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Consider that we would like to have discrete neurons on the hidden layer of a neural network.

Note that on the output layer, we relaxed discrete prediction (i.e., an arg max) with a
continuous relaxation — softmax. This way, we can compute the derivatives and also predict
the most probable class. (It is possible to derive softmax as an entropy-regularized arg max.)

However, on a hidden layer, we also need to sample from the predicted categorical distribution,
and then backpropagate the gradients.
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Stochastic Gradient Estimators
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Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via
backpropagation if x(6) is deterministic and differentiable. (2) The presence of stochastic node
z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vg f(x) by backpropagating along a surrogate loss f log py(z), where f = f(x) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vyz ~ 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from

f(y) to 6. y can be annealed to one-hot categorical variables over the course of training.
Figure 2 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144
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Consider a model with a discrete categorical latent variable z sampled from p(z; @), with a loss
L(z;w). Several gradient estimators have been proposed:

® A REINFORCE-like gradient estimation.
Using the identity Vgp(2z;0) = p(2;0)Vglogp(z;0), we obtain that

VoE. [L(z;w)] = E. [L(z;w)Valogp(z;0)].
Analogously as before, we can also include the baseline for variance reduction, resulting in
VoE: |L(z;w)] = E; [(L(2;w) — b) Ve logp(z; 0)].

® A straight-through (ST) estimator.

The straight-through estimator has been proposed by Y. Bengio in 2013. It is a biased
estimator, which assumes that Vgz ~ Vgp(z; @), which implies V,,.gyz ~ 1. Even if the

bias can be considerable, it seems to work quite well in practice.
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The Gumbel-softmax distribution was proposed independently in two papers in Nov 2016
(under the name of Concrete distribution in the other paper).

It is a continuous distribution over the simplex (over categorical distributions) that can
approximate sampling from a categorical distribution.

Let z be a categorical variable with class probabilities p = (p1,p2, ..., PK).

The Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we can draw
samples z ~ P using

z = one-hot (arg max (gz' + log Pi)),

where g; are independent samples drawn from the Gumbel(0, 1) distribution.

To sample g from the distribution Gumbel(0, 1), we can sample u ~ U(0, 1) and then
compute g = — log(— logu).

Gumbel-Softmax

5/37



First recall that exponential distribution Exp(A) has @
PDF(z;\) = de **, CDF(z;)) =1—e 7.

The standard Gumbel(0, 1) distribution has

PDF(z) =e * ¢, CDF(z)=e°

The Gumbel distribution can be used to model the distribution of maximum of a number of
samples from the exponential distribution: if Z is a maximum of N samples from the Exp(1)

distribution, we get that

e N
P(Z —logN < z) = P(Z <z +log N) = CDFgyp1) (:c+logN)N = (1 — eN ) :

which converges to e ¢ = CDF Gumbel(0,1) () for N — oo.
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Let [; be logits of a categorical distribution (so that the class probabilities 7; o< eli), and
let g; ~ Gumbel(0, 1). Then

To prove the Gumbel-Max trick, we first reformulate it slightly. @

m, = P(k = argmax;(g; + 1;)).

We first observe that the theorem is invariant to a scalar shift of logits, so we can without loss
of generality assume that ) . el =1 and m; = €.

. def
For convenience, denote u; = g; + ;.

We will use both the PDF and CDF of a Gumbel(0, 1) distribution:
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Gumbel-Max Trick Proof Uz

To finish the proof, we compute
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Gumbel-Softmax

To obtain a continuous distribution, we relax the arg max into a softmax with temperature T°
as

e(gi+10gpi)/T
Zj elgj+logp;)/T "

& =

As the temperature 1" goes to zero, the generated samples become one-hot, and therefore the
Gumbel-softmax distribution converges to the categorical distribution p(z).
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Figure 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144
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The Gumbel-softmax distribution can be used to reparametrize the sampling of the discrete
variable using a fully differentiable estimator.

However, the resulting sample is not
discrete, it only converges to a discrete
sample as the temperature I" goes to zero.

If it is a problem, we can combine the
Gumbel-softmax with a straight-through
estimator, obtaining ST Gumbel-softmax, S

Deterministic,
differentiable node

Where we: () stochastic node
® discretize Yy as z = argmaxy, I

(] ~ I
assume VH 2z~ VB y' orin Other Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via

d 8_2 ~ 1 backpropagation if () is deterministic and differentiable. (2) The presence of stochastic node
words, 6y ~ . z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vg f(z) by backpropagating along a surrogate loss f log pg(z), where f = f(z) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vgz = 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from
f(y) to 8. y can be annealed to one-hot categorical variables over the course of training.
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Gumbel-Softmax Estimator Results

Table 1: The Gumbel-Softmax estimator outperforms other estimators on Bernoulli and Categorical
latent variables. For the structured output prediction (SBN) task, numbers correspond to negative
log-likelihoods (nats) of input images (lower is better). For the VAE task, numbers correspond to
negative variational lower bounds (nats) on the log-likelihood (lower is better).

