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Multi-Agent Reinforcement Learning

We use the thesis

Cooperative Multi-Agent Reinforcement Learning

https://dspace.cuni.cz/handle/20.500.11956/127431

as an introduction text.
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Natural Policy Gradient

The following approach has been introduced by Kakade (2002).

Using policy gradient theorem, we are able to compute . Normally, we update the

parameters by using directly this gradient. This choice is justified by the fact that a vector 

which maximizes  under the constraint that  is bounded by a small constant

is exactly the gradient .

Normally, the length  is computed using Euclidean metric. But in general, any metric could

be used. Representing a metric using a positive-definite matrix  (identity matrix for Euclidean

metric), we can compute the distance as . The steepest ascent

direction is then given by .

Note that when  is the Hessian , the above process is exactly Newton's method.
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Natural Policy Gradient

 

Figure 3 of "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.
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Natural Policy Gradient

A suitable choice for the metric is Fisher information matrix, which is defined as a covariance

matrix of the score function . The expectaton of the score function is 0:

The Fisher information matrix is therefore

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

The Fisher information matrix is also a Hessian of the :
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Natural Policy Gradient

Using the metric

we want to update the parameters using .

An interesting property of using the  to update the parameters is that

updating  using  will choose an arbitrary better action in state ;

updating  using  chooses the best action (maximizing expected return),

similarly to tabular greedy policy improvement.

However, computing  in a straightforward way is too costly.
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Truncated Natural Policy Gradient

Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous

Control propose a modification to the NPG to efficiently compute .

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations  in an iterative manner, by using  only to compute

products  for a suitable .

Therefore,  is found as a solution of

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of
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Trust Region Policy Optimization

Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies , we can write

where  is the advantage function  and  is the on-policy

distribution of the policy .

Analogously to policy improvement, we see that if , policy  performance increases

(or stays the same if the advantages are zero everywhere).

However, sampling states  is costly. Therefore, we instead consider
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Trust Region Policy Optimization

It can be shown that for parametrized  the  matches  to the first order.

Schulman et al. additionally proves that if we denote 

, then

Therefore, TRPO maximizes  subject to , where

 is used instead of  for

performance reasons;
 is a constant found empirically, as the one implied by the above equation is too small;

importance sampling is used to account for sampling actions from .
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Trust Region Policy Optimization

The parameters are updated using , utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the  constraint, a line search is in fact performed.

We start by the learning rate of  and shrink it exponentially until the

constraint is satistifed and the objective improves.
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Trust Region Policy Optimization

 

Figure 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

 

Table 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.
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Proximal Policy Optimization

A simplification of TRPO which can be implemented using a few lines of code.

Let . PPO maximizes the objective (i.e., you should minimize its negation)

Such a  is a lower (pessimistic) bound.

 

Figure 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.
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Proximal Policy Optimization

The advantages  are additionally estimated using the so-called generalized advantage

estimation, which is just an analogue of the truncated n-step lambda-return:

 

Algorithm 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.
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Proximal Policy Optimization

 

Figure 3 of "Proximal Policy Optimization Algorithms" by Schulman et al.
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Multi-Agent Hide-and-Seek

As another example, consider https://openai.com/blog/emergent-tool-use/.

15/15NPFL122, Lecture 13 MARL NPG TRPO PPO HideAndSeek

https://openai.com/blog/emergent-tool-use/

