# NPFL122, Lecture 9



# Eligibility Traces, Impala, R2D2, Agent57

Milan Straka

i ■ November 28, 2022





EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



unless otherwise stated

# **Off-policy Correction Using Control Variates**



Denoting the TD error as  $\delta_t \stackrel{\text{def}}{=} R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ , we can write the *n*-step estimated return as a sum of TD errors:

$$G_{t:t+n}=V(S_t)+\sum_{i=0}^{n-1}\gamma^i\delta_{t+i}.$$

Furthermore, denoting the importance sampling ratio  $\rho_t \stackrel{\text{def}}{=} \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$ ,  $\rho_{t:t+n} \stackrel{\text{def}}{=} \prod_{i=0}^n \rho_{t+i}$ , we can introduce the **control variate** to the estimate

$$G_{t:t+n}^{ ext{CV}} \stackrel{ ext{def}}{=} 
ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{ ext{CV}}ig) + (1-
ho_t)V(S_t),$$

which can then be written as

$$G^{ ext{CV}}_{t:t+n} = V(S_t) + \sum\nolimits_{i=0}^{n-1} \gamma^i 
ho_{t:t+i} \delta_{t+i}.$$

NPFL122, Lecture 9

Refresh ETraces Returns

 $\mathsf{TD}(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews R2D2

Agent57 2/54

# **Eligibility Traces**



Eligibility traces are a mechanism of combining multiple n-step return estimates for various values of n.

First note instead of an *n*-step return, we can use any average of *n*-step returns for different values of *n*, for example  $\frac{2}{3}G_{t:t+2} + \frac{1}{3}G_{t:t+4}$ .

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

R2D2 Agent57

#### $\lambda$ -return



#### For a given $\lambda \in [0,1]$ , we define $\lambda ext{-return}$ as





**Figure 12.2:** Weighting given in the  $\lambda$ -return to each of the *n*-step returns. Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews

R2D2 Agent57

#### $\lambda$ -return



In an episodic task with time of termination T, we can rewrite the  $\lambda$ -return to





**Figure 12.3:** 19-state Random walk results (Example 7.1): Performance of the off-line  $\lambda$ -return algorithm alongside that of the *n*-step TD methods. In both case, intermediate values of the bootstrapping parameter ( $\lambda$  or *n*) performed best. The results with the off-line  $\lambda$ -return algorithm are slightly better at the best values of  $\alpha$  and  $\lambda$ , and at high  $\alpha$ .

Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".

Refresh

ETraces Returns  $TD(\lambda)$  Vtrace IMPALA PopArt TransRews R2D2 Agent57 5/54

## **Truncated** $\lambda$ **-return**



We might also set a limit on the largest value of n, obtaining truncated  $\lambda$ -return

$$G_{t:t+n}^\lambda \stackrel{ ext{def}}{=} (1-\lambda) \sum_{i=1}^{n-1} \lambda^{i-1} G_{t:t+i} + \lambda^{n-1} G_{t:t+n}.$$

The truncated  $\lambda$  return can be again written recursively as

$$G_{t:t+n}^{\lambda} = (1-\lambda)G_{t:t+1} + \lambda(R_{t+1} + \gamma G_{t+1:t+n}^{\lambda}), \;\; G_{t:t+1}^{\lambda} = G_{t:t+1}.$$

Similarly to before, we can express the truncated  $\lambda$  return as a sum of TD errors

$$egin{aligned} G_{t:t+n}^\lambda - V(S_t) &= (1-\lambda)ig(R_{t+1} + \gamma V(S_{t+1})ig) + \lambda(R_{t+1} + \gamma G_{t+1:t+n}^\lambda) - V(S_t) \ &= R_{t+1} + \gamma V(S_{t+1}) - V(S_t) + \lambda \gammaig(G_{t+1:t+n}^\lambda - V(S_{t+1})ig), \end{aligned}$$

obtaining an analogous estimate  $G_{t:t+n}^{\lambda} = V(S_t) + \sum_{i=0}^{n-1} \gamma^i \lambda^i \delta_{t+i}.$ 

NPFL122, Lecture 9

Refresh



Vtrace IMPALA

# Variable $\lambda s$

Ú F<sub>A</sub>L

The (truncated)  $\lambda$ -return can be generalized to utilize different  $\lambda_i$  at each step i. Notably, we can generalize the recursive definition

$$G_{t:t+n}^\lambda = (1-\lambda)G_{t:t+1} + \lambda(R_{t+1} + \gamma G_{t+1:t+n}^\lambda)$$

to

$$G_{t:t+n}^{\lambda_i} = (1-\lambda_{t+1})G_{t:t+1} + \lambda_{t+1}(R_{t+1} + \gamma G_{t+1:t+n}^{\lambda_i}),$$

and express this quantity again by a sum of TD errors:

$$G_{t:t+n}^{\lambda_i} = V(S_t) + \sum_{i=0}^{n-1} \gamma^i \left( \prod_{j=1}^i \lambda_{t+j} 
ight) \delta_{t+i}.$$

