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Binary Classification

Binary classification is a classification in two classes.

To extend linear regression to binary classification, we might seek a threshold and the classify
an input as negative/positive depending whether  is smaller/larger than a

given threshold.

Zero value is usually used as the threshold, both because it is symmetric and also because the
bias parameter acts as a trainable threshold anyway.

y(x) = x w +T b
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Binary Classification



 

Figure 4.1 of Pattern Recognition and Machine Learning.

Consider two points on the decision
boundary. Because , we

have , and so  is

orthogonal to every vector on the decision
surface –  is a normal of the boundary.

Consider  and let  be orthogonal

projection of  to the bounary, so we can

write . Multiplying both

sides by  and adding , we get that the

distance of  to the boundary is .

The distance of the decision boundary from

origin is therefore .

y(x  ) =1 y(x  )2

(x  −1 x  ) w =2
T 0 w

w

x x  ⊥

x

x = x  +⊥ r  ∣∣w∣∣
w

wT b

x r =  ∣∣w∣∣
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Perceptron
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Figure 4.4 of Pattern Recognition and
Machine Learning.

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value , the goal is to find weights  such that

for all train data

or equivalently

Note that a set is called linearly separable, if there exist a weight vector 

such that the above equation holds.

t ∈ {−1, +1} w

sign(w x  ) =T
i t  ,i

t  w x  >i
T

i 0.

w
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Perceptron

The perceptron algorithm was invented by Rosenblat in 1958.

Input: Linearly separable dataset ( , ). 

Output: Weights  such that  for all .

until all examples are classified correctly, process example :

if  (incorrectly classified example):

We will prove that the algorithm always arrives at some correct set of weights  if the training

set is linearly separable.

X ∈ RN×D t ∈ {−1, +1}
w ∈ RD t  x  w >i i

T 0 i

w ← 0
i

y ← w x  

T
i

t  y ≤i 0
w ← w + t  x  i i

w
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Perceptron as SGD

Consider the main part of the perceptron algorithm:

if  (incorrectly classified example):

We can derive the algorithm using on-line gradient descent, using the following loss function

In this specific case, the value of the learning rate does not actually matter, because multiplying
 by a constant does not change a prediction.

y ← w x  

T
i

t  y ≤i 0
w ← w + t  x  i i

L(f(x;w), t) =
def

  ={
−tx wT

0
if tx w ≤ 0T

otherwise
max(0, −tx w) =T ReLU(−tx w).T

w
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Perceptron Example
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Figure 4.7 of Pattern Recognition and Machine Learning.
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Proof of Perceptron Convergence

Let  be some weights separating the training data and let  be the weights after 

non-trivial updates of the perceptron algorithm, with  being 0.

We will prove that the angle  between  and  decreases at each step. Note that

w  ∗ w  k k

w  0

α w  ∗ wk

cos(α) =  .
∣∣w  ∣∣ ⋅ ∣∣w  ∣∣∗ k

w  w  ∗
T

k
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Proof of Perceptron Convergence

Assume that the maximum norm of any training example  is bounded by , and that

 is the minimum margin of , so 

First consider the dot product of  and :

By iteratively applying this equation, we get

Now consider the length of :

Because  was misclassified, we know that , so 

∣∣x∣∣ R

γ w  ∗ tw  x ≥∗
T γ.

w  ∗ w  k

w w  =∗
T

k w  (w  +∗
T

k−1 t  x  ) ≥k k w  w  +∗
T

k−1 γ.

w  w  ≥∗
T

k kγ.

w  k

  

∣∣w  ∣∣k
2 = ∣∣w  + t  x  ∣∣ = ∣∣w  ∣∣ + 2tw  x  + ∣∣x  ∣∣k−1 k k

2
k−1

2
k−1
T

k k
2

x  k tw  x  <k−1
T

k 0 ∣∣w  ∣∣ ≤k
2 ∣∣w  ∣∣ +k−1

2 R .2
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Proof of Perceptron Convergence

Putting everything together, we get

Therefore, the  increases during every update. Because the value of  is at most

one, we can compute the upper bound on the number of steps when the algorithm converges as

cos(α) =  ≥
∣∣w  ∣∣ ⋅ ∣∣w  ∣∣∗ k

w  w  ∗
T

k
 .

 ∣∣w  ∣∣kR2
∗

kγ

cos(α) cos(α)

1 ≤   or k ≥
 ∣∣w  ∣∣kR2

∗

kγ
 .

γ2

R ∣∣w  ∣∣2
∗

2
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Perceptron Issues

Perceptron has several drawbacks:

If the input set is not linearly separable, the algorithm never finishes.
The algorithm cannot be easily extended to classification into more than two classes.
The algorithm performs only prediction, it is not able to return the probabilities of
predictions.
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Common Probability Distributions
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Bernoulli Distribution
The Bernoulli distribution is a distribution over a binary random variable. It has a single
parameter , which specifies the probability of the random variable being equal to 1.