SF DARN MuProp ST  Annealed ST Gumbel-S. ST Gumbel-S.

SBN (Bern.) | 72.0 59.7 58.9 58.9 58.7 58.5 59.3
SBN (Cat.) | 73.1 67.9 63.0 61.8 61.1 59.0 59.7
VAE (Bern.) | 112.2 1109 109.7 116.0 111.5 105.0 111.5
VAE (Cat.) | 110.6  128.8 107.0  110.9 107.8 101.5 107.8

Table 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144
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Figure 3: Test loss (negative log-likelihood) on the structured output prediction task with binarized
MNIST using a stochastic binary network with (a) Bernoulli latent variables (392-200-200-392) and
(b) categorical latent variables (392-(20 x 10)-(20 x 10)-392).

Steps (x1e3)

(b)

20 o0 o0 o0 o0 200 S0
Steps (x1e3) Steps (x1e3)

(@ (b)

Figure 4: Test loss (negative variational lower bound) on binarized MNIST VAE with (a) Bernoulli
latent variables (784 — 200 — 784) and (b) categorical latent variables (784 — (20 x 10) — 200).

Figure 3 of "Categorical Reparameterization with Gumbel-Softmax", Figure 4 of "Categorical Reparameterization with Gumbel-Softmax",
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Applications of Discrete Latent Variables UL

The discrete latent variables can be used among others to:

® allow the SAC algorithm to be used on discrete actions, using either Gumbel-softmax
relaxation (if the critic takes the actions as binary indicators, it is possible to pass not just
one-hot encoding, but the result of Gumbel-softmax directly), or a straight-through
estimator;

® model images using discrete latent variables
0 VQ-VAE, VQ-VAE-2 use “codebook loss” with a straight-through estimator

E1 92 83 EK

Embedding
Space

2,0 ~ q(z}x)

Encoder Decoder
Figure 1 of "Neural Discrete Representation Learning”, https://arxiv.org/abs/1711.00937
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Applications of Discrete Latent Variables UL

® VQ-GAN combines the VQ-VAE and Transformers, where the latter is used to generate a
sequence of the discrete latents.
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Figure 2 of "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841
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Applications of Discrete Latent Variables — DALL-E UL

® |n DALL-E, Transformer is used to model a sequence of words followed by a sequence of
the discrete image latent variables.

The Gumbel-softmax relaxation is used to train the discrete latent states, with temperature
annealed with a cosine decay from 1 to 1/16 over the first 150k (out of 3M) updates.
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(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the
a tapir with the texture of an hedgehog 1in a christmas “backprop”™. a neon sign that top as a sketch on the bottom
accordion. sweater walking a dog reads “‘backprop”. backprop
neon sign
Figure 2 of "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092
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DreamerV2 UL

The PlaNet model was followed by Dreamer (Dec 2019) Atari Performance

and DreamerV2 (Oct 2020), which train an agent using B Model-based
reinforcement learning using the model alone. After 200M B Model-free
environment steps, it surpasses Rainbow on a collection 1.6 1
of 55 Atari games (the authors do not mention why they 4 5 _
do not use all 57 games) when training on a single GPU
for 10 days per game.

2.0

Human Gamer
0.8 +

During training, a policy is learned from 486B compact 04 1
states “dreamed” by the model, which is 10,000 times 0.0 -

more than the 50|\/I ol?servatlons from the real Q}\O 0@* \Q$ 0Q$ Q}Q’\' N
environment (with action repeat 4). N QI;)\Q e@(ﬁ\ 6\((\
: < <
Interestingly, the latent states are represented as a vector © L AO o
. . . . igure 1 o astering Atari with Discrete VVorl oaels”,
of several categorical variables — 32 variables with 32 https: //arxiv.org/abs/2010.02193

classes each are utilized in the paper.
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DreamerV2 — Model Learning Uz

The model in DreamerV?2 is learned using the RSSM, collecting agent experiences of
observations, actions, rewards, and discount factors (0.995 within episode and 0 at an episode
end). Training is performed on batches of 50 sequences of length at most 50 each.

