure E.1 of Pattern Recognition and Machine
Learning.

We therefore introduce the Lagrangian function

We can then find the maximum under the constraing by inspecting
critical points of  with respect to both  and :

 leads to ;

 is the previously derived .

L(x,λ) =def
f(x) + λg(x).

L(x,λ) x λ

 =∂λ
∂L 0 g(x) = 0

 =∂x
∂L 0 ∇  f +x λ∇  g =x 0
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Calculus of Variations

Many optimization techniques depend on minimizing a function  with respect to a

vector , by investigating the critical points .

A function of a function, , is known as a functional, for example entropy .

Similarly to partial derivatives, we can take functional derivatives of a functional  with

respect to individual values  for all points . The functional derivative of  with respect

to a function  in a point  is denoted as

For this class, we will use only the following theorem, which states that for all differentiable
functions  and differentiable functions  with continuous derivatives, it holds

that

J(w)
w ∈ Rd ∇  J(w) =w 0

J [f ] H[⋅]

J [f ]
f(x) x J

f x

 J .
∂f(x)

∂

f g(y = f(x),x)

 g(f(x),x) dx =
∂f(x)

∂
∫  g(y,x).

∂y
∂
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Calculus of Variations

An intuitive view is to think about  as a vector of uncountably many elements (for

every value . In this interpretation the result is analogous to computing partial

derivatives of a vector :

f(x)
x)

w ∈ Rd

  g(w  ,x) =
∂w  i

∂

j

∑ j  g(w  ,x).
∂w  i

∂
i

 g(f(x),x) dx =
∂f(x)

∂
∫  g(y,x).

∂y
∂
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Function with Maximum Entropy

What distribution over  maximizes entropy ?

For continuous values, the entropy is an integral .

We cannot just maximize  with respect to a function , because:

the result might not be a probability distribution – we need to add a constraint that 

;

the problem is unspecified because a distribution can be shifted without changing entropy –
we add a constraing ;

because entropy increases as variance increases, we ask which distribution with a fixed
variance  has maximum entropy – adding a constraing .

R H[p] = −E  log p(x)x

H[p] = − p(x) log p(x) dx∫

H p

p(x) dx =∫ 1

E[x] = μ

σ2 Var(x) = σ2
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Function with Maximum Entropy

Lagrangian of all the constraings and the entropy function is

By expanding all definitions to integrals, we get

The functional derivative of  is:

L(p;μ,σ ) =2 λ  ( p(x) dx −1 ∫ 1) + λ  (E[x] −2 μ)+ λ  (Var(x) −3 σ )+2 H[p].

  

L(p;μ,σ ) =2 (λ  p(x) + λ  p(x)xλ  p(x)(x − μ) − p(x) log p(x)) dx−∫ 1 2 3
2

− λ  − μλ  − σ λ  .1 2
2

3

L

 L(p;μ,σ ) =
∂p(x)

∂ 2 λ  +1 λ  x +2 λ  (x −3 μ) −2 1 − log p(x) = 0.
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Function with Maximum Entropy

Rearrangint the functional derivative of :

we obtain

We can verify that setting ,  and  fulfils all the

constraints, arriving at

L

L(p;μ,σ ) =
∂p(x)

∂ 2 λ  +1 λ  x +2 λ  (x −3 μ) −2 1 − log p(x) = 0.

p(x) = exp(λ  +1 λ  x +2 λ  (x −3 μ) −2 1).

λ  =1 1 − log σ  2π λ  =2 0 λ  =3 −1/(2σ )2

p(x) = N (x;μ,σ ).2
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