
NPFL129, Lecture 4

Multiclass Logistic Regression,

Multiplayer Perceptron
Milan Straka

November 11, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Logistic Regression

An extension of perceptron, which models the conditional probabilities of and of

. Logistic regression can in fact handle also more than two classes, which we will see

shortly.

Logistic regression employs the following parametrization of the conditional class probabilities:

where is a sigmoid function

Can be trained using an SGD algorithm.

p(C ∣x)0

p(C ∣x)1

P (C ∣x)1

P (C ∣x)0

= σ(x w + b)t

= 1 − P (C ∣x),1

σ

σ(x) = .
1 + e−x

1

2/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Sigmoid Function

The sigmoid function has values in range , it is monotonically increasing and it has a

derivative of at .

(0, 1)
 4

1 x = 0

σ(x) =

1 + e−x

1

σ (x) =′ σ(x)(1 − σ(x))

3/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Logistic Regression

To give some meaning to the sigmoid function, starting with

we can arrive at

where the prediction of the model is called a logit and it is a logarithm of odds of the

two classes probabilities.

P (C ∣x) =1 σ(f(x;w)) =

1 + e−f (x;w)

1

f(x;w) = log ,(
P (C ∣x)0

P (C ∣x)1)

f(x;w)

4/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Logistic Regression

To train the logistic regression , we use MLE (the maximum likelihood

estimation). Note that .

Therefore, the loss for a batch is

Input: Input dataset (,), learning rate .

until convergence (or until patience is over), process batch of examples:

y(x;w) = x wT

P (C ∣x;w) =1 σ(y(x;w))

X = {(x , t), (x , t), … , (x , t)}1 1 2 2 N N

L(X) = − log(P (C ∣x ;w)).
N

1

i

∑ t i i

X ∈ RN×D t ∈ {0, +1} α ∈ R+

w ← 0
N

g ← − ∇ log(P (C ∣x ;w)
N
1 ∑i w t i i

w ← w − αg

5/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Linearity in Logistic Regression

Figure 4.12 of Pattern Recognition and Machine Learning.

6/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multiclass Logistic Regression

To extend the binary logistic regression to a multiclass case with classes, we:

Generate multiple outputs, notably outputs, each with its own set of weights, so that

Generalize the sigmoid function to a function, such that

Note that the original sigmoid function can be written as

The resulting classifier is also known as multinomial logistic regression, maximum entropy
classifier or softmax regression.

K

K

y(x;W) =i W x.i

softmax

softmax(z) =i .
 e∑j

z j

ez i

σ(x) = softmax ([x 0]) =
0

 =
e + ex 0

ex
 .

1 + e−x

1

7/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multiclass Logistic Regression

Note that as defined, the multiclass logistic regression is overparametrized. It is possible to
generate only outputs and define , which is the approach used in binary logistic

regression.

In this settings, analogously to binary logistic regression, we can recover the interpretation of
the model outputs (i.e., the inputs) as logits:

However, in all our implementations, we will use weights for all outputs.

K − 1 z =K 0

y(x;W) softmax

y(x;W) =i log .(
P (C ∣x;w)K

P (C ∣x;w)i)

K

8/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multiclass Logistic Regression

Using the function, we naturally define that

We can then use MLE and train the model using stochastic gradient descent.

Input: Input dataset (,), learning rate .

until convergence (or until patience is over), process batch of examples:

softmax

P (C ∣x;W) =i softmax(W x)i =i .
 e∑j
W xj

eW xi

X ∈ RN×D t ∈ {0, 1, … ,K − 1} α ∈ R+

w ← 0
N

g ← − ∇ log(P (C ∣x ;w)
N
1 ∑i w t i i

w ← w − αg

9/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multiclass Logistic Regression

Figure 4.3 of Pattern Recognition and Machine Learning.

Note that the decision regions of the binary/multiclass logistic regression are convex (and
therefore connected).

To see this, consider and in the same decision

region .

