
NPFL122, Lecture 11

MuZero, PlaNet

Milan Straka

December 12, 2022

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

MuZero

The MuZero algorithm extends the AlphaZero by a trained model, alleviating the requirement
for a known MDP dynamics. It is evaluated both on board games and on the Atari domain.

At each time-step , for each of steps, a model with parameters , conditioned

on past observations and future actions , predicts three future

quantities:

the policy ,

the value function ,

the immediate reward ,

where are the observed rewards and is the behaviour policy.

t 1 ≤ k ≤ K μ θ θ

o , … , o 1 t a , … , a t+1 t+k

p ≈t
k π(a ∣o , … , o , a , … , a)t+k+1 1 t t+1 t+k

v ≈t
k E[u +t+k+1 γu +t+k+2 … ∣o , … , o , a , … , a]1 t t+1 t+k

r ≈t
k u t+k

u i π

2/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero

At each time-step (omitted from now on for simplicity), the model is composed of three

components: a representation function, a dynamics function, and a prediction function.

The dynamics function, , simulates the MDP dynamics and

predicts an immediate reward and an internal state . The internal state has no explicit

semantics, its only goal is to accurately predict rewards, values, and policies.

The prediction function, , computes the policy and the value function,

similarly as in AlphaZero.

The representation function, , generates an internal state encoding the

past observations.

t

(r , s) ←k k g (s , a)θ
k−1 k

rk sk

(p , v) ←k k f (s)θ
k

s ←0 h (o , … , o)θ 1 t

3/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero

Figure 1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

4/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – MCTS

The MCTS algorithm is very similar to the one used in AlphaZero, only the trained model is
used. It produces a policy and a value estimate .

All actions, including the invalid ones, are allowed at any time, except at the root, where the
invalid actions (available from the current state) are disallowed.

No states are considered terminal during the search.

During the backup phase, we consider a general discounted bootstrapped return

Furthermore, the expected return is generally unbounded. Therefore, MuZero normalize the
Q-value estimates to range by using the minimum and maximum the values observed

in the search tree until now:

π t ν t

G =k γ r +∑
t=0

l−k−1
t
k+1+t γ v .l−k

l

[0, 1]

 (s, a) =Q̄ .
max Q(s , a) − min Q(s , a)s ,a ∈Tree′ ′ ′ ′

s ,a ∈Tree′ ′ ′ ′

Q(s, a) − min Q(s , a)s ,a ∈Tree′ ′ ′ ′

5/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Action Selection

To select a move, we employ a MCTS algorithm and then sample an action from the obtained
policy, .

For games, the same strategy of sampling the actions as in AlphaZero is used. In the Atari

domain, the actions are sampled according to the visit counts for the whole episode, but with a
given temperature :

where is decayed during training – for first 500k steps it is 1, for the next 250k steps it is

0.5 and for the last 250k steps it is 0.25.

While for the board games 800 simulations are used during MCTS, only 50 are used for Atari.

In case of Atari, the replay buffer consists of 125k sequences of 200 actions.

a ∼t+1 π t

a t

T

π(a∣s) = ,
 N(s, b)∑b

1/T

N(s, a)1/T

T

6/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Training

During training, we utilize a sequence of moves. We estimate the return using bootstrapping

as . The values and are used

in the paper, with batch size 2048 for the board games and 1024 for Atari.

The loss is then composed of the following components:

Note that in Atari, rewards are scaled by for , and

authors utilize a cross-entropy loss with 601 categories for values , which they

claim to be more stable.

Furthermore, in Atari the discount factor is used, and the replay buffer elements are

sampled according to prioritized replay with priority , and importance sampling with

exponent is used to account for changing the sampling distribution (is used).

K

z =t u +t+1 γu +t+2 … + γ u +n−1
t+n γ ν

n
t+n K = 5 n = 10

L (θ) =t L (u , r) +
k=0

∑
K

r
t+k t

k L (z , v) +v
t+k t

k L (π ,p) +p
t+k t

k c∥θ∥ .2

sign(x)(−∣x∣ + 1 1)+ εx ε = 10−3

−300, … , 300

γ = 0.997
∝ ∣ν − z∣α

β α = β = 1

7/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero

ν ,π t t

a t

Model

 p , v , r = μ (o , ..., o , a , ..., a)
s0

r , sk k

p , vk k

= h (o , ..., o)θ 1 t

= g (s , a)θ
k−1 k

= f (s)θ
k ⎭

⎬
⎫

k k k
θ 1 t

1 k

Search

= MCTS(s ,μ)t
0

θ

∼ π t

8/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero

p , v , r t
k

t
k

t
k

z t

L (θ)t

L (u, r)r

L (z, q)v

L (π, p)p

Learning Rule

= μ (o , … , o , a , ..., a)θ 1 t t+1 t+k

= {
u T

u + γu + ... + γ u + γ ν t+1 t+2
n−1

t+n
n

t+n

 for games
 for general MDPs

= L (u , r) + L (z , v) + L (π ,p) + c∥θ∥
k=0

∑
K

r
t+k t

k v
t+k t

k p
t+k t

k 2

Losses

= {
0
−φ(u) logφ(r)T

 for games
 for general MDPs

= {
(z − q)2

−φ(z) logφ(q)T

 for games
 for general MDPs

= −π logpT

9/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Evaluation

Figure 2 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

10/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Atari Results

Table 1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

MuZero Reanalyze is optimized for greater sample efficiency. It revisits past trajectories by re-
running the MCTS using the network with the latest parameters, notably

using the fresh policy as target in 80% of the training updates, and
always using the fresh in the bootstrapped target .

