NPFL129, Lecture 4

Multiclass Logistic Regression,
Multiplayer Perceptron

Milan Straka

m November 11, 2019

Charles University in Prague
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics

U=
st

unless otherwise stated

An extension of perceptron, which models the conditional probabilities of p(Cy|x) and of
p(C1|x). Logistic regression can in fact handle also more than two classes, which we will see
shortly.

Logistic regression employs the following parametrization of the conditional class probabilities:

P(Ci|z) = o(x'w + b)
})((jb|ﬂB) =1-— })((:&‘ZB),

where o is a sigmoid function

1

o) = T e=

Can be trained using an SGD algorithm.

LR 2/30

Sigmoid Function

The sigmoid function has values in range (0, 1), it is monotonically increasing and it has a

derivative of % at x = 0.

1.00
0.75
X
5 0.50
0.25
0.00

1
)=

o' (z) = o(z)(1 — o(x))

Plot of the Sigmoid Function o(x)

| —— Sigmoid
—— Derivative of Sigmoid
i 1 | | 1 1 1
4 -3 —2 -1 0 1 2 3
X
MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy

NPFL129, Lecture 4 LR

3/30

Logistic Regression Urzt

To give some meaning to the sigmoid function, starting with

1
P(Cl‘m) — O'(f(m,’UJ)) — 1+ e—f(z;w)

we can arrive at

f () = log (P(Cl“”)) ,

P(Cole)

where the prediction of the model f(@;w) is called a logit and it is a logarithm of odds of the
two classes probabilities.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 4/30

To train the logistic regression y(x; w) = & w, we use MLE (the maximum likelihood

estimation). Note that P(C1|x; w) = o(y(x; w)).
Therefore, the loss for a batch X = {(@1,t1), (®2,%2),..., (®N,tNn)} is

Nz_log Ct ‘:137,,))

Input: Input dataset (X € RY*P ¢t € {0,+1}), learning rate o € R™.

e w<+0(
® until convergence (or until patience is over), process batch of N examples:

© g4 —x 2 Vwlog(P(Cy |z w)

O w <+ w— ag

LR

5/30

Linearity in Logistic Regression

NPFL129, Lecture 4 LR

MulticlassLR

MSE as MLE

MLP

U=

I m
’3 e o9 :\
e ® o ®
o0
¢2 °
([
0.5F °,
o o §
()
- J
®e
[([]
O R
0 0.5 b1 1
Figure 4.12 of Pattern Recognition and Machine Learning.
LagrangeMult VariationalCalc NormalAsMaxEntropy

6/30

To extend the binary logistic regression to a multiclass case with K classes, we:

® Generate multiple outputs, notably K outputs, each with its own set of weights, so that
y(x; W); = W, .

® Generalize the sigmoid function to a softmax function, such that

e~

) —ZJ ezj .

Note that the original sigmoid function can be written as

e’ 1
o(z) = softmax ([z O])O = T It

sof tmax(z);

The resulting classifier is also known as multinomial logistic regression, maximum entropy
classifier or softmax regression.
MulticlassLR 7/30

Note that as defined, the multiclass logistic regression is overparametrized. It is possible to
generate only K — 1 outputs and define zg = 0, which is the approach used in binary logistic

regression.

In this settings, analogously to binary logistic regression, we can recover the interpretation of
the model outputs y(ax; W) (i.e., the softmax inputs) as logits:

y(@; W); = log (PP((in{||a;;::v))) |

However, in all our implementations, we will use weights for all K outputs.

MulticlassLR 8/30

Using the softmax function, we naturally define that
Wicc

ZeWa:

We can then use MLE and train the model using stochastic gradient descent.

P(C;|lax; W) = softmax(W;x)i =

Input: Input dataset (X € RV*P ¢t € {0,1,...,K — 1}), learning rate a € R*.

e w<+ 0
® until convergence (or until patience is over), process batch of [N examples:

© g4 —x 2 Vulog(P(Cy |zi; w)

O w < w— ag

MulticlassLR

9/30

Note that the decision regions of the binary/multiclass logistic regression are convex (and
therefore connected).

To see this, consider &4 and &g in the same decision

region Ry, R,
Any point @ lying on the line connecting them is their R
linear combination, ® = A4 + (1 — A)xp, and from Z

the linearity of y(x) = We it follows that

y(z) = Ay(za) + (1 = Ny(xp). e X

Given that y; (@ 4) was the largest among y(@4) and
also given that yi (@) was the largest among y(xpg), it
must be the case that yi (@) is the largest among all y(a).

LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 10/30

Mean Square Error as MLE Uz

During regression, we predict a number, not a real probability distribution. In order to generate
a distribution, we might consider a distribution with the mean of the predicted value and a fixed
variance 0 — the most general such a distribution is the normal distribution.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 11/30

Therefore, assume our model generates a distribution
P(yla; w) = N (y; f(z; w), 0?).

Now we can apply MLE and get

argmaxP(X w) —argman—logP(yz|fDu w)

w 1=1
m 2
1 (yi—f(i;w))
- = I 1 - 202
argufn m; %V or2©
2
— arg min m log(270”) 1/2+Z azz,'w))
w

_argmmz :13@, w))? —argmmz f(zi; w))?.

LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 12/30

Multilayer Perceptron e

There is a weight on each edge, and an activation function f is performed on the hidden layers,
and optionally also on the output layer.

h, = f Zw@-,jmj + b;
J

If the network is composed of layers, we can use matrix notation and write:

h=f(Wz+b)

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 14/30

Multilayer Perceptron and Biases

hidden units

Figure 5.1 of Pattern Recognition and Machine Learning.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 15/30

Neural Network Activation Functions

Output Layers
® none (linear regression if there are no hidden layers)
® sigmoid (logistic regression model if there are no hidden

o 1
@) = e

layers)

® softmax (maximum entropy model if there are no hidden layers)

softmax(x) x e”

softmax(x); =

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult

VariationalCalc

NormalAsMaxEntropy

U=

L

16/30

Neural Network Activation Functions UL

Hidden Layers
® none (does not help, composition of linear mapping is a linear mapping)
® o (but works badly — nonsymmetrical, 92(0) = 1/4)

® tanh
O result of making o symmetrical and making derivation in zero 1

© tanh(z) = 20(2z) — 1

® RelLU
© max(0,)

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 17/30

The multilayer perceptron can be trained using an SGD algorithm:

Input: Input dataset (X € RY*P ¢t € {0,+1}), learning rate o € R

e w<+ 0
® until convergence (or until patience is over), process batch of [N examples:

© gc< ;'w 3\172‘ logp(y]|a3],w)
J
Cw<—w—ag

MLP 18/30

Assume a network with an input of size N7, then weights U € R™M > hidden layer with size
N, and activation h, weights V' € RM*™ and finally an output layer of size N3 with
activation o.

Input Hidden Output
layer layer layer

MLP 19/30

Training MLP — Computing the Derivatives Urzt

(to be finished later)

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 20/30

Universal Approximation Theorem '89 UL

Let ¢(x) be a nonconstant, bounded and nondecreasing continuous function.

(Later a proof was given also for ¢ = ReLU.)

Then for any € > 0 and any continuous function f on [0, 1]™ there exists an N € N, v; €
R, b, € R and w; € R™, such that if we denote

F(x) = Zvisf?(wi - x + b;)

then for all z € |0, 1]™

[F(z) — f(z)| <e.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 21/30

Universal Approximation Theorem for RelLUs

Sketch of the proof:

® |f a function is continuous on a closed interval, it can be approximated by a sequence
of lines to arbitrary precision.

i ny(x) = Relu(—5x — 7.7)
na(x) = Relu(—1.2z — 1.3)
n3(r) = Relu(l.2x + 1)
ng(r) = Relu(l.2z — .2)
ns(x) = Relu(2x — 1.1)

/- : ’ ne(r) = Relu(bx —5)
\ Z(x) = —ni(x) — na(x) — ng(x)

// + na(x) + ns(z) + ne(x)

https: //miro.medium.com/max/844/1*lihbPNQgl7oKjp CsmzPDKw.png

® However, we can create a sequence of k linear segments as a sum of k RelLU units — on

every endpoint a new RelU starts (i.e., the input ReLU value is zero at the endpoint), with
a tangent which is the difference between the target tanget and the tangent of the
approximation until this point.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 22/30

Universal Approximation Theorem for Squashes UL

Sketch of the proof for a squashing function () (i.e., nonconstant, bounded and
nondecreasing continuous function like sigmoid):

® \We can prove @ can be arbitrarily close to a hard threshold by compressing it horizontally.
= ; _ 1
/ y T 1_|_e—(wT:c+b)

b

D i WiTi

https://hackernoon.com/hn-images/1*N7dfPwbiX C-Kk4TCbfRerA.png

® Then we approximate the original function using a series of straight line segments

https: //hackernoon.com/hn-images/1*hVuJgUTLUFWTMmJh|_fomg.png

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 23/30

Given a funtion J (&), we can find a maximum with respect to a V)

vector & € R?, by investigating the critical points V,J (@) = 0. -
Consider now finding maximum subject to a constraint g(x) = 0.