Any point lying on the line connecting them is their

linear combination, , and from

the linearity of it follows that

Given that was the largest among and

also given that was the largest among , it

must be the case that is the largest among all .

x A x B

R k

x

x = λx +A (1 − λ)x B

y(x) = Wx

y(x) = λy(x) +A (1 − λ)y(x).B

y (x)k A y(x)A

y (x)k B y(x)B

y (x)k y(x)

10/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Mean Square Error as MLE

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance – the most general such a distribution is the normal distribution.σ2

11/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Mean Square Error as MLE

Therefore, assume our model generates a distribution

Now we can apply MLE and get

P (y∣x;w) = N (y; f(x;w),σ).2

 P (X;w) =
w

arg max

=

=

=

 − log P (y ∣x ;w)
w

arg min
i=1

∑
m

i i

− log e
w

arg min
i=1

∑
m

2πσ2

1 − 2σ2
(y −f (x ;w))i i

2

− m log(2πσ) + −

w
arg min 2 −1/2

i=1

∑
m

2σ2

(y − f(x ;w))i i
2

 = (y − f(x ;w)) .
w

arg min
i=1

∑
m

2σ2

(y − f(x ;w))i i
2

w
arg min

i=1

∑
m

i i
2

12/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multilayer Perceptron

x3 h3

h4

h1

h2

x4

x1

x2 o1

o2

Input
layer

Hidden
layer

Output
layer

13/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multilayer Perceptron

There is a weight on each edge, and an activation function is performed on the hidden layers,

and optionally also on the output layer.

If the network is composed of layers, we can use matrix notation and write:

f

h =i f w x + b (
j

∑ i,j j i)

h = f Wx + b()

14/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Multilayer Perceptron and Biases

Figure 5.1 of Pattern Recognition and Machine Learning.

15/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Neural Network Activation Functions

Output Layers
none (linear regression if there are no hidden layers)

sigmoid (logistic regression model if there are no hidden layers)

 (maximum entropy model if there are no hidden layers)

σ(x) =def

1 + e−x

1

softmax

softmax(x) ∝ ex

softmax(x) i =def

 e∑j
x j

ex i

16/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Neural Network Activation Functions

Hidden Layers
none (does not help, composition of linear mapping is a linear mapping)

 (but works badly – nonsymmetrical,)

result of making symmetrical and making derivation in zero 1

ReLU

σ (0) =
dx
dσ 1/4

tanh
σ

tanh(x) = 2σ(2x) − 1

max(0,x)

17/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Training MLP

The multilayer perceptron can be trained using an SGD algorithm:

Input: Input dataset (,), learning rate .

until convergence (or until patience is over), process batch of examples:

X ∈ RN×D t ∈ {0, +1} α ∈ R+

w ← 0
N

g ← ∇ − log p(y ∣x ;w)w N
1 ∑j j j

w ← w − αg

18/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Training MLP – Computing the Derivatives

Assume a network with an input of size , then weights , hidden layer with size

 and activation , weights , and finally an output layer of size with

activation .

x3 h3

h4

h1

h2

x4

x1

x2 o1

o2

Input
layer

Hidden
layer

Output
layer

N 1 U ∈ RN ×N 1 2

N 2 h V ∈ RN ×N 2 3 N 3

o

19/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Training MLP – Computing the Derivatives

(to be finished later)

20/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Universal Approximation Theorem '89

Let be a nonconstant, bounded and nondecreasing continuous function.

(Later a proof was given also for .)

Then for any and any continuous function on there exists an

 and , such that if we denote

then for all

φ(x)
φ = ReLU

ε > 0 f [0, 1]m N ∈ N, v ∈i

R, b ∈i R w ∈i Rm

F (x) = v φ(w ⋅
i=1

∑
N

i i x + b)i

x ∈ [0, 1]m

∣F (x) − f(x)∣ < ε.

21/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Universal Approximation Theorem for ReLUs

Sketch of the proof:

If a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

https://miro.medium.com/max/844/1*lihbPNQgl7oKjpCsmzPDKw.png

However, we can create a sequence of linear segments as a sum of ReLU units – on

every endpoint a new ReLU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tanget and the tangent of the
approximation until this point.

k k

22/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Universal Approximation Theorem for Squashes

Sketch of the proof for a squashing function (i.e., nonconstant, bounded and

nondecreasing continuous function like sigmoid):

We can prove can be arbitrarily close to a hard threshold by compressing it horizontally.

https://hackernoon.com/hn-images/1*N7dfPwbiXC-Kk4TCbfRerA.png

Then we approximate the original function using a series of straight line segments

https://hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJhl_fomg.png

φ(x)

φ

23/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Lagrange Multipliers – Equality Constraints

Figure E.1 of Pattern Recognition and Machine
Learning.