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

R2D2 Agent57

# **Off-policy Traces with Control Variates**

Finally, we can combine the eligibility traces with off-policy estimation using control variates:

$$G_{t:t+n}^{\lambda, ext{CV}} \stackrel{\scriptscriptstyle ext{def}}{=} (1-\lambda) \sum_{i=1}^{n-1} \lambda^{i-1} G_{t:t+i}^{ ext{CV}} + \lambda^{n-1} G_{t:t+n}^{ ext{CV}}.$$

Recalling that

$$G^{ ext{CV}}_{t:t+n} = 
ho_tig(R_{t+1}+\gamma G^{ ext{CV}}_{t+1:t+n}ig) + (1-
ho_t)V(S_t),$$

we can rewrite  $G_{t:t+n}^{\lambda,\mathrm{CV}}$  recursively as

Refresh

**ETraces** 

$$G_{t:t+n}^{\lambda, ext{CV}} = (1-\lambda)G_{t:t+1}^{ ext{CV}} + \lambda\Big(
ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{\lambda, ext{CV}}ig) + (1-
ho_t)V(S_t)\Big),$$

which we can simplify by expanding  $G^{ ext{CV}}_{t:t+1} = 
ho_t(R_{t+1} + \gamma V(S_{t+1})) + (1ho_t)V(S_t)$  to

$$G_{t:t+n}^{\lambda,\mathrm{CV}} - V(S_t) = 
ho_tig(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)ig) + \gamma\lambda
ho_tig(G_{t+1:t+n}^{\lambda,\mathrm{CV}} - V(S_{t+1})ig).$$

NPFL122, Lecture 9

Returns  $TD(\lambda)$  Vtrace

IMPALA

PopArt TransRews

R2D2



# **Off-policy Traces with Control Variates**



Consequently, analogously as before, we can write the off-policy traces estimate with control variates as

$$G_{t:t+n}^{\lambda, ext{CV}} = V(S_t) + \sum\nolimits_{i=0}^{n-1} \gamma^i \lambda^i 
ho_{t:t+i} \delta_{t+i},$$

and by repeating the above derivation we can extend the result also for time-variable  $\lambda_i$ , we obtain

$$G_{t:t+n}^{\lambda_{ ext{i}}, ext{CV}} = V(S_t) + \sum_{i=0}^{n-1} \gamma^i \left( \prod_{j=1}^i \lambda_{t+j} 
ight) 
ho_{t:t+i} \delta_{t+i}.$$

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews R2D2

Agent57 9/54

# **Return Recapitulation**



| Recursive definition                                                                                                                                                                                               | Formulation with TD errors                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $G_{t:t+n} \stackrel{	ext{def}}{=} R_{t+1} + \gamma G_{t+1:t+n}$                                                                                                                                                   | $V(S_t) + \sum_{i=0}^{n-1} \gamma^i \delta_{t+i}$                                           |
| $G_{t:t+n}^{	ext{IS}} \stackrel{	ext{def}}{=}  ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{	ext{IS}}ig)$                                                                                                                    |                                                                                             |
| $G_{t:t+n}^{	ext{CV}} \stackrel{	ext{def}}{=}  ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{	ext{CV}}ig) + (1- ho_t)V(S_t)$                                                                                                  | $V(S_t) + \sum_{i=0}^{n-1} \gamma^i  ho_{t:t+i} \delta_{t+i}$                               |
| $G_{t:t+n}^\lambda \stackrel{	ext{def}}{=} (1-\lambda) G_{t:t+1} + \lambda (R_{t+1} + \gamma G_{t+1:t+n}^\lambda)$                                                                                                 | $V(S_t) + \sum_{i=0}^{n-1} \gamma^i \lambda^i \delta_{t+i}$                                 |
| $G_{t:t+n}^{\lambda_i} \stackrel{	ext{def}}{=} (1-\lambda_{t+1})G_{t:t+1} + \lambda_{t+1}(R_{t+1}+\gamma G_{t+1:t+n}^{\lambda_i})$                                                                                 | $V(S_t) + \sum_{i=0}^{n-1} \gamma^i \left( \prod_{j=1}^i \lambda_{t+j}  ight) \delta_{t+i}$ |
| $egin{aligned} G_{t:t+n}^{\lambda,	ext{CV}} & \stackrel{	ext{def}}{=} (1-\lambda) G_{t:t+1}^{	ext{CV}} \ &+ \lambdaig( ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{\lambda,	ext{CV}}ig) + (1- ho_t)V(S_t)ig) \end{aligned}$ | $V(S_t) + \sum_{i=0}^{n-1} \gamma^i \lambda^i  ho_{t:t+i} \delta_{t+i}$                     |
| $G_{t:t+n}^{\lambda_i,	ext{CV}} \stackrel{\scriptscriptstyle	ext{def}}{=} (1-\lambda_{t+1})G_{t:t+1}^{	ext{CV}}$                                                                                                   | $V(S_t)$                                                                                    |
| $+\lambda_{t+1}ig( ho_tig(R_{t+1}+\gamma G_{t+1:t+n}^{\lambda_i,	ext{CV}}ig)+(1- ho_t)V(S_t)ig)$                                                                                                                   | $+\sum_{i=0}^{n-1}\gamma^i\left(\prod_{j=1}^i\lambda_{t+j} ight) ho_{t:t+i}\delta_{t+i}$    |

NPFL122, Lecture 9

ETraces Returns

Refresh

 $\mathsf{TD}(\lambda)$ 

Vtrace IMPALA

PopArt

rt TransRews

Agent57 10

R2D2



#### We have defined the $\lambda$ -return in the so-called **forward view**.



Figure 12.4: The forward view. We decide how to update each state by looking forward to future rewards and states.

Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt T

TransRews R2D2

Agent57 11/54

Ú F<sub>Á</sub>L

However, to allow on-line updates, we might consider also the backward view



Figure 12.5: The backward or mechanistic view of  $TD(\lambda)$ . Each update depends on the current TD error combined with the current eligibility traces of past events. Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

R2D2

Agent57



 $TD(\lambda)$  is an algorithm implementing on-line policy evaluation utilizing the backward view.

#### Semi-gradient $TD(\lambda)$ for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal}, \cdot) = 0
Algorithm parameters: step size \alpha > 0, trace decay rate \lambda \in [0, 1]
Initialize value-function weights w arbitrarily (e.g., w = 0)
Loop for each episode:
    Initialize S
    \mathbf{z} \leftarrow \mathbf{0}
                                                                                          (a d-dimensional vector)
    Loop for each step of episode:
        Choose A \sim \pi(\cdot|S)
        Take action A, observe R, S'
        \mathbf{z} \leftarrow \gamma \lambda \mathbf{z} + \nabla \hat{v}(S, \mathbf{w})
        \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
        \mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}
        S \leftarrow S'
    until S' is terminal
```

Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

TransRews

PopArt

NPFL122, Lecture 9

Refresh

**E**Traces

Returns

Vtrace

R2D2 Agent57

#### V-trace



V-trace is a modified version of n-step return with off-policy correction, defined in the Feb 2018 IMPALA paper as (using the notation from the paper):

$$G^{ ext{V-trace}}_{t:t+n} \stackrel{ ext{def}}{=} V(S_t) + \sum_{i=0}^{n-1} \gamma^i \left( \prod\nolimits_{j=0}^{i-1} ar{c}_{t+j} 
ight) ar{
ho}_{t+i} \delta_{t+i},$$

where  $\bar{\rho}_t$  and  $\bar{c}_t$  are the truncated importance sampling ratios for  $\bar{\rho} \geq \bar{c}$ :

$$ar{
ho}_t \stackrel{ ext{def}}{=} \min\left(ar{
ho}, rac{\pi(A_t|S_t)}{b(A_t|S_t)}
ight), \quad ar{c}_t \stackrel{ ext{def}}{=} \min\left(ar{c}, rac{\pi(A_t|S_t)}{b(A_t|S_t)}
ight).$$

Note that if  $b = \pi$  and assuming  $\overline{c} \geq 1$ ,  $v_s$  reduces to n-step Bellman target.

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

s R2D2

#### **V-trace**



Note that the truncated IS weights  $\bar{\rho}_t$  and  $\bar{c}_t$  play different roles:

• The  $\bar{\rho}_t$  appears defines the fixed point of the update rule. For  $\bar{\rho} = \infty$ , the target is the value function  $v_{\pi}$ , if  $\bar{\rho} < \infty$ , the fixed point is somewhere between  $v_{\pi}$  and  $v_b$ . Notice that we do not compute a product of these  $\bar{\rho}_t$  coefficients.

Concretely, the fixed point of an operator defined by  $G_{t:t+n}^{V-trace}$  corresponds to a value function of the policy

 $\pi_{ar{
ho}}(a|s) \propto \minig(ar{
ho}b(a|s), \pi(a|s)ig).$ 

• The  $\bar{c}_t$  impacts the speed of convergence (the contraction rate of the Bellman operator), not the sought policy. Because a product of the  $\bar{c}_t$  ratios is computed, it plays an important role in variance reduction.

However, the paper utilizes  $\bar{c} = 1$  and out of  $\bar{\rho} \in \{1, 10, 100\}$ ,  $\bar{\rho} = 1$  works empirically the best, so the distinction between  $\bar{c}_t$  and  $\bar{\rho}_t$  is not useful in practice.

#### **V-trace Analysis**

Let us define the (untruncated for simplicity; similar results can be proven for a truncated one) V-trace operator  $\mathcal{R}$  as:

$$\mathcal{R}V(S_t) \stackrel{ ext{def}}{=} V(S_t) + \mathbb{E}_b \left[ \sum_{i \geq 0} \gamma^i \left( \prod_{j=0}^{i-1} ar{c}_{t+j} 
ight) ar{
ho}_{t+i} \delta_{t+i} 
ight],$$

where the expectation  $\mathbb{E}_b$  is with respect to trajectories generated by behaviour policy b.

Assuming there exists  $\beta \in (0, 1]$  such that  $\mathbb{E}_b \bar{\rho}_0 \ge \beta$ , it can be proven (see Theorem 1 in Appendix A.1 in the Impala paper if interested) that such an operator is a contraction with a contraction constant

$$\gamma^{-1} - ig(\gamma^{-1}-1ig) \underbrace{\sum_{i\geq 0} \gamma^i \mathbb{E}_b \left[ \left(\prod_{j=0}^{i-1} ar{c}_j 
ight) ar{
ho}_i 
ight]}_{\geq 1+\gamma \mathbb{E}_b ar{
ho}_0} \leq 1 - (1-\gamma)eta < 1,$$

therefore,  $\mathcal{R}$  has a unique fixed point.

NPFL122, Lecture 9

Vtrace IMPALA

TransRews

R2D2

PopArt

Agent57 16/54





## **V-trace Analysis**



We now prove that the fixed point of  $\mathcal{R}$  is  $V^{\pi_{\bar{p}}}$ . We have:

