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Discrete Latent Variables

Consider that we would like to have discrete neurons on the hidden layer of a neural network.

Note that on the output layer, we relaxed discrete prediction (i.e., an ) with a

continuous relaxation – . This way, we can compute the derivatives and also predict

the most probable class. (It is possible to derive  as an entropy-regularized .)

However, on a hidden layer, we also need to sample from the predicted categorical distribution,
and then backpropagate the gradients.

arg max
softmax

softmax arg max
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Stochastic Gradient Estimators

 

Figure 2 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144
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Stochastic Gradient Estimators

Consider a model with a discrete categorical latent variable  sampled from , with a loss

. Several gradient estimators have been proposed:

A REINFORCE-like gradient estimation.

Using the identity , we obtain that

Analogously as before, we can also include the baseline for variance reduction, resulting in

A straight-through (ST) estimator.

The straight-through estimator has been proposed by Y. Bengio in 2013. It is a biased
estimator, which assumes that , which implies . Even if the

bias can be considerable, it seems to work quite well in practice.

z p(z; θ)
L(z;ω)

∇  p(z; θ) =θ p(z; θ)∇  log p(z; θ)θ

∇  E  [L(z;ω)] =θ z E  [L(z;ω)∇  log p(z; θ)].z θ

∇  E  [L(z;ω)] =θ z E  [(L(z;ω) −z b)∇  log p(z; θ)].θ

∇  z ≈θ ∇  p(z; θ)θ ∇  z ≈p(z;θ) 1
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Gumbel-Softmax

The Gumbel-softmax distribution was proposed independently in two papers in Nov 2016
(under the name of Concrete distribution in the other paper).

It is a continuous distribution over the simplex (over categorical distributions) that can
approximate sampling from a categorical distribution.

Let  be a categorical variable with class probabilities .

The Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we can draw
samples  using

where  are independent samples drawn from the  distribution.

To sample  from the distribution , we can sample  and then

compute .

z p = (p  , p  , … , p  )1 2 K

z ∼ p

z = one-hot(  (g  +
i

arg max i log p  )),i

g  i Gumbel(0, 1)

g Gumbel(0, 1) u ∼ U(0, 1)
g = − log(− log u)
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Gumbel Distribution

First recall that exponential distribution  has

The standard  distribution has

The Gumbel distribution can be used to model the distribution of maximum of a number of
samples from the exponential distribution: if  is a maximum of  samples from the 

distribution, we get that

which converges to  for .

Exp(λ)

PDF(x;λ) = λe ,    CDF(x;λ) =−λx 1 − e .−λx

Gumbel(0, 1)

PDF(x) = e ,    CDF(x) =−x−e−x

e .−e−x

x~ N Exp(1)

P ( −x~ logN ≤ x) = P ( ≤x~ x+ logN) = CDF  (x+Exp(1) logN) =
N

(1 −  ) ,
N

e−x N

e =−e−x
CDF  (x)Gumbel(0,1) N → ∞
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Gumbel-Max Trick Proof

To prove the Gumbel-Max trick, we first reformulate it slightly.

Let  be logits of a categorical distribution (so that the class probabilities ), and

let . Then

We first observe that the theorem is invariant to a scalar shift of logits, so we can without loss
of generality assume that  and .

For convenience, denote .

We will use both the  and  of a  distribution:

l  i π  ∝i el  i

g  ∼i Gumbel(0, 1)

π  =k P(k = arg max  (g  +i i l  )).i

 e =∑i
l  i 1 π  =i el  i

u  i =def
g  +i l  i

PDF CDF Gumbel(0, 1)

  

PDF(g  )i

CDF(g  )i

= e ,−g  −ei
−g  i

= e .−e−g  i
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Gumbel-Max Trick Proof

