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Linear Regression

Given an input value , one of the simplest models to predict a target real value is linear

regression:

The bias  can be considered one of the weights  if convenient.

By computing derivatives of a sum of squares error function, we arrived at the following
equation for the optimum weights:

If  is regular, we can invert it and compute the weights as .

Matrix  is regular if and only if  has rank , which is equivalent to the columns of 

being linearly independent.

x ∈ Rd

f(x;w, b) = x  w  +1 1 x  w  +2 2 … + x  w  +D D b =  x  w  +
i=1

∑
d

i i b = x w +T b.

b w

X Xw =T X t.T

X XT w = (X X) X tT −1 T

X XT X d X
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SVD Solution of Linear Regression

Now consider the case that  is singular. We will show that  is

still solvable, but it does not have a unique solution. Our goal in this case will be to find
the smallest  fulfilling the equation.

We now consider singular value decomposition (SVD) of X, writing , where

 is an orthogonal matrix, i.e., ,

 is a diagonal matrix,

 is again an orthogonal matrix.

Assuming the diagonal matrix  has rank , we can write it as

where  is a regular diagonal matrix. Denoting  and  the matrix of first 

columns of  and , respectively, we can write .

X XT X Xw =T X tT

w

X = UΣV T

U ∈ RN×N u  u  =i
T

j [i = j]
Σ ∈ RN×D

V ∈ RD×D

Σ r

Σ =   ,[
Σ  r

0
0
0]

Σ  ∈r Rd×d U  r V  r r

U V X = U  Σ  V  r r r
T
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SVD Solution of Linear Regression

Using the decomposition , we can rewrite the goal equation as

A transposition of an orthogonal matrix is its inverse. Therefore, our submatrix  fulfils that 

, because  is a top left submatrix of . Analogously, .

We therefore simplify the goal equation to

Because the diagonal matrix  is regular, we can divide by it and obtain

X = U  Σ  V  r r r
T

V  Σ  U  U  Σ  V  w =r r
T

r
T

r r r
T V  Σ  U  t.r r

T
r
T

U  r

U  U  =r
T

r I U  U  r
T

r U UT V  V  =r
T

r I

Σ  Σ  V  w =r r r
T Σ  U  tr r

T

Σ  r

V  w =r
T Σ  U  t.r

−1
r
T
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SVD Solution of Linear Regression

We have . If he original matrix  was regular, then  and 

 is a square regular orthogonal matrix, in which case

If we denote  the diagonal matrix with  on diagonal, we can rewrite to

Now if ,  is undetermined and has infinitely many solutions. To find the one

with smallest norm , consider the full product . Because  is orthogonal, 

, and it is sufficient to find  with smallest . We know that the first

 elements of  are fixed by the above equation – the smallest  can be

therefore obtained by setting the last  elements to zero. Finally, we note that  is

exactly  padded with  zeros, obtaining the same solution .

V  w =r
T Σ  U  tr

−1
r
T X XT r = d

V  r

w = V  Σ  U  t.r r
−1

r
T

Σ ∈+ RD×N Σ  i,i
−1

w = V Σ U t.+ T

r < d V  w =r
T y

∣∣w∣∣ V wT V

∣∣V w∣∣ =T ∣∣w∣∣ w ∣∣V w∣∣T

r ∣∣V w∣∣T ∣∣V w∣∣T

d − r Σ U t+ T

Σ  U  tr
−1

r
T d − r w = V Σ U t+ T
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SVD Solution of Linear Regression and Pseudoinverses

The solution to a linear regression with sum of squares error function is tightly connected
to matrix pseudoinverses. If a matrix  is singular or rectangular, it does not have an

exact inverse, and  does not have an exact solution.

However, we can consider the so-called Moore-Penrose pseudoinverse

to be the closest approximation to an inverse, in the sense that we can find the best solution
(with smallest MSE) to the equation  by setting .

Alternatively, we can define the pseudoinverse as

which can be verified to be the same as our SVD formula.

X

Xw = b

X+ =def
V Σ U+ T

Xw = b w = X b+

X =+
 ∣∣XY −

Y ∈RD×N

arg min I  ∣∣  =N F  ∣∣Y X −
Y ∈RN×D

arg min I  ∣∣  D F
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Random Variables

A random variable  is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation  stands for a random variable  having a distribution .