Given a funtion , we can find a maximum with respect to a

vector , by investigating the critical points .

Consider now finding maximum subject to a constraint .

Note that is orthogonal to the surface of the

constraing, because if and a nearby point lie on the

surface, from the Taylor expansion

 we get .

In the seeked maximum, must also be orthogonal to the

constraing surface (or else moving in the direction of the derivative would increase the
value).

Therefore, there must exist such that .

J(x)
x ∈ Rd ∇ J(x) =x 0

g(x) = 0

∇ g(x)x

x x + ε

g(x + ε) ≈ g(x) +
ε ∇ g(x)T

x ε ∇ g(x) ≈T
x 0

∇ f(x)x

λ ∇ f +x λ∇ g =x 0

24/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Lagrange Multipliers – Equality Constraints

Figure E.1 of Pattern Recognition and Machine
Learning.

We therefore introduce the Lagrangian function

We can then find the maximum under the constraing by inspecting
critical points of with respect to both and :

 leads to ;

 is the previously derived .

L(x,λ) =def
f(x) + λg(x).

L(x,λ) x λ

 =∂λ
∂L 0 g(x) = 0

 =∂x
∂L 0 ∇ f +x λ∇ g =x 0

25/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Calculus of Variations

Many optimization techniques depend on minimizing a function with respect to a

vector , by investigating the critical points .

A function of a function, , is known as a functional, for example entropy .

Similarly to partial derivatives, we can take functional derivatives of a functional with

respect to individual values for all points . The functional derivative of with respect

to a function in a point is denoted as

For this class, we will use only the following theorem, which states that for all differentiable
functions and differentiable functions with continuous derivatives, it holds

that

J(w)
w ∈ Rd ∇ J(w) =w 0

J [f] H[⋅]

J [f]
f(x) x J

f x

 J .
∂f(x)

∂

f g(y = f(x),x)

 g(f(x),x) dx =
∂f(x)

∂
∫ g(y,x).

∂y
∂

26/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Calculus of Variations

An intuitive view is to think about as a vector of uncountably many elements (for

every value . In this interpretation the result is analogous to computing partial

derivatives of a vector :

f(x)
x)

w ∈ Rd

 g(w ,x) =
∂w i

∂

j

∑ j g(w ,x).
∂w i

∂
i

 g(f(x),x) dx =
∂f(x)

∂
∫ g(y,x).

∂y
∂

27/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Function with Maximum Entropy

What distribution over maximizes entropy ?

For continuous values, the entropy is an integral .

We cannot just maximize with respect to a function , because:

the result might not be a probability distribution – we need to add a constraint that

;

the problem is unspecified because a distribution can be shifted without changing entropy –
we add a constraing ;

because entropy increases as variance increases, we ask which distribution with a fixed
variance has maximum entropy – adding a constraing .

R H[p] = −E log p(x)x

H[p] = − p(x) log p(x) dx∫

H p

p(x) dx =∫ 1

E[x] = μ

σ2 Var(x) = σ2

28/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Function with Maximum Entropy

Lagrangian of all the constraings and the entropy function is

By expanding all definitions to integrals, we get

The functional derivative of is:

L(p;μ,σ) =2 λ (p(x) dx −1 ∫ 1) + λ (E[x] −2 μ)+ λ (Var(x) −3 σ)+2 H[p].

L(p;μ,σ) =2 (λ p(x) + λ p(x)xλ p(x)(x − μ) − p(x) log p(x)) dx−∫ 1 2 3
2

− λ − μλ − σ λ .1 2
2

3

L

 L(p;μ,σ) =
∂p(x)

∂ 2 λ +1 λ x +2 λ (x −3 μ) −2 1 − log p(x) = 0.

29/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

Function with Maximum Entropy

Rearrangint the functional derivative of :

we obtain

We can verify that setting , and fulfils all the

constraints, arriving at

L

L(p;μ,σ) =
∂p(x)

∂ 2 λ +1 λ x +2 λ (x −3 μ) −2 1 − log p(x) = 0.

p(x) = exp(λ +1 λ x +2 λ (x −3 μ) −2 1).

λ =1 1 − log σ 2π λ =2 0 λ =3 −1/(2σ)2

p(x) = N (x;μ,σ).2

30/30NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