$$egin{split} \mathbb{E}_{b}ig[ar{
ho}_{t}\delta_{t}ig] &= \mathbb{E}_{b}ig[ar{
ho}_{t}ig(R_{t+1}+\gamma V^{\pi_{ar{
ho}}}(S_{t+1})-V^{\pi_{ar{
ho}}}(S_{t})ig)ig|S_{t}ig] \ &= \sum_{a}b(a|S_{t})\minig(ar{
ho},rac{\pi(a|S_{t})}{b(a|S_{t})}ig)ig[R_{t+1}+\gamma \mathbb{E}_{s'\sim p(S_{t},a)}V^{\pi_{ar{
ho}}}(s')-V^{\pi_{ar{
ho}}}(S_{t})ig] \ &= \underbrace{\sum_{a}\pi_{ar{
ho}}(a|S_{t})ig[R_{t+1}+\gamma \mathbb{E}_{s'\sim p(S_{t},a)}V^{\pi_{ar{
ho}}}(s')-V^{\pi_{ar{
ho}}}(S_{t})ig]}_{=0}\sum_{a'}\minig(ar{
ho}b(a'|S_{t}),\pi(a'|S_{t})ig) \ &= 0 \ &= 0, \end{split}$$

where the tagged part is zero, since it is the Bellman equation for  $V^{\pi_{\bar{\rho}}}$ . This shows that  $\mathcal{R}V^{\pi_{\bar{\rho}}}(s) = V^{\pi_{\bar{\rho}}}(s) + \mathbb{E}_b \left[ \sum_{i \geq 0} \gamma^i \left( \prod_{j=0}^{i-1} \bar{c}_{t+j} \right) \bar{\rho}_{t+i} \delta_{t+i} \right] = V^{\pi_{\bar{\rho}}}$ , and therefore  $V^{\pi_{\bar{\rho}}}$  is the unique fixed point of  $\mathcal{R}$ .

Consequently, in  $G_{t:t+n}^{\lambda_i, \text{CV}} = V(S_t) + \sum_{i=0}^{n-1} \gamma^i \left(\prod_{j=1}^i \lambda_{t+j}\right) \rho_{t:t+i} \delta_{t+i}$ , only the last  $\rho_{t+i}$  from every  $\rho_{t:t+i}$  is actually needed for off-policy correction;  $\rho_{t:t+i-1}$  can be considered as traces. **NPFL122, Lecture 9** Refresh ETraces Returns  $TD(\lambda)$  Vtrace IMPALA PopArt TransRews R2D2 Agent57

Ú F<sub>Á</sub>L

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters of the policy, IMPALA actors communicate trajectories to the centralized learner.



Architectures" by Lasse Espeholt et al. If many actors are used, the policy used to generate a trajectory can lag behind the latest

policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.

NPFL122, Lecture 9

Refresh ETraces

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

PopArt

TransRews R2D2



Consider a parametrized functions computing  $v(s; \theta)$  and  $\pi(a|s; \omega)$ , we update the critic in the direction of

$$\Big(G^{ ext{V-trace}}_{t:t+n} - v(S_t;oldsymbol{ heta})\Big)
abla_{oldsymbol{ heta}}v(S_t;oldsymbol{ heta}),$$

and the actor in the direction of the policy gradient

$$ar{
ho}_t 
abla_{oldsymbol{\omega}} \log \pi(A_t | S_t; oldsymbol{\omega}) ig( R_{t+1} + \gamma G^{ ext{V-trace}}_{t+1:t+n} - v(S_t; oldsymbol{ heta}) ig).$$

Finally, we again add the entropy regularization term  $eta Hig(\pi(\cdot|S_t;m{\omega})ig)$  to the loss function.

Refresh

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

PopArt

TransRews R2D2

Agent57 19/54

| Architecture                             | CPUs | <b>GPUs</b> <sup>1</sup> | ]      | FPS <sup>2</sup> |
|------------------------------------------|------|--------------------------|--------|------------------|
| Single-Machine                           |      |                          | Task 1 | Task 2           |
| A3C 32 workers                           | 64   | 0                        | 6.5K   | 9K               |
| Batched A2C (sync step)                  | 48   | 0                        | 9K     | 5K               |
| Batched A2C (sync step)                  | 48   | 1                        | 13K    | 5.5K             |
| Batched A2C (sync traj.)                 | 48   | 0                        | 16K    | 17.5K            |
| Batched A2C (dyn. batch)                 | 48   | 1                        | 16K    | 13K              |
| IMPALA 48 actors                         | 48   | 0                        | 17K    | 20.5K            |
| <b>IMPALA</b> (dyn. batch) 48 $actors^3$ | 48   | 1                        | 21K    | 24K              |
| Distributed                              |      |                          |        |                  |
| A3C                                      | 200  | 0                        | 46K    | 50K              |
| IMPALA                                   | 150  | 1                        | 8      | 30K              |
| IMPALA (optimised)                       | 375  | 1                        | 2      | 00K              |
| IMPALA (optimised) batch 128             | 500  | 1                        | 2      | 50K              |

<sup>1</sup> Nvidia P100 <sup>2</sup> In frames/sec (4 times the agent steps due to action repeat). <sup>3</sup> Limited by amount of rendering possible on a single machine. Table 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 9

Refresh

**E**Traces

Returns

20/54 Agent57

# **IMPALA** – **Population Based Training**

Ú F<sub>A</sub>L

For Atari experiments, population based training with a population of 24 agents is used to adapt entropy regularization, learning rate, RMSProp  $\varepsilon$  and the global gradient norm clipping threshold.



# **IMPALA** – **Population Based Training**

<sup>Ú</sup>F<sub>A</sub>L

22/54

