
NPFL129, Lecture 2

Linear Regression II, SGD,
Perceptron
Milan Straka

October 14, 2019

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Linear Regression

Given an input value , one of the simplest models to predict a target real value is linear

regression:

The bias can be considered one of the weights if convenient.

By computing derivatives of a sum of squares error function, we arrived at the following
equation for the optimum weights:

If is regular, we can invert it and compute the weights as .

Matrix is regular if and only if has rank , which is equivalent to the columns of

being linearly independent.

x ∈ Rd

f(x;w, b) = x w +1 1 x w +2 2 … + x w +D D b = x w +
i=1

∑
d

i i b = x w +T b.

b w

X Xw =T X t.T

X XT w = (X X) X tT −1 T

X XT X d X

2/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

SVD Solution of Linear Regression

Now consider the case that is singular. We will show that is

still solvable, but it does not have a unique solution. Our goal in this case will be to find
the smallest fulfilling the equation.

We now consider singular value decomposition (SVD) of X, writing , where

 is an orthogonal matrix, i.e., ,

 is a diagonal matrix,

 is again an orthogonal matrix.

Assuming the diagonal matrix has rank , we can write it as

where is a regular diagonal matrix. Denoting and the matrix of first

columns of and , respectively, we can write .

X XT X Xw =T X tT

w

X = UΣV T

U ∈ RN×N u u =i
T

j [i = j]
Σ ∈ RN×D

V ∈ RD×D

Σ r

Σ = ,[
Σ r

0
0
0]

Σ ∈r Rd×d U r V r r

U V X = U Σ V r r r
T

3/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

SVD Solution of Linear Regression

Using the decomposition , we can rewrite the goal equation as

A transposition of an orthogonal matrix is its inverse. Therefore, our submatrix fulfils that

, because is a top left submatrix of . Analogously, .

We therefore simplify the goal equation to

Because the diagonal matrix is regular, we can divide by it and obtain

X = U Σ V r r r
T

V Σ U U Σ V w =r r
T

r
T

r r r
T V Σ U t.r r

T
r
T

U r

U U =r
T

r I U U r
T

r U UT V V =r
T

r I

Σ Σ V w =r r r
T Σ U tr r

T

Σ r

V w =r
T Σ U t.r

−1
r
T

4/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

SVD Solution of Linear Regression

We have . If he original matrix was regular, then and

 is a square regular orthogonal matrix, in which case

If we denote the diagonal matrix with on diagonal, we can rewrite to

Now if , is undetermined and has infinitely many solutions. To find the one

with smallest norm , consider the full product . Because is orthogonal,

, and it is sufficient to find with smallest . We know that the first

 elements of are fixed by the above equation – the smallest can be

therefore obtained by setting the last elements to zero. Finally, we note that is

exactly padded with zeros, obtaining the same solution .

V w =r
T Σ U tr

−1
r
T X XT r = d

V r

w = V Σ U t.r r
−1

r
T

Σ ∈+ RD×N Σ i,i
−1

w = V Σ U t.+ T

r < d V w =r
T y

∣∣w∣∣ V wT V

∣∣V w∣∣ =T ∣∣w∣∣ w ∣∣V w∣∣T

r ∣∣V w∣∣T ∣∣V w∣∣T

d − r Σ U t+ T

Σ U tr
−1

r
T d − r w = V Σ U t+ T

5/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

SVD Solution of Linear Regression and Pseudoinverses

The solution to a linear regression with sum of squares error function is tightly connected
to matrix pseudoinverses. If a matrix is singular or rectangular, it does not have an

exact inverse, and does not have an exact solution.

However, we can consider the so-called Moore-Penrose pseudoinverse

to be the closest approximation to an inverse, in the sense that we can find the best solution
(with smallest MSE) to the equation by setting .

Alternatively, we can define the pseudoinverse as

which can be verified to be the same as our SVD formula.

X

Xw = b

X+ =def
V Σ U+ T

Xw = b w = X b+

X =+
 ∣∣XY −

Y ∈RD×N

arg min I ∣∣ =N F ∣∣Y X −
Y ∈RN×D

arg min I ∣∣ D F

6/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Random Variables

A random variable is a result of a random process. It can be discrete or continuous.

Probability Distribution
A probability distribution describes how likely are individual values a random variable can take.

The notation stands for a random variable having a distribution .

For discrete variables, the probability that takes a value is denoted as or explicitly as

. All probabilities are non-negative and sum of probabilities of all possible values of

is .