Some hyperparameters were changed too – 2.0 samples were drawn per state instead of 0.1, the
value loss was weighted down to 0.25, and the -step return was reduced to .

v ←k f (s)θ
k z t

n n = 5
11/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Planning Ablations

Figure 3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

12/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Planning Ablations

Figure S3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

13/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Detailed Atari Results

Table S1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

14/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

MuZero – Detailed Atari Results

Table S1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

15/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet

In Nov 2018, an interesting paper from D. Hafner et al. proposed a Deep Planning Network
(PlaNet), which is a model-based agent that learns the MDP dynamics from pixels, and then
chooses actions using a CEM planner utilizing the learned compact latent space.

The PlaNet is evaluated on selected tasks from the DeepMind control suite

Figure 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

16/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet

In PlaNet, partially observable MDPs following the stochastic dynamics are considered:

The main goal is to train the first three – the transition function, the observation function, and
the reward function.

transition function:

observation function:

reward function:

policy:

s t

o t

r t

a t

∼ p(s ∣s , a),t t−1 t−1

∼ p(o ∣s),t t

∼ p(r ∣s),t t

∼ p(a ∣o , a).t ≤t <t

17/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Data Collection

Algorithm 1 of "Learning Latent Dynamics for Planning from
Pixels", https://arxiv.org/abs/1811.04551

Because an untrained agent will most likely not cover all needed
environment states, we need to iteratively collect new experience
and train the model. The authors propose , ,

, , between 2 and 8.

For planning, CEM algorithm (capable of solving all tasks with a
true model) is used; , , , .

Algorithm 2 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

S = 5 C = 100
B = 50 L = 50 R

H = 12 I = 10 J = 1000 K = 100

18/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Latent Dynamics

Figure 2 of "Learning Latent Dynamics for Planning from Pixels",
https://arxiv.org/abs/1811.04551

First let us consider a typical latent-space model,
consisting of

The transition model is Gaussian with mean and variance predicted by a network, the
observation model is Gaussian with identity covariance and mean predicted by a deconvolutional
network, and the reward model is a scalar Gaussian with unit variance and mean predicted by a
neural network.

To train such a model, we turn to variational inference, and use an encoder

, which is a Gaussian with mean and variance

predicted by a convolutional neural network.

transition function:

observation function:

reward function:

s t

o t

r t

∼ p(s ∣s , a),t t−1 t−1

∼ p(o ∣s),t t

∼ p(r ∣s).t t

q(s ∣o , a) =1:T 1:T 1:T−1 q(s ∣s , a , o)∏t=1
T

t t−1 t−1 t

19/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Training Objective

Using the encoder, we obtain the following variational lower bound on the log-likelihood of the
observations (for rewards the bound is analogous):

We evaluate the expectations using a single sample, and use the reparametrization trick to allow
backpropagation through the sampling.

log p(o ∣a)1:T 1:T

= log p(s ∣s , a)p(o ∣s) ds ∫
t

∏ t t−1 t−1 t t 1:T

≥ (−).
t=1

∑
T

reconstruction

 E log p(o ∣s)q(s ∣o ,a)t ≤t <t t t

complexity

 E D (q(s ∣o , a)∥p(s ∣s , a))q(s ∣o ,a)t−1 ≤t−1 <t−1 KL t ≤t <t t t−1 t−1

20/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Training Objective Derivation

To derive the training objective, we employ importance sampling and the Jensen’s inequality:

log p(o ∣a)1:T 1:T

= logE p(o ∣s)p(s ∣a)1:T 1:T

t=1

∏
T

t t

= logE p(o ∣s)p(s ∣s , a)/q(s ∣o , a)q(s ∣o ,a)1:T 1:T 1:T

t=1

∏
T

t t t t−1 t−1 t ≤t <t

≥ E log p(o ∣s) + log p(s ∣s , a) − log q(s ∣o , a)q(s ∣o ,a)1:T 1:T 1:T

t=1

∑
T

t t t t−1 t−1 t ≤t <t

= (−).
t=1

∑
T

reconstruction

 E log p(o ∣s)q(s ∣o ,a)t ≤t <t t t

complexity

 E D (q(s ∣o , a)∥p(s ∣s , a))q(s ∣o ,a)t−1 ≤t−1 <t−1 KL t ≤t <t t t−1 t−1

21/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Recurrent State-Space Model

The purely stochastic transitions struggle to store information for multiple timesteps. Therefore,
the authors propose to include a deterministic path to the model (providing access to all
previous states), obtaining the recurrent state-space model (RSSM):

Figure 2 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

deterministic state model:

stochastic state function:

observation function:

reward function:

encoder:

h t

s t

o t

r t

q t

= f(h , s , a),t−1 t−1 t−1

∼ p(s ∣h),t t

∼ p(o ∣h , s),t t t

∼ p(r ∣h , s),t t t

∼ q(s ∣h , o).t t t

22/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Results

Table 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

23/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Ablations

Figure 4 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

24/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

PlaNet – Ablations

Figure 5 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

25/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM

