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Off-policy Correction Using Control Variates

Denoting the TD error as , we can write the -step estimated

return as a sum of TD errors:

Furthermore, denoting the importance sampling ratio  we

can introduce the control variate to the estimate

which can then be written as
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Eligibility Traces

Eligibility traces are a mechanism of combining multiple -step return estimates for various

values of .

First note instead of an -step return, we can use any average of -step returns for different

values of , for example .
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-returnλ

 

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

For a given , we define -return as

Alternatively, the -

return can be written
recursively as

λ ∈ [0, 1] λ
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-returnλ

In an episodic task with time of termination , we can rewrite the -return to

 

Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Truncated -returnλ

We might also set a limit on the largest value of , obtaining truncated -return

The truncated  return can be again written recursively as

Similarly to before, we can express the truncated  return as a sum of TD errors

obtaining an analogous estimate 
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Variable sλ

The (truncated) -return can be generalized to utilize different  at each step . Notably, we

can generalize the recursive definition

to

and express this quantity again by a sum of TD errors:
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Off-policy Traces with Control Variates

Finally, we can combine the eligibility traces with off-policy estimation using control variates:

Recalling that

we can rewrite  recursively as

which we can simplify by expanding  to
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Off-policy Traces with Control Variates

Consequently, analogously as before, we can write the off-policy traces estimate with control
variates as

and by repeating the above derivation we can extend the result also for time-variable , we

obtain
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Return Recapitulation

Recursive definition Formulation with TD errors
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TD( )λ

We have defined the -return in the so-called forward view.

 

Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".

λ
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TD( )λ

However, to allow on-line updates, we might consider also the backward view

 

Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".
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TD( )λ

TD( ) is an algorithm implementing on-line policy evaluation utilizing the backward view.

 

Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

λ

13/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



V-trace

V-trace is a modified version of -step return with off-policy correction, defined in the Feb

2018 IMPALA paper as (using the notation from the paper):

where  and  are the truncated importance sampling ratios for :

Note that if  and assuming ,  reduces to -step Bellman target.

n
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V-trace

Note that the truncated IS weights  and  play different roles:

The  appears defines the fixed point of the update rule. For , the target is the

value function , if , the fixed point is somewhere between  and . Notice that

we do not compute a product of these  coefficients.

Concretely, the fixed point of an operator defined by  corresponds to a value

function of the policy

The  impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the  ratios is computed, it plays an important

role in variance reduction.

However, the paper utilizes  and out of ,  works empirically the

best, so the distinction between  and  is not useful in practice.
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V-trace Analysis

Let us define the (untruncated for simplicity; similar results can be proven for a truncated
one) V-trace operator  as:

where the expectation  is with respect to trajectories generated by behaviour policy .

Assuming there exists  such that , it can be proven (see Theorem 1 in

Appendix A.1 in the Impala paper if interested) that such an operator is a contraction with a
contraction constant

therefore,  has a unique fixed point.
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V-trace Analysis

We now prove that the fixed point of  is . We have:

where the tagged part is zero, since it is the Bellman equation for . This shows that 

, and therefore  is the

unique fixed point of .

Consequently, in  only the last  from

every  is actually needed for off-policy correction;  can be considered as traces.
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IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters
of the policy, IMPALA actors communicate trajectories to the centralized learner.

 

Figure 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

 

Figure 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.
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IMPALA

Consider a parametrized functions computing  and , we update the critic in

the direction of

and the actor in the direction of the policy gradient

Finally, we again add the entropy regularization term  to the loss function.

v(s; θ) π(a∣s;ω)

(G  −t:t+n
V-trace v(S  ; θ))∇  v(S  ; θ),t θ t

  ∇  log π(A  ∣S  ;ω)(R  +ρ̄t ω t t t+1 γG  −t+1:t+n
V-trace v(S  ; θ)).t

βH(π(⋅∣S  ;ω))t
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IMPALA

 

Table 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

20/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

 

Figure 1 of "Population Based Training of Neural Networks" by Max Jaderberg et al.

ε
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready

(after 5000 episodes), then:

it may be overwritten by parameters and hyperparameters of another randomly chosen
agent, if it is sufficiently better (5000 episode mean capped human normalized score returns
are 5% better);
and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

ε
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IMPALA – Architecture

 

Figure 3 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA

 

Figure 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Learning Curves

 

Figures 5, 6 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Games

 

Table 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Hyperparameters

 

Table G1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Ablations

 

Table 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by
Lasse Espeholt et al.