For discrete variables, the probability that  takes a value  is denoted as  or explicitly as 

. All probabilities are non-negative and sum of probabilities of all possible values of 

is .

For continuous variables, the probability that the value of  lies in the interval  is given by 

.

x

x ∼ P x P

x x P (x)
P (x = x) x

 P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b
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Random Variables

Expectation
The expectation of a function  with respect to discrete probability distribution  is

defined as:

For continuous variables it is computed as:

If the random variable is obvious from context, we can write only  of even .

Expectation is linear, i.e.,

f(x) P (x)

E  [f(x)]x∼P =def
 P (x)f(x)

x

∑

E  [f(x)]x∼p =
def

 p(x)f(x) dx∫
x

E  [x]P E[x]

E  [αf(x) +x βg(x)] = αE  [f(x)] +x βE  [g(x)]x
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Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

because .

Variance is connected to , a second moment of a random variable – it is in fact a

centered second moment.

μ = E[x]

  

Var(x)

Var(f(x))

E (x − E[x]) , or more generally=def
[

2
]

E (f(x) − E[f(x)])=def
[

2
]

Var(x) = E x − 2xE[x] + (E[x]) =[ 2 2
] E x −[ 2] (E[x]) ,

2

E[2xE[x]] = 2(E[x])2

E[x ]2
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Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of some
random value(s).

For example, we might estimate mean of random variable by sampling a value according to its
probability distribution.

Bias of an estimator is the difference of the expected value of the estimator and the true value
being estimated:

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

bias = E[estimate] − true estimated value.
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Estimators and Bias

If we have a sequence of estimates, it also might happen that the bias converges to zero.
Consider the well known sample estimate of variance. Given  independent and

identically distributed random variables, we might estimate mean and variance as

Such estimate is biased, because , but the bias converges to zero with

increasing .

Also, an unbiased estimator does not necessarily have small variance – in some cases it can have
large variance, so a biased estimator with smaller variance might be preferred.

x  , … , x  1 n

 =μ̂   x  ,      =
n

1
∑

i
i σ̂2   (x  −

n

1
∑

i
i  ) .μ̂ 2

E[ ] =σ̂2 (1 −  )σ
n
1 2

n
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Gradient Descent

 

Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org

Sometimes it is more practical to search for the best model weights in an
iterative/incremental/sequential fashion. Either because there is too much data, or the direct
optimization is not feasible.

Assuming we are minimizing an error function

we may use gradient descent:

The constant  is called a learning rate and

specifies the “length” of a step we perform in
every iteration of the gradient descent.

 E(w),
w

arg min

w ← w − α∇  E(w)w

α
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Gradient Descent Variants

Consider an error function computed as an expectation over the dataset:

(Regular) Gradient Descent: We use all training data to compute  exactly.

Online (or Stochastic) Gradient Descent: We estimate  using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: The minibatch SGD is a trade-off between gradient descent and SGD –
the expectation in  is estimated using  random independent examples from the

training data.

∇  E(w) =w ∇  E  L(f(x;w), t).w (x,t)∼   p̂data

∇  E(w)w

∇  E(w)w

∇  E(w) ≈w ∇  L(f(x;w), t)  for randomly chosen  (x, t)  from     .w p̂data

∇  E(w)w m

∇  E(w) ≈w   ∇  L(f(x ;w), t  )  for randomly chosen  (x  , t  )  from     .
m

1

i=1

∑
m

w i i i i p̂data
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Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate  of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function  is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates  fulfills the following conditions:

For non-convex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding a global minimum of an arbitrary function is at least NP-hard.

α  i

J(w) ∇  E(w)w

w  ←i+1 w  −i α  J(w  ).i i

L

α  i

α  →i 0,      α  =
i

∑ i ∞,      α  <
i

∑ i
2 ∞.
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Gradient Descent Convergence

Convex functions mentioned on a previous slide are such that for  and real ,

 

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg
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https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function is convex iff its second derivative is always non-negative.

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are ,  and .

x  ,x  1 2 0 ≤ t ≤ 1

f(tx  +1 (1 − t)x  ) ≤2 tf(x  ) +1 (1 − t)f(x  ).2

x2 ex − log x
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Gradient Descent of Linear Regression

For linear regression and sum of squares, using online gradient descent we can update the
weights as

Input: Dataset ( , ), learning rate . 