recurrent model: h; = f,(hi—1,8t-1,0¢-1), * E 2 E

representation model: s; ~ q,

3t|htai’3t)7

transition predictor: §; ~ 5:|h (W11

D t ~ Dy (8t|ht), T |

image predictor: x; ~ Telhe, s EEEEE NE

gep t ~ Po(Zt| P, 5¢), T |G
rewa'rd predICtor: Ft ~ pSD (,,:t ‘ ht? St ) Y, 32 classes each

discount prediCtor: ’Vt ~ pQO (’Vt | ht) St ) * Figure 2 of "Mastering Atari with Discrete World Models",

https://arxiv.org/abs/2010.02193

Algorithm 1: Straight-Through Gradients with Automatic Differentiation

sample = one_hot (draw(logits)) # sample has no gradient
probs = softmax(logits) # want gradient of this
sample = sample + probs — stop_grad(probs) # has gradient of probs

Algorithm 1 of "Mastering Atari with Discrete World Models", https: //arxiv.org/abs/2010.02193
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The following loss function is used:

T
E(SO) — Eqw(sl;T\al;T,wl;T) [Z o ]'nggo (',Et ’ht7 St) ]'nggo (rt|ht7 St) ]'nggo (’Yt|ht7 St)

t:]. \ - _J/
1mage\l:)g loss rewar(;Tog loss dlscount log loss
+BDxr, [QQO(St‘hta ;) Hpgo(st‘ht)] } :
KI?lross

In the KL term, we train both the prior and the encoder. However, regularizing the encoder
towards the prior makes training harder (especially at the beginning), so the authors propose
KL balancing, minimizing the KL term faster for the prior (¢ = 0.8) than for the posterior.

Algorithm 2: KL Balancing with Automatic Differentiation

kl _loss = alpha +* compute_kl (stop_grad(approx_posterior), prior)
+ (1 - alpha) * compute_kl (approx_posterior, stop_grad(prior))
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DreamerV2 — Policy Learning UL

The policy is trained solely from the model, ; ""1 rz A
starting from the encountered posterior states i
and then considering H = 15 actions simulated \/ \/ \/

in the compact latent state. —e——> V V V

We train an actor predicting 7y, (a;|s;) and a
critic predicting

Ve (81) = By [ 2,0t (T iy 7)) -

The critic is trained by estimating the truncated
A-return as

x

Figure 3 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

(1= Nve(Zer) + AV, if t < H,

VA =r +
CTTY e () if ¢ = H.

and then minimizing the MSE.
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The actor is trained using two approaches:

® the REINFORCE-like loss (with a baseline), which is unbiased, but has a high variance (even
with the baseline);

® the reparametrization of discrete actions using a straight-through gradient estimation, which
is biased, but has lower variance.

H-1 . \
L) =Ep, 1, [Z (—plog Ty (at|st) stop_gradient(V;* — v, (st)z

t:]. N

NV
reinforce

~(1 -V —nH(als) )|

NV NV
dynamics backprop entropy regularizer

For Atari domains, authors use p =1 and n = 1073, while for continuous actions, p=1
works better (presumably because of the bias in case of discrete actions) and n = 104 is used.
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The authors evaluate on 55 Atari games. They argue that the commonly used metrics have
various flaws:
® gamer-normalized median ignores scores on half of the games,
® gamer-normalized mean is dominated by several games where the agent achieves super-
human performance by several orders.

They therefore propose two additional ones:
® record-normalized mean normalizes with respect to any registered human world record for
each game; however, in some games the agents still achieve super-human-record

performance;
® clipped record-normalized mean additionally clips each score to 1; this measure is used as

the primary metric in the paper.
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DreamerV2 — Results Uz

Gamer Median Gamer Mean Record Mean Clipped Record Mean
2.4 - 40 A 0-451 0.24 -
1.8 A 30 - 0.30 A 0.16 - - —
1.2 A 20 A 0.15 - 0.08
0.6 - 10 -
0.0 - 0 - 0.00 - 0.00 -

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
—— DreamerV2 —— IQN —— Rainbow C51 DQN le8

Figure 4 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean
DreamerV?2 2.15 42.26 0.44 0.28
DreamerV2 (schedules) 2.64 31.71 043 0.28
IMPALA 1.92 16.72 0.34 0.23
IQN 1.29 11.27 0.21 0.21
Rainbow 1.47 9.95 0.17 0.17
C51 1.09 8.25 0.15 0.15
DQN 0.65 3.28 0.12 0.12