No-correction: no off-policy
correction;
-correction: add a small value 

 during gradient

calculation to prevent  to be

very small and lead to unstabilities
during  computation;

1-step: no off-policy correction in
the update of the value function,
TD errors in the policy gradient
are multiplied by the
corresponding  but no s; it can

be considered V-trace “without
traces”.

ε

ε = 10−6

π

log π

ρ c
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IMPALA – Ablations

 

Figure E.1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.
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PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively

Rescaling Targets.

Assume the value estimate  is computed using a normalized value predictor 

and further assume that  is an output of a linear function

We can update the  and  using exponentially moving average with decay rate  (in the

paper, first moment  and second moment  is tracked, and the standard deviation is

computed as ; decay rate  is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ,

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ =  υ − μ2 β = 3 ⋅ 10−4

30/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



PopArt Normalization

Utilizing the parameters  and , we can normalize the observed (unnormalized) returns as 

, and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters  used to compute the value estimate

are updated under any change  and  as

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, , , and  are vectors).

μ σ

(G− μ)/σ (G− μ)/σ − n(S; θ)

ω, b

v(s; θ,σ,μ) =def
σ ⋅ (ω f(s; θ −T {ω, b}) + b) + μ

μ → μ′ σ → σ′

  

ω′

b′

←  ω,
σ′

σ

←  .
σ′

σb+ μ − μ′

μ σ n(s; θ)
31/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



PopArt Results

 

Table 1 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

 

Figures 1, 2 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results

 

Figure 3 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Normalization statistics on chosen environments.
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Transformed Rewards

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator 

Instead of clipping the magnitude of rewards, we might use a function  to reduce

their scale. We define a transformed Bellman operator  as

T

(T q)(s, a) =def E  [r +s ,r∼p′ γ  q(s , a )].
a′

max ′ ′

h : R → R
T  h

(T  q)(s, a)h =def E  [h(r +s ,r∼p′ γ  h (q(s , a )))].
a′

max −1 ′ ′
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Transformed Rewards

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:

Achieving Consistent Performance on Atari by Tobias Pohlen et al.

1. If  for , then .

The statement follows from the fact that it is equivalent to scaling the rewards by a
constant .

2. When  is strictly monotonically increasing and the MDP is deterministic, then 

.

This second proposition follows from

where the last equality only holds if the MDP is deterministic.

h(z) = αz α > 0 T  q  h
k k→∞

h ∘ q  =∗ αq  ∗

α

h T  q  h
k k→∞

h ∘ q  ∗

h ∘ q  =∗ h ∘ T q  =∗ h ∘ T (h ∘−1 h ∘ q  ) =∗ T (h ∘h q  ),∗
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Transformed Rewards

For stochastic MDP, the authors prove that if  is strictly monotonically increasing, Lipschitz

continuous with Lipschitz constant , and has a Lipschitz continuous inverse with Lipschitz

constant , then for ,  is again a contraction. (Proof in Proposition A.1.)

For the Atari environments, the authors propose the transformation

with . The additive regularization term ensures that  is Lipschitz continuous.

It is straightforward to verify that

In practice, discount factor larger than  is being used – however, it seems to work.

h

L  h

L  h−1 γ <  

L  L  h h−1

1 T  h

h(x) =def sign(x)  − 1 +( ∣x∣ + 1 ) εx

ε = 10−2 h−1

h (x) =−1 sign(x)   − 1  .(
2ε

 − 11 + 4ε(∣x∣ + 1 + ε)
)

2

 L  L  h h−1

1
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Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used.

Instead of individual transitions, the replay buffer consists of fixed-length ( ) sequences

of , with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step
TD errors  over the sequence: , for  and the priority exponent set

to 0.9.

n n = 5

m = 80
(s, a, r)

δ  i p = ηmax  δ  +i i (1 − η)δ̄ η
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 2 of "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

 

Table 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Table 2 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 9 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor  (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not
LSTM unrolling).

 

Figure 4 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

 

Figure 7 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

γ = 0.99
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Utilization of LSTM Memory During Inference

 

Figure 5 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Agent57

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

Its most important components are:

Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,
https://arxiv.org/abs/1606.02647,
Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by
Badia et al., https://arxiv.org/abs/2002.06038,
Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,
https://arxiv.org/abs/2003.13350.
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Retrace

where there are several possibilities for defining the traces :

importance sampling, ,

the usual off-policy correction, but with possibly very high variance,
note that  in the on-policy case;

Tree-backup TB(λ), ,

the Tree-backup algorithm extended with traces,
however,  can be much smaller than 1 in the on-policy case;

Retrace(λ), ,

off-policy correction with limited variance, with  in the on-policy case.

The authors prove that  has a unique fixed point  for any .