For Atari experiments, population based training with a population of 24 agents is used to adapt entropy regularization, learning rate, RMSProp  $\varepsilon$  and the global gradient norm clipping threshold.

In population based training, several agents are trained in parallel. When an agent is *ready* (after 5000 episodes), then:

- it may be overwritten by parameters and hyperparameters of another randomly chosen agent, if it is sufficiently better (5000 episode mean capped human normalized score returns are 5% better);
- and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or 1/1.2 with 33% chance).

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

R2D2 Agent57

#### **IMPALA – Architecture**



Vtrace

NPFL122, Lecture 9

ETraces Returns

Refresh

 $\mathsf{TD}(\lambda)$ 

IMPALA

PopArt

TransRews

R2D2 Agent57



NPFL122, Lecture 9

Refresh **ETraces** 

 $TD(\lambda)$ Returns

IMPALA Vtrace

PopArt

TransRews

R2D2 Agent57

#### **IMPALA** – Learning Curves

Refresh

ETraces



Figures 5, 6 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

Vtrace

IMPALA

PopArt

TransRews

R2D2

Agent57

 $TD(\lambda)$ 

Returns

NPFL122, Lecture 9



| Human Normalised Return                           | Median          | Mean             |
|---------------------------------------------------|-----------------|------------------|
| A3C, shallow, experts<br>A3C, deep, experts       | 54.9%<br>117.9% | 285.9%<br>503.6% |
| Reactor, experts                                  | 187%            | N/A              |
| IMPALA, shallow, experts<br>IMPALA, deep, experts | 93.2%<br>191.8% | 466.4%<br>957.6% |
| IMPALA, deep, multi-task                          | 59.7%           | 176.9%           |

Table 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

R2D2

Agent57

#### **IMPALA – Atari Hyperparameters**

| Ú FA |  |
|------|--|
|      |  |

| Parameter                                       | Value                                             |
|-------------------------------------------------|---------------------------------------------------|
| Image Width                                     | 84                                                |
| Image Height                                    | 84                                                |
| Grayscaling                                     | Yes                                               |
| Action Repetitions                              | 4                                                 |
| Max-pool over last N action repeat frames       | 2                                                 |
| Frame Stacking                                  | 4                                                 |
| End of episode when life lost                   | Yes                                               |
| Reward Clipping                                 | [-1, 1]                                           |
| Unroll Length ( <i>n</i> )                      | 20                                                |
| Batch size                                      | 32                                                |
| Discount $(\gamma)$                             | 0.99                                              |
| Baseline loss scaling                           | 0.5                                               |
| Entropy Regularizer                             | 0.01                                              |
| RMSProp momentum                                | 0.0                                               |
| RMSProp $\varepsilon$                           | 0.01                                              |
| Learning rate                                   | 0.0006                                            |
| Clip global gradient norm                       | 40.0                                              |
| Learning rate schedule                          | Anneal linearly to 0                              |
|                                                 | From beginning to end of training.                |
| Population based training (only multi-task ager | nt)                                               |
| - Population size                               | 24                                                |
| - Start parameters                              | Same as DMLab-30 sweep                            |
| - Fitness                                       | Mean capped human normalised scores               |
|                                                 | $(\sum_{l} \min[1, (s_t - r_t)/(h_t - r_t)]) / N$ |
| - Adapted parameters                            | Gradient clipping threshold                       |
|                                                 | Entropy regularisation                            |
|                                                 | Learning rate                                     |