To finish the proof, we compute

=P(k = arg max  (g  + l  ))i i i P (u  ≥k u  , ∀  )i i=k

= P (u  )  P (u  ≥∫ k ∏
i=k

k u  ∣u  ) du  i k k

= P (g  ∣g  =∫ k k u  −k l  )  P (g  ≤k ∏
i=k

i u  −k l  ∣u  ) du  i k k

= e  e du  ∫ l  −u  −ek k
l  −u  k k ∏

i=k
−el  −u  i k

k

= π  e e du  ∫ k
−u  −π  ek k

−u  k
∏

i=k
−π  ei

−u  k

k

= π  e du  k ∫
−u −e  π  k

−uk ∑
i i

k

= π  e dg  =k ∫
−g  −ek

−g  k

k π  ⋅k 1 = π .k
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Gumbel-Softmax

To obtain a continuous distribution, we relax the  into a  with temperature 

as

As the temperature  goes to zero, the generated samples become one-hot, and therefore the

Gumbel-softmax distribution converges to the categorical distribution .

 

Figure 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

arg max softmax T

z  =i  .
 e∑j

(g  +log p  )/Tj j

e(g  +log p  )/Ti i

T

p(z)
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Gumbel-Softmax Estimator

 

Figure 2 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

The Gumbel-softmax distribution can be used to reparametrize the sampling of the discrete
variable using a fully differentiable estimator.

However, the resulting sample is not
discrete, it only converges to a discrete
sample as the temperature  goes to zero.

If it is a problem, we can combine the
Gumbel-softmax with a straight-through
estimator, obtaining ST Gumbel-softmax,
where we:

discretize  as ,

assume , or in other

words, .

T

y z = arg maxy
∇  z ≈θ ∇  yθ

 ≈∂y
∂z 1
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Gumbel-Softmax Estimator Results

 

Table 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

 

Figure 3 of "Categorical Reparameterization with Gumbel-Softmax",
https://arxiv.org/abs/1611.01144

 

Figure 4 of "Categorical Reparameterization with Gumbel-Softmax",
https://arxiv.org/abs/1611.01144
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Applications of Discrete Latent Variables

The discrete latent variables can be used among others to:

allow the SAC algorithm to be used on discrete actions, using either Gumbel-softmax
relaxation (if the critic takes the actions as binary indicators, it is possible to pass not just
one-hot encoding, but the result of Gumbel-softmax directly), or a straight-through
estimator;

model images using discrete latent variables
VQ-VAE, VQ-VAE-2 use “codebook loss” with a straight-through estimator

 

Figure 1 of "Neural Discrete Representation Learning", https://arxiv.org/abs/1711.00937
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Applications of Discrete Latent Variables

VQ-GAN combines the VQ-VAE and Transformers, where the latter is used to generate a
sequence of the discrete latents.

 

Figure 2 of "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841
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Applications of Discrete Latent Variables – VQ-GAN
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Applications of Discrete Latent Variables – DALL-E

In DALL-E, Transformer is used to model a sequence of words followed by a sequence of
the discrete image latent variables.

The Gumbel-softmax relaxation is used to train the discrete latent states, with temperature
annealed with a cosine decay from 1 to 1/16 over the first 150k (out of 3M) updates.

 

Figure 2 of "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092
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DreamerV2

 

Figure 1 of "Mastering Atari with Discrete World Models",
https://arxiv.org/abs/2010.02193

The PlaNet model was followed by Dreamer (Dec 2019)
and DreamerV2 (Oct 2020), which train an agent using
reinforcement learning using the model alone. After 200M
environment steps, it surpasses Rainbow on a collection
of 55 Atari games (the authors do not mention why they
do not use all 57 games) when training on a single GPU
for 10 days per game.

During training, a policy is learned from 486B compact
states “dreamed” by the model, which is 10,000 times
more than the 50M observations from the real
environment (with action repeat 4).