For continuous variables, the probability that the value of lies in the interval is given by

.

x

x ∼ P x P

x x P (x)
P (x = x) x

 P (x =∑x x) = 1

x [a, b]
 p(x) dx∫

a

b

7/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Random Variables

Expectation
The expectation of a function with respect to discrete probability distribution is

defined as:

For continuous variables it is computed as:

If the random variable is obvious from context, we can write only of even .

Expectation is linear, i.e.,

f(x) P (x)

E [f(x)]x∼P =def
 P (x)f(x)

x

∑

E [f(x)]x∼p =
def

 p(x)f(x) dx∫
x

E [x]P E[x]

E [αf(x) +x βg(x)] = αE [f(x)] +x βE [g(x)]x

8/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Random Variables

Variance
Variance measures how much the values of a random variable differ from its mean .

It is easy to see that

because .

Variance is connected to , a second moment of a random variable – it is in fact a

centered second moment.

μ = E[x]

Var(x)

Var(f(x))

E (x − E[x]) , or more generally=def
[

2
]

E (f(x) − E[f(x)])=def
[

2
]

Var(x) = E x − 2xE[x] + (E[x]) =[2 2
] E x −[2] (E[x]) ,

2

E[2xE[x]] = 2(E[x])2

E[x]2

9/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Estimators and Bias

An estimator is a rule for computing an estimate of a given value, often an expectation of some
random value(s).

For example, we might estimate mean of random variable by sampling a value according to its
probability distribution.

Bias of an estimator is the difference of the expected value of the estimator and the true value
being estimated:

If the bias is zero, we call the estimator unbiased, otherwise we call it biased.

bias = E[estimate] − true estimated value.

10/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Estimators and Bias

If we have a sequence of estimates, it also might happen that the bias converges to zero.
Consider the well known sample estimate of variance. Given independent and

identically distributed random variables, we might estimate mean and variance as

Such estimate is biased, because , but the bias converges to zero with

increasing .

Also, an unbiased estimator does not necessarily have small variance – in some cases it can have
large variance, so a biased estimator with smaller variance might be preferred.

x , … , x 1 n

 =μ̂ x , =
n

1
∑

i
i σ̂2 (x −

n

1
∑

i
i) .μ̂ 2

E[] =σ̂2 (1 −)σ
n
1 2

n

11/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Gradient Descent

Figure 4.1, page 83 of Deep Learning Book, http://deeplearningbook.org

Sometimes it is more practical to search for the best model weights in an
iterative/incremental/sequential fashion. Either because there is too much data, or the direct
optimization is not feasible.

Assuming we are minimizing an error function

we may use gradient descent:

The constant is called a learning rate and

specifies the “length” of a step we perform in
every iteration of the gradient descent.

 E(w),
w

arg min

w ← w − α∇ E(w)w

α

12/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Gradient Descent Variants

Consider an error function computed as an expectation over the dataset:

(Regular) Gradient Descent: We use all training data to compute exactly.

Online (or Stochastic) Gradient Descent: We estimate using a single random

example from the training data. Such an estimate is unbiased, but very noisy.

Minibatch SGD: The minibatch SGD is a trade-off between gradient descent and SGD –
the expectation in is estimated using random independent examples from the

training data.

∇ E(w) =w ∇ E L(f(x;w), t).w (x,t)∼ p̂data

∇ E(w)w

∇ E(w)w

∇ E(w) ≈w ∇ L(f(x;w), t) for randomly chosen (x, t) from .w p̂data

∇ E(w)w m

∇ E(w) ≈w ∇ L(f(x ;w), t) for randomly chosen (x , t) from .
m

1

i=1

∑
m

w i i i i p̂data

13/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Gradient Descent Convergence

Assume that we perform a stochastic gradient descent, using a sequence of learning rates ,

and using a noisy estimate of the real gradient :

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates fulfills the following conditions:

For non-convex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding a global minimum of an arbitrary function is at least NP-hard.

α i

J(w) ∇ E(w)w

w ←i+1 w −i α J(w).i i

L

α i

α →i 0, α =
i

∑ i ∞, α <
i

∑ i
2 ∞.

14/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Gradient Descent Convergence

Convex functions mentioned on a previous slide are such that for and real ,

https://upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg

































































































https://commons.wikimedia.org/wiki/File:Partial_func_eg.svg

A twice-differentiable function is convex iff its second derivative is always non-negative.

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are , and .

x ,x 1 2 0 ≤ t ≤ 1

f(tx +1 (1 − t)x) ≤2 tf(x) +1 (1 − t)f(x).2

x2 ex − log x

15/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Gradient Descent of Linear Regression

For linear regression and sum of squares, using online gradient descent we can update the
weights as

Input: Dataset (,), learning rate .