® Note that V g(x) is orthogonal to the surface of the
constraing, because if ® and a nearby point ® + € lie on the
surface, from the Taylor expansion g(x + €) ~ g(@x) + 4(x) = 0
el'V,g(x) we get el'V,g(x) ~ 0.

® In the seeked maximum, Vg f(®) must also be orthogonal to the
constraing surface (or else moving in the direction of the derivative would increase the
value).

® Therefore, there must exist A such that Vo f + AV,g = 0.

LagrangeMult 24/30

U=

Lagrange Multipliers — Equality Constraints P
We therefore introduce the Lagrangian function V/x)
L(z, A) = f(2) + Ag(). J
We can then find the maximum under the constraing by inspecting
critical points of L(a, A) with respect to both @ and A:
. g—f\ = 0 leads to g(x¢) = 0; o) = 0
o g—i’ = 0 is the previously derived V, f + AVzg = 0.

Figure E.1 of Pattern Recognition and Machine
Learning.

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 25/30

Many optimization techniques depend on minimizing a function J(w) with respect to a
vector w € RY, by investigating the critical points Vo, J(w) = 0.

A function of a function, J|f], is known as a functional, for example entropy H|-].

Similarly to partial derivatives, we can take functional derivatives of a functional J|f] with
respect to individual values f(a) for all points @. The functional derivative of J with respect
to a function f in a point @ is denoted as

G,
0f (z)

For this class, we will use only the following theorem, which states that for all differentiable
functions f and differentiable functions g(y = f(@), @) with continuous derivatives, it holds

that

J.

[i@,z dz = (5, 2).

VariationalCalc 26/30

0
0f(x)

An intuitive view is to think about f(@) as a vector of uncountably many elements (for
every value @). In this interpretation the result is analogous to computing partial

derivatives of a vector w € R¢:

0
o 2001 9) = gl 9).

9
Of ()

[st5(@),2)de - (%g(y, z).

VariationalCalc 27/30

What distribution over R maximizes entropy H|p| = —E, log p(z)?
For continuous values, the entropy is an integral H[p| = — [p(z) log p(z) dz.

We cannot just maximize H with respect to a function p, because:

the result might not be a probability distribution — we need to add a constraint that

Jp(z)dz = 1;
the problem is unspecified because a distribution can be shifted without changing entropy —
we add a constraing E|z] = p;

because entropy increases as variance increases, we ask which distribution with a fixed

variance 0% has maximum entropy — adding a constraing Var(z) = o2

NormalAsMaxEntropy 28/30

Lagrangian of all the constraings and the entropy function is @
L(p; p,0%) =)\1(/])(:13) dx — 1) + X2 (E[z] — p) + A3 (Var(z) — o) + H][p).
By expanding all definitions to integrals, we get

L(p; 1, 0%) = / (Mp(e) + Mop(z)edsp(a)(z — 1)’ — p(a) logp(z)) da—
A = Ay — 02

The functional derivative of L is:

L(p; i, 02) = —p)?—1-1 = 0.
8])(:13) (p7l’l'70-))‘1—'_)‘233—'_)‘3(33 /'L) ng(x) 0

NormalAsMaxEntropy 29/30

Function with Maximum Entropy Uzt

Rearrangint the functional derivative of L: @

L(p; p,0%) = M + Xoz + A3(z — p)* — 1 —log p(z) = 0.

Op(z)

we obtain
p(z) = exp ()\1 + Xz + A3(z — p)? — 1).

We can verify that setting \; = 1 — log 0v/2m, Ay = 0 and A3 = —1/(20?) fulfils all the
constraints, arriving at

p(z) = N(z; p, 0°).

NPFL129, Lecture 4 LR MulticlassLR MSE as MLE MLP LagrangeMult VariationalCalc NormalAsMaxEntropy 30/30