Categorical Distribution
Extension of the Bernoulli distribution to random variables taking one of  different discrete

outcomes. It is parametrized by  such that .

φ ∈ [0, 1]

  

P (x)

E[x]

Var(x)

= φ (1 − φ)x 1−x

= φ

= φ(1 − φ)

k

p ∈ [0, 1]k  p  =∑i=1
k

i 1

  

P (x)

E[x  ]i

=  p  ∏
i

k

i
x  i

= p  , Var(x  ) = p  (1 − p  )i i i i
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Information Theory

Self Information
Amount of surprise when a random variable is sampled.

Should be zero for events with probability 1.
Less likely events are more surprising.
Independent events should have additive information.

I(x) =def − log P (x) = log  

P (x)
1
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Information Theory
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Entropy
Amount of surprise in the whole distribution.

for discrete : 

for continuous : 

Note that in the continuous case, the continuous entropy
(also called differential entropy) as a bit different
semantics, for example, it can be negative.

From now on, all logarithms are natural logarithms with
base .

H(P ) =def E  [I(x)] =x∼P −E  [log P (x)]x∼P

P H(P ) = −  P (x) log P (x)∑x

P H(P ) = − P (x) log P (x) dx∫

e
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Information Theory

Cross-Entropy

Gibbs inequality

Proof: We use that , with equality only for .

Alternative proof: Using Jensen's inequality, we get

H(P ,Q) =def −E  [log Q(x)]x∼P

H(P ,Q) ≥ H(P )
H(P ) = H(P ,Q) ⇔ P = Q

log x ≤ (x − 1) x = 1

 P (x) log  ≤
x

∑
P (x)
Q(x)

 P (x)  − 1 =
x

∑ (
P (x)
Q(x)

)  Q(x) −
x

∑  P (x) =
x

∑ 0.

 P (x) log  ≤
x

∑
P (x)
Q(x)

log  P (x)  =
x

∑
P (x)
Q(x)

log  Q(x) =
x

∑ 0.
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Information Theory

Corollary of the Gibbs inequality
For a categorical distribution with  outcomes, , because for  we

get 

Nonsymmetry
Note that generally .

n H(P ) ≤ log n Q(x) = 1/n
H(P ) ≤ H(P ,Q) = −  P (x) log Q(x) =∑x log n.

H(P ,Q)  = H(Q,P )
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Information Theory

Kullback-Leibler Divergence (KL Divergence)
Sometimes also called relative entropy.

consequence of Gibbs inequality: 

generally 

D  (P ∣∣Q)KL =def
H(P ,Q) − H(P ) = E  [log P (x) −x∼P log Q(x)]

D  (P ∣∣Q) ≥KL 0
D  (P ∣∣Q)  =KL  D  (Q∣∣P )KL
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Nonsymmetry of KL Divergence

 

Figure 3.6, page 76 of Deep Learning Book, http://deeplearningbook.org
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Common Probability Distributions

Normal (or Gaussian) Distribution
Distribution over real numbers, parametrized by a mean  and variance :

For standard values  and  we get .

 

Figure 3.1, page 64 of Deep Learning Book, http://deeplearningbook.org.

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x − μ)2

)

μ = 0 σ =2 1 N (x; 0, 1) =  e 2π
1 −  2

x2
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Why Normal Distribution

Central Limit Theorem
The sum of independent identically distributed random variables with finite variance converges
to normal distribution.

Principle of Maximum Entropy
Given a set of constraints, a distribution with maximal entropy fulfilling the constraints can be
considered the most general one, containing as little additional assumptions as possible.

Considering distributions with a given mean and variance, it can be proven (using variational
inference) that such a distribution with maximal entropy is exactly the normal distribution.
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Maximum Likelihood Estimation

Let  be training data drawn independently from the

data-generating distribution . We denote the empirical data distribution as .

Let  be a family of distributions.

The maximum likelihood estimation of  is:

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

p  data   p̂data

p  (t∣x;w)model

w

  

w  ML =  p  (X;w)
w

arg max model

=   p  (t  ∣x  ;w)
w

arg max∏
i=1

N

model i i

=   − log p  (t  ∣x  ;w)
w

arg min∑
i=1

N

model i i

=  E  [− log p  (t∣x;w)]
w

arg min x∼   p̂data model

=  H(   , p  (x;w))
w

arg min p̂data model

=  D  (   ∣∣p  (x;w)) + H(   )arg min KL p̂data model p̂data
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Properties of Maximum Likelihood Estimation

Assume that the true data generating distribution  lies within the model family 

, and assume there exists a unique  such that .

MLE is a consistent estimator. If we denote  to be the parameters found by MLE for a

training set with  examples generated by the data generating distribution, then 

converges in probability to .

Formally, for any ,  as .

MLE is in a sense most statistic efficient. For any consistent estimator, we might consider
the average distance of  and , formally . It can

be shown (Rao 1945, Cramér 1946) that no consistent estimator has lower mean squared
error than the maximum likelihood estimator.

Therefore, for reasons of consistency and efficiency, maximum likelihood is often considered the
preferred estimator for machine learning.

p  data

p  (⋅;w)model w  p  data p  =data p  (⋅;w  )model p  data

w  m

m w  m

w  p  data

ε > 0 P (∣∣w  −m w  ∣∣ >p  data ε) → 0 m → ∞

w  m w  p  data E  [∣∣w  −x  ,…,x  ∼p  1 m data m w  ∣∣ ]p  data
2
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Logistic Regression

An extension of perceptron, which models the conditional probabilities of  and of 

. Logistic regression can in fact handle also more than two classes, which we will see

shortly.

Logistic regression employs the following parametrization of the conditional class probabilities:

where  is a sigmoid function

Can be trained using an SGD algorithm.

p(C  ∣x)0

p(C  ∣x)1

  

P (C  ∣x)1

P (C  ∣x)0

= σ(x w + b)t

= 1 − P (C  ∣x),1

σ

σ(x) =  .
1 + e−x

1
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Sigmoid Function

The sigmoid function has values in range , is monotonically increasing and it has a

derivative of  at .

        



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






     


  

(0, 1)
 4

1 x = 0

σ(x) =  

1 + e−x

1

σ (x) =′ σ(x)(1 − σ(x))
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Logistic Regression

To give some meaning to the sigmoid function, starting with

we can arrive at

where the prediction of the model  is called a logit and it is a logarithm of odds of the

two classes probabilities.

P (C  ∣x) =1 σ(f(x;w)) =  

1 + e−f (x;w)

1

f(x;w) = log  ,(
P (C  ∣x)0

P (C  ∣x)1 )

f(x;w)
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Logistic Regression

To train the logistic regression , we use MLE (the maximum likelihood

estimation). Note that .

Therefore, the loss for a batch  is

Input: Input dataset ( , ), learning rate . 

until convergence (or until patience is over), process batch of  examples:

y(x;w) = x wT

P (C  ∣x;w) =1 σ(y(x;w))

X = {(x  , t  ), (x  , t  ), … , (x  , t  )}1 1 2 2 N N

 

L(X) =   − log(P (C  ∣x  ;w)).
N

1

i

∑ t  i i

X ∈ RN×D t ∈ {0, +1} α ∈ R+

w ← 0
N

g ← −   ∇  log(P (C  ∣x  ;w)
N
1 ∑i w t  i i

w ← w − αg
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Multiclass Logistic Regression

To extend the binary logistic regression to a multiclass case with  classes, we:

Generate multiple outputs, notably  outputs, each with its own set of weights, so that

Generalize the sigmoid function to a  function, such that

Note that the original sigmoid function can be written as

The resulting classifier is also known as multinomial logistic regression, maximum entropy
classifier or softmax regression.

K

K

y(x;W )  =i W  x.i

softmax

softmax(z)  =i  .
 e∑j

z  j

ez  i

σ(x) = softmax ([x  0])  =
0

 =
e + ex 0

ex
 .

1 + e−x

1
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Multiclass Logistic Regression

Note that as defined, the multiclass logistic regression is overparametrized. It is possible to
generate only  outputs and define , which is the approach used in binary logistic

regression.

In this settings, analogously to binary logistic regression, we can recover the interpretation of
the model outputs  (i.e., the  inputs) as logits:

K − 1 z  =K 0

y(x;W ) softmax

y(x;W )  =i log  .(
P (C  ∣x;w)K

P (C  ∣x;w)i )
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Multiclass Logistic Regression

Using the  function, we naturally define that

We can then use MLE and train the model using stochastic gradient descent.

Input: Input dataset ( , ), learning rate . 

until convergence (or until patience is over), process batch of  examples:

softmax

P (C  ∣x;W ) =i softmax(W  x)i =i  .
 e∑j
W  xj

eW  xi

X ∈ RN×D t ∈ {0, 1, … ,K − 1} α ∈ R+

w ← 0
N

g ← −   ∇  log(P (C  ∣x  ;w)
N
1 ∑i w t  i i

w ← w − αg
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Multiclass Logistic Regression

Note that the decision regions of the multiclass logistic regression are singly connected and
convex.
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Figure 4.3 of Pattern Recognition and Machine Learning.
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