Interestingly, the latent states are represented as a vector
of several categorical variables – 32 variables with 32
classes each are utilized in the paper.
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DreamerV2 – Model Learning

 

Figure 2 of "Mastering Atari with Discrete World Models",
https://arxiv.org/abs/2010.02193

The model in DreamerV2 is learned using the RSSM, collecting agent experiences of
observations, actions, rewards, and discount factors (0.995 within episode and 0 at an episode
end). Training is performed on batches of 50 sequences of length at most 50 each.

 

Algorithm 1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

    

recurrent model:

representation model:

transition predictor:

image predictor:

reward predictor:

discount predictor:

h  t

s  t

 s̄t

 x̄t

 r̄t

  γ̄t

= f  (h  , s  , a  ),φ t−1 t−1 t−1

∼ q  (s  ∣h  ,x  ),φ t t t

∼ p  (  ∣h  ),φ s̄t t

∼ p  (  ∣h  , s  ),φ x̄t t t

∼ p  (  ∣h  , s  ),φ r̄t t t

∼ p  (   ∣h  , s  ).φ γ̄t t t
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DreamerV2 – Model Learning

The following loss function is used:

In the KL term, we train both the prior and the encoder. However, regularizing the encoder
towards the prior makes training harder (especially at the beginning), so the authors propose
KL balancing, minimizing the KL term faster for the prior ( ) than for the posterior.

 

Algorithm 2 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

  

L(φ) = E  [  q  (s  ∣a  ,x  )φ 1:T 1:T 1:T ∑
t=1

T
   

image log loss

 − log p  (x  ∣h  , s  )φ t t t

reward log loss

 − log p  (r  ∣h  , s  )φ t t t

discount log loss

 − log p (γ  ∣h  , s  )φ t t t

 ].

KL loss

 +βD  [q  (s  ∣h  ,x  )∥p  (s  ∣h  )]KL φ t t t φ t t

α = 0.8
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DreamerV2 – Policy Learning

 

Figure 3 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

The policy is trained solely from the model,
starting from the encountered posterior states
and then considering  actions simulated

in the compact latent state.

We train an actor predicting  and a

critic predicting

The critic is trained by estimating the truncated
-return as

and then minimizing the MSE.

H = 15

π  (a  ∣s  )ψ t t

v  (s  ) =ξ t E  [  (  γ  )r  ].p  ,π  φ ψ
∑r≥t ∏r =t+1′

r
r′ t

λ

V  =t
λ r  +t γ   t{

(1 − λ)v  (  ) + λV  ξ ẑt+1 t+1
λ

v  (  )ξ ẑH

if  t < H,
if  t = H.
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DreamerV2 – Policy Learning

The actor is trained using two approaches:

the REINFORCE-like loss (with a baseline), which is unbiased, but has a high variance (even
with the baseline);
the reparametrization of discrete actions using a straight-through gradient estimation, which
is biased, but has lower variance.

For Atari domains, authors use  and , while for continuous actions, 

works better (presumably because of the bias in case of discrete actions) and  is used.

  

L(ψ) = E  [  (p  ,π  φ ψ
∑

t=1

H−1
 

reinforce

 −ρ log π  (a  ∣s  ) stop_gradient(V  − v  (s  ))ψ t t t
λ

ξ t

  )]

dynamics backprop

 −(1 − ρ)V  t
λ

entropy regularizer

 −ηH(a  ∣s  )t t

ρ = 1 η = 10−3 ρ = 1
η = 10−4
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DreamerV2 – Results

The authors evaluate on 55 Atari games. They argue that the commonly used metrics have
various flaws:

gamer-normalized median ignores scores on half of the games,
gamer-normalized mean is dominated by several games where the agent achieves super-
human performance by several orders.