|                                                 | RMSProp $\varepsilon$                             |

Table G1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 9

Refresh

ETraces

Returns

 $\mathsf{TD}(\lambda)$  Vtrace

e IMPALA

PopArt

TransRews R2D2

Agent57

# **IMPALA** – Ablations

| ŰF | <b>₹L</b> |
|----|-----------|
|    |           |

| • | <b>No-correction</b> : | no | off-policy |
|---|------------------------|----|------------|
|   | correction;            |    |            |

- $\varepsilon$ -correction: add a small value  $\varepsilon = 10^{-6}$  during gradient calculation to prevent  $\pi$  to be very small and lead to unstabilities during  $\log \pi$  computation;
- **1-step**: no off-policy correction in the update of the value function, -TD errors in the policy gradient are multiplied by the corresponding  $\rho$  but no cs; it can be considered V-trace "without traces".

Refresh

|                                                                 | Task 1                              | Task 2                              | Task 3                            | Task 4                                 | Task 5                              |
|-----------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|-------------------------------------|
| Without Replay                                                  |                                     |                                     |                                   |                                        |                                     |
| V-trace<br>1-Step                                               | 46.8<br><b>51.8</b>                 | 32.9<br><b>35.9</b>                 | <b>31.3</b> 25.4                  | <b>229.2</b> 215.8                     | <b>43.8</b> 43.7                    |
| $\varepsilon$ -correction<br>No-correction                      | 44.2<br>40.3                        | 27.3<br>29.1                        | 4.3<br>5.0                        | 107.7<br>94.9                          | 41.5<br>16.1                        |
| With Replay                                                     |                                     |                                     |                                   |                                        |                                     |
| V-trace<br>1-Step<br>$\varepsilon$ -correction<br>No-correction | 47.1<br><b>54.7</b><br>30.4<br>35.0 | <b>35.8</b><br>34.4<br>30.2<br>21.1 | <b>34.5</b><br>26.4<br>3.9<br>2.8 | <b>250.8</b><br>204.8<br>101.5<br>85.0 | <b>46.9</b><br>41.6<br>37.6<br>11.2 |

Tasks: rooms\_watermaze, rooms\_keys\_doors\_puzzle, lasertag\_three\_opponents\_small,

explore\_goal\_locations\_small, seekavoid\_arena\_01

PopArt

Table 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

ETraces

Returns  $TD(\lambda)$ 

Vtrace

IMPALA

TransRews

Agent57

R2D2

#### **IMPALA** – Ablations

The effect of the policy lag (the number of updates the actor is behind the learned policy) on the performance.



NPFL122, Lecture 9

ETraces

Refresh

Returns  $TD(\lambda)$ 

Vtrace IM

IMPALA

PopArt

TransRews

Agent57

R2D2

#### **PopArt Normalization**

Ú F<sub>A</sub>L

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards instead of just reward clipping. PopArt stands for *Preserving Outputs Precisely, while Adaptively Rescaling Targets*.

Assume the value estimate  $v(s; \theta, \sigma, \mu)$  is computed using a normalized value predictor  $n(s; \theta)$ 

$$v(s;oldsymbol{ heta},\sigma,\mu) \stackrel{ ext{\tiny def}}{=} \sigma n(s;oldsymbol{ heta}) + \mu,$$

and further assume that  $n(s; \boldsymbol{\theta})$  is an output of a linear function

$$n(s;oldsymbol{ heta}) \stackrel{ ext{def}}{=} oldsymbol{\omega}^T f(s;oldsymbol{ heta} - \{oldsymbol{\omega}, b\}) + b.$$

We can update the  $\sigma$  and  $\mu$  using exponentially moving average with decay rate  $\beta$  (in the paper, first moment  $\mu$  and second moment v is tracked, and the standard deviation is computed as  $\sigma = \sqrt{v - \mu^2}$ ; decay rate  $\beta = 3 \cdot 10^{-4}$  is employed).

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

TransRews R2D2

Agent57

#### **PopArt Normalization**

Utilizing the parameters  $\mu$  and  $\sigma$ , we can normalize the observed (unnormalized) returns as  $(G - \mu)/\sigma$ , and use an actor-critic algorithm with advantage  $(G - \mu)/\sigma - n(S; \theta)$ .

However, in order to make sure the value function estimate does not change when the normalization parameters change, the parameters  $\omega, b$  used to compute the value estimate

$$v(s;oldsymbol{ heta},\sigma,\mu) \stackrel{ ext{def}}{=} \sigma \cdot \left(oldsymbol{\omega}^T f(s;oldsymbol{ heta} - \{oldsymbol{\omega},b\}) + b
ight) + \mu$$

are updated under any change  $\mu \to \mu'$  and  $\sigma \to \sigma'$  as