Output: Weights which hopefully minimize MSE of linear regression.

repeat until convergence:
for :

w ← w − α∇ E(w) =w w − α(x w −T t)x.

X ∈ RN×D t ∈ RN α ∈ R+

w ∈ RD

w ← 0

i = 1, … ,n
w ← w − α(x w −i

T t)x .i i

16/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Features

Note that until now, we did not explicitly distinguished input instance values and instance
features.

The input instance values are usually the raw observations and are given. However, we might
extend them suitably before running a machine learning algorithm, especially if the algorithm is
linear or otherwise limited and cannot represent arbitrary function.

We already saw this in the example from the previous lecture, where even if our training
examples were and , we performed the linear regression using features :





  

 











  

 











  

 











  

 







Figure 1.4 of Pattern Recognition and Machine Learning.

x t (x ,x , … ,x)0 1 M

17/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Features

Generally, it would be best if we have machine learning algorithms processing only the raw
inputs. However, many algorithms are capable of representing only a limited set of functions (for
example linear ones), and in that case, feature engineering plays a major part in the final model
performance. Feature engineering is a process of constructing features from raw inputs.

Commonly used features are:

polynomial features of degree : Given features , we might consider all

products of input values. Therefore, polynomial features of degree 2 would consist of

 and of .

categorical one-hot features: Assume for example that a day in a week is represented on
the input as an integer value of 1 to 7, or a breed of a dog is expressed as an integer value
of 0 to 366. Using these integral values as input to linear regression makes little sense –
instead it might be better to learn weights for individual days in a week or for individual dog
breeds. We might therefore represent input classes by binary indicators for every class, giving
rise to one-hot representation, where input integral value is represented as

binary values, which are all zero except for the -th one, which is one.

p (x ,x , … ,x)1 2 D

p

x ∀ii
2 x x ∀i =i j  j

1 ≤ v ≤ L L

v

18/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Cross-Validation

 

 

 

 

   

 

















https://commons.wikimedia.org/wiki/File:K-fold_cross_validation_EN.svg

We already talked about a train set and a test set. Given that the main goal of machine
learning is to perform well on unseen data, the test set must not be used during training nor
hyperparameter selection. Ideally, it is hidden to us altogether.

Therefore, to evaluate a machine learning model (for example to select model architecture, input
features, or hyperparameter value), we normally need the validation or a development set.

However, using a single development set might give us noisy results. To obtain less noisy results
(i.e., with smaller variance), we can use cross-validation.

In cross-validation, we choose multiple validation
sets from the training data, and for every one, we
train a model on the rest of the training data and
evaluate on the chosen validation sets. A
commonly used strategy to choose the validation
sets is called k-fold cross-validation. Here the
training set is partitioned into subsets of

approximately the same size, and each subset
takes turn to play a role of a validation set.

k

19/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Binary Classification

Binary classification is a classification in two classes.

To extend linear regression to binary classification, we might seek a threshold and the classify
an input as negative/positive depending whether is smaller/larger than a given threshold.

Zero value is usually used as the threshold, both because it is symmetric and also because the
bias parameter acts as a trainable threshold anyway.

x wT

20/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Perceptron

The perceptron algorithm is probably the oldest one for training weights of a binary
classification. Assuming the target value , the goal is to find weights such that

for all train data

or equivalently

Note that a set is called linearly separable, if there exist a weight vector such that the

above equation holds.

t ∈ {−1, +1} w

sign(w x) =T
i t ,i

t w x >i
T

i 0.

w

21/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Perceptron

The perceptron algorithm was invented by Rosenblat in 1958.

Input: Linearly separable dataset (,).

Output: Weights such that for all .

until all examples are classified correctly:
for in :

if (incorrectly classified example):

We will prove that the algorithm always arrives at some correct set of weights if the training

set is linearly separable.

X ∈ RN×D t ∈ {−1, +1}
w ∈ RD t x w >i i

T 0 i

w ← 0

i 1, … ,N
y ← w x

T
i

t y ≤i 0
w ← w + t x i i

w

22/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

Perceptron as SGD

Consider the main part of the perceptron algorithm:

if (incorrectly classified example):

We can derive the algorithm using on-line gradient descent, using the following loss function

In this specific case, the value of the learning rate does not actually matter, because multiplying
 by a constant does not change a prediction.

y ← w x

T
i

t y ≤i 0
w ← w + t x i i

L(f(x;w), t) =
def

 ={
−tx wT

0
if tx w ≤ 0T

otherwise
max(0, −tx w) =T ReLU(−tx w).T

w

23/23NPFL129, Lecture 2 Regression Random Variables SGD Features CV Perceptron