They therefore propose two additional ones:

record-normalized mean normalizes with respect to any registered human world record for
each game; however, in some games the agents still achieve super-human-record
performance;
clipped record-normalized mean additionally clips each score to 1; this measure is used as
the primary metric in the paper.
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DreamerV2 – Results

 

Figure 4 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

 

Table 1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

Scheduling anneals actor gradient mixing  (from 0.1 to 0), entropy loss scale, KL, lr.ρ
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DreamerV2 – Ablations

 

Figure 5 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

 

Table 2 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193
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DreamerV2 – Discrete Latent Variables

Categorical latent variables outperform Gaussian latent variables on 42 games, tie on 5 games
and decrease performance on 8 games (where a tie is defined as being within 5%).

The authors provide several hypotheses why could the categorical latent variables be better:

Categorical prior can perfectly match aggregated posterior, because mixture of categoricals
is categorical, which is not true for Gaussians.

Sparsity achieved by the 32 categorical variables with 32 classes each could be beneficial for
generalization.

Contrary to intuition, optimizing categorical variables might be easier than optimizing
Gaussians, because the straight-through estimator ignores a term which would otherwise
scale the gradient, which could reduce exploding/vanishing gradient problem.

Categorical variables could be a better match for modeling discrete aspect of the Atari
games (defeating an enemy, collecting reward, entering a room, …).
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DreamerV2 – Comparison, Hyperparametres

 

Table 2 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

 

Table D.1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193
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MERLIN

In a partially-observable environment, keeping all information in the RNN state is substantially
limiting. Therefore, memory-augmented networks can be used to store suitable information in
external memory (in the lines of NTM, DNC, or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

 

Figure 1a of "Unsupervised Predictive Memory in a Goal-Directed Agent",
https://arxiv.org/abs/1803.10760

 

Figure 1b of "Unsupervised Predictive Memory in a Goal-Directed Agent",
https://arxiv.org/abs/1803.10760

26/37NPFL122, Lecture 12 DiscreteLatentVars ST Gumbel-Softmax DreamerV2 😴₂Model 😴₂Policy MERLIN CTF-FTW



MERLIN – Memory Module

 

Figure 1b of "Unsupervised Predictive Memory in a Goal-
Directed Agent", https://arxiv.org/abs/1803.10760

Let  be a memory matrix of size .

Assume we have already encoded observations as  and previous

action . We concatenate them with  previously read vectors

and process them by a deep LSTM (two layers are used in the
paper) to compute .

Then, we apply a linear layer to , computing  key vectors 

 of length  and  positive scalars .

Reading: For each , we compute cosine similarity of  and all memory rows , multiply

the similarities by  and pass them through a  to obtain weights . The read vector

is then computed as .

Writing: We find one-hot write index  to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

retroactively update the memory matrix using .

M N  ×mem 2∣e∣

e  t

a  t−1 K

h  t

h  t K

k  , … ,k  1 K 2∣e∣ K β  , … , β  1 K

i k  i M  j

β  i softmax ω  i

Mω  i

v  wr

v  ←ret γv  +ret (1 − γ)v  wr

M ← M + v  [e  , 0] +wr t v  [0, e  ]ret t
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MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations  and storing them in

memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a (Gaussian diagonal) prior distribution over  predicts next state variable

conditioned on history of state variables and actions , and

posterior corrects the prior using the new observation , forming a better estimate 

.

z

z  t

p(z  ∣z  , a  , … , z  , a  )t
prior

t−1 t−1 1 1

o  t

q(z  ∣o  , z  , z  , a  , … , z  , a  ) +t t t
prior

t−1 t−1 1 1 z  t
prior
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MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and the posterior to the loss, to ensure consistency
between the prior and the posterior.

 

Figure 1c of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN — Algorithm

 

Algorithm 1 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Figure 2 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Extended Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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For the Win agent for Capture The Flag

 

Figure 2 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

Population based training controlling KL divergence penalty weights, internal dense rewards,
slow ticking RNN speed, and gradient flow factor from fast to slow RNN.

In every game, teams of similarly skilled agents were selected, and the authors state it is
crucial to employ several agents instead of just one (30 simultaneously trained agents are
used).
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For the Win agent for Capture The Flag

 

Figure S10 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

 

Figure 4 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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