$$egin{aligned} oldsymbol{\omega}' &\leftarrow rac{\sigma}{\sigma'}oldsymbol{\omega}, \ b' &\leftarrow rac{\sigma b + \mu - \mu'}{\sigma'}. \end{aligned}$$

Vtrace

In multi-task settings, we train a task-agnostic policy and task-specific value functions (therefore,  $\mu$ ,  $\sigma$ , and  $n(s; \theta)$  are vectors).

NPFL122, Lecture 9

Refresh ETraces

 $TD(\lambda)$ 

Returns

IMPALA

A PopArt

TransRews R2D2

31/54



# **PopArt Results**



NPFL122, Lecture 9

ETraces Returns

Refresh

 $\mathsf{TD}(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews R2D2

32/54

## **PopArt Results**



#### Normalization statistics on chosen environments.

NPFL122, Lecture 9

Refresh ETraces

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

PopArt

TransRews

R2D2 Agent57

#### **Transformed Rewards**

Ú F<sub>Á</sub>L

So far, we have clipped the rewards in DQN on Atari environments. Consider a Bellman operator  ${\cal T}$ 

$$(\mathcal{T}q)(s,a) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathbb{E}_{s',r\sim p} \Big[ r + \gamma \max_{a'} q(s',a') \Big].$$

Instead of clipping the magnitude of rewards, we might use a function  $h : \mathbb{R} \to \mathbb{R}$  to reduce their scale. We define a transformed Bellman operator  $\mathcal{T}_h$  as

$$(\mathcal{T}_h q)(s,a) \stackrel{\scriptscriptstyle{ ext{def}}}{=} \mathbb{E}_{s',r \sim p} \Big[ h \Big( r + \gamma \max_{a'} h^{-1} ig( q(s',a') ig) \Big) \Big].$$

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews

R2D2

Agent57

## **Transformed Rewards**

It is easy to prove the following two propositions from a 2018 paper *Observe and Look Further: Achieving Consistent Performance on Atari* by Tobias Pohlen et al.

1. If 
$$h(z)=lpha z$$
 for  $lpha>0$ , then  $\mathcal{T}_h^kq \xrightarrow{k o\infty} h\circ q_*=lpha q_*.$ 

The statement follows from the fact that it is equivalent to scaling the rewards by a constant  $\alpha$ .

2. When h is strictly monotonically increasing and the MDP is deterministic, then  $\mathcal{T}_h^k q \xrightarrow{k \to \infty} h \circ q_*$ .

This second proposition follows from

$$h\circ q_*=h\circ \mathcal{T}q_*=h\circ \mathcal{T}(h^{-1}\circ h\circ q_*)=\mathcal{T}_h(h\circ q_*),$$

where the last equality only holds if the MDP is deterministic.

NPFL122, Lecture 9

Returns  $TD(\lambda)$ 

Vtrace IMPALA

TransRews

R2D2 Agent57



#### **Transformed Rewards**

For stochastic MDP, the authors prove that if h is strictly monotonically increasing, Lipschitz continuous with Lipschitz constant  $L_h$ , and has a Lipschitz continuous inverse with Lipschitz constant  $L_{h^{-1}}$ , then for  $\gamma < \frac{1}{L_h L_{h^{-1}}}$ ,  $\mathcal{T}_h$  is again a contraction. (Proof in Proposition A.1.)

For the Atari environments, the authors propose the transformation

$$h(x) \stackrel{ ext{\tiny def}}{=} ext{sign}(x) \left( \sqrt{|x|+1} - 1 
ight) + arepsilon x$$

with  $\varepsilon = 10^{-2}$ . The additive regularization term ensures that  $h^{-1}$  is Lipschitz continuous. It is straightforward to verify that

$$h^{-1}(x) = ext{sign}(x) \left( \left( rac{\sqrt{1+4arepsilon(|x|+1+arepsilon)}-1}{2arepsilon} 
ight)^2 - 1 
ight).$$

In practice, discount factor larger than  $\frac{1}{L_h L_{h-1}}$  is being used – however, it seems to work.

NPFL122, Lecture 9

ETraces Returns

Refresh

TransRews

R2D2





Proposed in 2019, to study the effects of recurrent state, experience replay and distributed training.

R2D2 utilizes prioritized replay, *n*-step double Q-learning with n = 5, convolutional layers followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a large number of actors (256; each performing approximately 260 steps per second) and learning from batches by a single learner (achieving 5 updates per second using mini-batches of 64 sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used. Instead of individual transitions, the replay buffer consists of fixed-length (m = 80) sequences of (s, a, r), with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step TD errors  $\delta_i$  over the sequence:  $p = \eta \max_i \delta_i + (1 - \eta)\overline{\delta}$ , for  $\eta$  and the priority exponent set to 0.9.

NPFL122, Lecture 9

Returns  $TD(\lambda)$ 

Vtrace IMPALA

R2D2 Agent57



Figure 1: Top row shows Q-value discrepancy  $\Delta Q$  as a measure for recurrent state staleness. (a) Diagram of how  $\Delta Q$  is computed, with green box indicating a whole sequence sampled from replay. For simplicity, l = 0 (no burn-in). (b)  $\Delta Q$  measured at first state and last state of replay sequences, for agents training on a selection of DMLab levels (indicated by initials) with different training strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom row. (c) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds. *Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.* 

NPFL122, Lecture 9