Rq(s, a) q(s, a) + E  [  γ  c  (R  + γE  q(S  ,A  ) − q(S  ,A ))],=def
b

t≥0

∑ t (∏
j=1

t

t) t+1 A  ∼πt+1 t+1 t+1 t t

c  t

c  =t ρ  =t  

b(A  ∣S  )t t

π(A  ∣S  )t t

c  =t 1

c =t λπ(A  ∣S  )t t

c  t

c =t λmin (1,  )
b(A  ∣S  )t t

π(A  ∣S  )t t

c  =t 1

R q  π 0 ≤ c  ≤t  

b(A  ∣S  )t t

π(A  ∣S  )t t
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Never Give Up

The NGU (Never Give Up) agent performs curiosity-driver exploration, and augment the
extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time  is then 

, with  a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:

1. quickly discourage visits of the same state in the same episode;

2. slowly discourage visits of the states visited many times in all episodes;

3. ignore the parts of the state not influenced by the agent's actions.

The intrinsic rewards is a combination of the episodic novelty  and life-long novelty :

t

r  t
β =def

r  +t
e βr  t

i β

r  t
episodic α  t

r  t
i =def

r  ⋅t
episodic clip(1 ≤ α  ≤t L = 5).
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Never Give Up

 

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The episodic novelty works
by storing the embedded
states  visited during

the episode in episodic
memory .

The  is then

estimated as

The visit count is estimated using similarities of -nearest neighbors of  measured via an

inverse kernel  for  a running mean of the -nearest neighbor distance:

f(S  )t

M

r  t
episodic

r  =t
episodic

 .
 visit count of f(S  )t

1

k f(S  )t
K(x, z) =  

 +ε
d  m
2

d(x,z)2
ε d  m k

r  =t
episodic

 ,  with pseudo-count c=0.001.
 + c K(f(S  ), f  )∑f  ∈N  i k

t i

1
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Never Give Up

 

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The state embeddings are
trained to ignore the parts
not influenced by the actions
of the agent.

To this end, Siamese
network  is trained to

predict , i.e.,

the action  taken by the

agent in state  when the

resulting state is .

The life-long novelty  is trained using random network distillation (RND),

where a predictor network  tries to predict the output of an untrained convolutional network 

by minimizing the mean squared error; the  and  are the running mean and standard

deviation of the error .

f

p(A  ∣S  ,S  )t t t+1

A  t

S  t

S  t+1

α  =t 1 +  

σ  err

∥  −g∥ −μ  ĝ 2
err

 ĝ g

μ  err σ  err

∥  −ĝ g∥2

48/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



Never Give Up

 

Figure 17 of "Never Give Up:
Learning Directed Exploration

Strategies" by A. P. Badia et al.

 

Figure 7b of "Never Give Up: Learning
Directed Exploration Strategies" by A. P.

Badia et al.

The NGU agent uses transformed Retrace loss with the augmented reward

To support multiple policies concentrating either on the
extrinsic or the intrinsic reward, the NGU agent trains a
parametrized action-value function  which

corresponds to reward  for  and ,

…,  and .

For evaluation,  is employed.

r  t
i =

def
r  ⋅t

episodic clip(1 ≤ α  ≤t L = 5).

q(s, a, β  )i
r  t
β  i β  =0 0 γ  =0 0.997

β  =N−1 β γ  =N−1 0.99

q(s, a, 0)

49/54NPFL122, Lecture 9 Refresh ETraces Returns TD( ) Vtrace IMPALA PopArt TransRews R2D2 Agent57λ



Never Give Up

 

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

 

Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.
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Never Give Up Ablations

 

Figure 2 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

 

Figure 3 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.
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Agent57

 

Figure 10 of "Agent57: Outperforming the Atari Human
Benchmark" by A. P. Badia et al.

Then Agent57 improves NGU with:

splitting the action-value as 

, where

 is trained with  as targets, and

 is trained with  as targets.

instead of considering all  equal, we train a meta-

controller using a non-stationary multi-arm bandit algorithm,
where arms correspond to the choice of  for a whole episode

(so an actor first samples a  using multi-arm bandit problem

and then updates it according to the observed return), and
the reward signal is the undiscounted extrinsic episode return;
each actor uses a different level of -greedy behavior;

 is increased from  to .

q(s, a, j; θ) =def
q(s, a, j; θ ) +e

β  q(s, a, j; θ )j
i

q(s, a, j; θ )e r  e

q(s, a, j; θ )i r  i

(β  , γ  )j j

j

j

ε  l

γ  N−1 0.997 0.9999
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Agent57 – Results

 

Figure 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

 

Table 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.
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Agent57 – Ablations

 

Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

 

Figure 8 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia
et al.
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