Output: Weights  which hopefully minimize MSE of linear regression.

repeat until convergence:
for :

w ← w − α∇  E(w) =w w − α(x w −T t)x.

X ∈ RN×D t ∈ RN α ∈ R+

w ∈ RD

w ← 0

i = 1, … ,n
w ← w − α(x  w −i

T t  )x  .i i
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Features

Note that until now, we did not explicitly distinguished input instance values and instance
features.

The input instance values are usually the raw observations and are given. However, we might
extend them suitably before running a machine learning algorithm, especially if the algorithm is
linear or otherwise limited and cannot represent arbitrary function.

We already saw this in the example from the previous lecture, where even if our training
examples were  and , we performed the linear regression using features :
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Figure 1.4 of Pattern Recognition and Machine Learning.

x t (x ,x , … ,x )0 1 M
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Features

Generally, it would be best if we have machine learning algorithms processing only the raw
inputs. However, many algorithms are capable of representing only a limited set of functions (for
example linear ones), and in that case, feature engineering plays a major part in the final model
performance. Feature engineering is a process of constructing features from raw inputs.

Commonly used features are:

polynomial features of degree : Given features , we might consider all

products of  input values. Therefore, polynomial features of degree 2 would consist of 

 and of .

categorical one-hot features: Assume for example that a day in a week is represented on
the input as an integer value of 1 to 7, or a breed of a dog is expressed as an integer value
of 0 to 366. Using these integral values as input to linear regression makes little sense –
instead it might be better to learn weights for individual days in a week or for individual dog
breeds. We might therefore represent input classes by binary indicators for every class, giving
rise to one-hot representation, where input integral value  is represented as 

binary values, which are all zero except for the -th one, which is one.

p (x  ,x  , … ,x  )1 2 D

p

x  ∀ii
2 x  x  ∀i  =i j  j

1 ≤ v ≤ L L

v
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Cross-Validation
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https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg

We already talked about a train set and a test set. Given that the main goal of machine
learning is to perform well on unseen data, the test set must not be used during training nor
hyperparameter selection. Ideally, it is hidden to us altogether.

Therefore, to evaluate a machine learning model (for example to select model architecture, input
features, or hyperparameter value), we normally need the validation or a development set.

However, using a single development set might give us noisy results. To obtain less noisy results
(i.e., with smaller variance), we can use cross-validation.

In cross-validation, we choose multiple validation
sets from the training data, and for every one, we
train a model on the rest of the training data and
evaluate on the chosen validation sets. A
commonly used strategy to choose the validation
sets is called k-fold cross-validation. Here the
training set is partitioned into  subsets of

approximately the same size, and each subset
takes turn to play a role of a validation set.

k
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Binary Classification

Binary classification is a classification in two classes.

To extend linear regression to binary classification, we might seek a threshold and the classify
an input as negative/positive depending whether  is smaller/larger than a given threshold.

Zero value is usually used as the threshold, both because it is symmetric and also because the
bias parameter acts as a trainable threshold anyway.

x wT
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Perceptron

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value , the goal is to find weights  such that

for all train data

or equivalently

Note that a set is called linearly separable, if there exist a weight vector  such that the

above equation holds.

t ∈ {−1, +1} w

sign(w x  ) =T
i t  ,i

t  w x  >i
T

i 0.

w
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Perceptron

The perceptron algorithm was invented by Rosenblat in 1958.

Input: Linearly separable dataset ( , ). 

Output: Weights  such that  for all .

until all examples are classified correctly:
for  in :

if  (incorrectly classified example):

We will prove that the algorithm always arrives at some correct set of weights  if the training

set is linearly separable.

X ∈ RN×D t ∈ {−1, +1}
w ∈ RD t  x  w >i i

T 0 i

w ← 0

i 1, … ,N
y ← w x  

T
i

t  y ≤i 0
w ← w + t  x  i i

w
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Perceptron as SGD

Consider the main part of the perceptron algorithm:

if  (incorrectly classified example):

We can derive the algorithm using on-line gradient descent, using the following loss function

In this specific case, the value of the learning rate does not actually matter, because multiplying
 by a constant does not change a prediction.

y ← w x  

T
i

t  y ≤i 0
w ← w + t  x  i i

L(f(x;w), t) =
def

  ={
−tx wT

0
if tx w ≤ 0T

otherwise
max(0, −tx w) =T ReLU(−tx w).T

w
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