Table 1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

Scheduling anneals actor gradient mixing p (from 0.1 to 0), entropy loss scale, KL, Ir.
[ 2 I Y B TV Al DiscretelatentVars ST Gumbel-Softmax DreamerV/2 &"2Model &"2Policy MERLIN CTEFTW  22/37



Latent Variables KL Balancing Image Gradients Reward Gradients

0.24 - 0.24 - 0.24 A 0.24 A

0.18 A 0.18 A 0.16 - 0.18 A

0.12 A 0.12 - 0.08 - 0.12 A

0.06 - 0.06 - 0.00 0.06 -

O'OO_I 1 1 1 1 0'OO_I 1 1 1 1 . 1 1 1 1 1 O.OO_I 1 1 1 1
0.0 0.5 1.01.5 2.0 0.0 0.5 1.01.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.01.5 2.0
—— Categorical —— Enabled —— Enabled — Enabled 1€8

Gaussian Disabled Disabled Disabled

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean

DreamerV?2 1.64 13.39 0.36 0.25

No Layer Norm 1.66 11.29 0.38 0.25

No Reward Gradients 1.68 14.29 0.37 0.24

No Discrete Latents  0.85 3.96 0.24 0.19

No KL Balancing 0.87 4.25 0.19 0.16

No Policy Reinforce  0.72 5.10 0.16 0.15

No Image Gradients  0.05 0.37 0.01 0.01
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Categorical latent variables outperform Gaussian latent variables on 42 games, tie on 5 games
and decrease performance on 8 games (where a tie is defined as being within 5%).

The authors provide several hypotheses why could the categorical latent variables be better:

® (Categorical prior can perfectly match aggregated posterior, because mixture of categoricals
is categorical, which is not true for Gaussians.

® Sparsity achieved by the 32 categorical variables with 32 classes each could be beneficial for
generalization.

® (Contrary to intuition, optimizing categorical variables might be easier than optimizing
Gaussians, because the straight-through estimator ignores a term which would otherwise
scale the gradient, which could reduce exploding/vanishing gradient problem.

® (ategorical variables could be a better match for modeling discrete aspect of the Atari
games (defeating an enemy, collecting reward, entering a room, ...).

@ "2Policy
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Aleorithm Reward Image Latent Single  Trainable Atari Accelerator
& Modeling Modeling Transitions GPU  Parameters Frames Days

DreamerV?2 22M 200M 10
SimPLe X 74M 4M 40
MuZero X X 40M 20B 80
MuZero Reanalyze X X 40M 200M 80

World Model Behavior Common

Dataset size (FIFO) — 2-10%  Imagination horizon H 15 Environment steps per update —

Batch size B 50 Discount vy 0.995  MPL number of layers —

Sequence length L 50 A-target parameter A 0.95 MPL number of units — 400

Discrete latent dimensions — 32 Actor gradient mixing p 1 Gradient clipping —

Discrete latent classes — 32 Actor entropy loss scale n 1-1073  Adam epsilon € 1075

RSSM number of units — 600 Actor learning rate — 4-1075 Weight decay (decoupled) — 106

KL loss scale B 0.1 Critic learning rate — 1-1074

KL balancing o 0.8 Slow critic update interval — 100

World model learning rate — 2.1074

Reward transformation — tanh

DiscretelatentVars ST Gumbel-Softmax DreamerV?2 @ “2Model @ "2Policy MERLIN CTF-FTW 25/37



In a partially-observable environment, keeping all information in the RNN state is substantially
limiting. Therefore, memory-augmented networks can be used to store suitable information in
external memory (in the lines of NTM, DNC, or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

a. RL-LSTM b. RL-MEM
POLICY d
%
ses see & |
() L5
ht Mt’< """"" k‘t
.."f%
my
ENVIRONMENT POLICY ENVIRONMENT
(L, v, 41, T3) > Ot —» & 0 Bl — (L,vnr g, 1) Ui = & At =
T ENCODER Policy Loss T ENCODER Policy Loss
b Q1 e Qp 1
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Let M be a memory matrix of size Npem X 2|e]. b IRL-MEM

Assume we have already encoded observations as e; and previous
action a;_1. We concatenate them with K previously read vectors
and process them by a deep LSTM (two layers are used in the FRONET

Paper) to Compute ht' (I, v, me_1, Ty)—> Ot —> € ...

ssssssssss

o (1

Then, we apply a linear layer to h;, computing K key vectors
ki,...,kx of length 2|e| and K positive scalars 81, ..., Bk.

Reading: For each %, we compute cosine similarity of k; and all memory rows M ;, multiply

the similarities by 3; and pass them through a softmax to obtain weights w;. The read vector
is then computed as M w;.

Writing: We find one-hot write index v, to be the least used memory row (we keep usage
indicators and add read weights to them). We then compute V. < YUt + (1 — )0y, and
retroactively update the memory matrix using M < M + v, |e;, 0] + v,.[0, e;].

MERLIN
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However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations z and storing them in

memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a (Gaussian diagonal) prior distribution over z; predicts next state variable

conditioned on history of state variables and actions p(2z}"" |z¢-1,a¢1,...,21,a1), and
posterior corrects the prior using the new observation 0, forming a better estimate

prior prior
Q(zt|ot7zt 7zt—17at—17°'°7z17a’1)‘|_zt

MERLIN
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To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state

variable posterior, and add the difference of the reconstruction and ground truth to the loss.

between the prior and the posterior.

We also add KL divergence of the prior and the posterior to the loss, to ensure consistency

c. MERLIN READ-ONLY POLICY
MEMORY-BASED PREDICTOR " ") L"')
bees M+ B R
ees Q9 .>"‘ ‘.'-. 2,
2 A O
PRIOR ‘ ) ‘ o 4 o
: ~ = Input
et — ’."Lt — p - h’t - mt mt —» Neural Network
ENVIRONMENT T T QS& == Memory read/write
ENCODER KL Loss S Sample
5 Sum
(Ze, ves o1, Te) —> O 4 —> 2 —— > Bl — | )
POSTERIOR Policy Loss / Stopped gradient
l DECODER
T | Ao~ " i~
(ItaRta Uty At—1,Tt—1, T;E)
Reconstruction Loss
DiscreteLatentVars ST Gumbel-Softmax DreamerV?2 @ 2Model @ "2Policy MERLIN
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MERLIN — Algorithm

Algorithm 1 MERLIN Worker Pseudocode

/I Assume global shared parameter vectors 6 for the policy network and y for the memory-

based predictor; global shared counter 7" := 0
/I Assume thread-specific parameter vectors ¢, x’
/I Assume discount factor v € (0, 1] and bootstrapping parameter A € [0, 1]
Initialize thread step counter ¢ := 1
repeat
Synchronize thread-specific parameters ¢’ := 6; ' := x
Zero model’s memory & recurrent state if new episode begins
Lstart := 1
repeat
Prior N (1}, log 28) = p(hy—1,m4—1)
e; = enc(o;)
Posterior N (pf, log 38) = q(ey, hy_1, my_1, pif, log )
Sample z; ~ N (p, log X)
Policy network update h, = rec(h,_, 7, StopGradient(z,))
Policy distribution 7, = 7 (h,, StopGradient(z;))
Sample a; ~ 7
hy = rec(hy_1, my, )
Update memory with z; by Methods Eq. 2
Ry, 0] = dec(z, ¢, at)
Apply a; to environment and receive reward r; and observation o1
t=t+1;,T:=T+1
until environment termination or ¢t — tgut == Twindow

until 7" > T},

If not terminated, run additional step to compute V7 (241, log my41)
and set Ry 1 := V7™ (2441, log my41) // (but don’t increment counters)
Reset performance accumulators A :=0; L :=0;H :=0
for k£ from ¢t down to ¢y, do
" {0, if k is environment termination
t -

v, otherwise

Ry =1 + 7Ry
O = 1k + V™ (241, log Tpp1) — V7 (24, log 71,)
Ak = (Sk + (")/)\)A]H_l
L:=L+ L, (Eq.7)
A= A+ Aplog my[ay]
H :=H — Oenwropy »_; Tk |t] log m[i] (Entropy loss)
end for
dX/ = VX/E
do’ = V(;/(A + H)

Asynchronously update via gradient ascent # using df’ and x using dx’

Algorithm 1 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https: //arxiv.org/abs/1803.10760
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Figure 2 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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Extended Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs,/1803.10760
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(a) FTW Agent Architecture (b) Progression During Training
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Figure 2 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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® Extension of the MERLIN architecture.
® Hierarchical RNN with two timescales.

® Population based training controlling KL divergence penalty weights, internal dense rewards,
slow ticking RNN speed, and gradient flow factor from fast to slow RNN.

In every game, teams of similarly skilled agents were selected, and the authors state it is
crucial to employ several agents instead of just one (30 simultaneously trained agents are

used).
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For the Win agent for Capture The Flag

(a) Agent (b) Policy (e) Recurrent processing with LSTM
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Figure 510 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Phase 1 Learning the basics of the game + Phase 2 Increasing navigation, tagging, and coordination skills ' Phase 3 Perfecting strategy and memory
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Figure 4 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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