m e~9 Refresh ETraces Returns TD( $\lambda$ ) Vtrace IMPALA PopArt TransRews R2D2 Agent57 m 38/54





NPFL122, Lecture 9

ETraces Returns

Refresh

 $\mathsf{TD}(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

R2D2 Agent57



| Number of actors                | 256                                                                                  |
|---------------------------------|--------------------------------------------------------------------------------------|
| Actor parameter update interval | 400 environment steps                                                                |
| Sequence length m               | 80 (+ prefix of $l = 40$ in burn-in experiments)                                     |
| Replay buffer size              | $4 \times 10^6$ observations (10 <sup>5</sup> part-overlapping sequences)            |
| Priority exponent               | 0.9                                                                                  |
| Importance sampling exponent    | 0.6                                                                                  |
| Discount $\gamma$               | 0.997                                                                                |
| Minibatch size                  | 64 (32 for R2D2+ on DMLab)                                                           |
| Optimizer                       | Adam (Kingma & Ba, 2014)                                                             |
| Optimizer settings              | learning rate = $10^{-4}$ , $\varepsilon = 10^{-3}$                                  |
| Target network update interval  | 2500 updates                                                                         |
| Value function rescaling        | $h(x) = \operatorname{sign}(x)(\sqrt{ x +1} - 1) + \epsilon x, \ \epsilon = 10^{-3}$ |

Table 2: Hyper-parameters values used in R2D2. All missing parameters follow the ones in Ape-X (Horgan et al., 2018).

Table 2 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

TransRews

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt

R2D2 Agent57



Agent57

ÚF

Ablations comparing the reward clipping instead of value rescaling (**Clipped**), smaller discount factor  $\gamma = 0.99$  (**Discount**) and **Feed-Forward** variant of R2D2. Furthermore, life-loss **reset** evaluates resetting an episode on life loss, with **roll** preventing value bootstrapping (but not LSTM unrolling).



# **Utilization of LSTM Memory During Inference**



NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPALA

PopArt

TransRews

R2D2 Agent57

# Agent57



The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human benchmark on all 57 games.

Its most important components are:

- Retrace; from *Safe and Efficient Off-Policy Reinforcement Learning* by Munos et al., <u>https://arxiv.org/abs/1606.02647</u>,
- Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by Badia et al., <u>https://arxiv.org/abs/2002.06038</u>,
- Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al., <u>https://arxiv.org/abs/2003.13350</u>.

Refresh

 $\mathsf{TD}(\lambda)$ 

Returns

Vtrace IMPALA

PopArt TransRews

R2D2

Agent57

#### Retrace

$$\mathcal{R}q(s,a) \stackrel{ ext{def}}{=} q(s,a) + \mathbb{E}_bigg[\sum_{t\geq 0} \gamma^t \left(\prod_{j=1}^t c_t
ight) \left(R_{t+1} + \gamma \mathbb{E}_{A_{t+1}\sim \pi}q(S_{t+1},A_{t+1}) - q(S_t,A_t)
ight)igg],$$

where there are several possibilities for defining the traces  $c_t$ :

• importance sampling,  $c_t = 
ho_t = rac{\pi(A_t|S_t)}{b(A_t|S_t)}$ ,

 $^{\circ}\,$  the usual off-policy correction, but with possibly very high variance,

- $^{\circ}\,$  note that  $c_t=1$  in the on-policy case;
- Tree-backup TB( $\lambda$ ),  $c_t = \lambda \pi(A_t | S_t)$ ,

the Tree-backup algorithm extended with traces,
however,  $c_t$  can be much smaller than 1 in the on-policy case;

- Retrace( $\lambda$ ),  $c_t = \lambda \min\left(1, \frac{\pi(A_t|S_t)}{b(A_t|S_t)}\right)$ ,
  - $^{\circ}\,$  off-policy correction with limited variance, with  $c_t=1$  in the on-policy case.

The authors prove that  $\mathcal{R}$  has a unique fixed point  $q_{\pi}$  for any  $0 \leq c_t \leq \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$ .

NPFL122, Lecture 9

The NGU (Never Give Up) agent performs *curiosity-driver exploration*, and augment the extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time t is then  $r_t^{\beta} \stackrel{\text{def}}{=} r_t^e + \beta r_t^i$ , with  $\beta$  a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:

- 1. quickly discourage visits of the same state in the same episode;
- 2. slowly discourage visits of the states visited many times in all episodes;
- 3. ignore the parts of the state not influenced by the agent's actions.

The intrinsic rewards is a combination of the episodic novelty  $r_t^{
m episodic}$  and life-long novelty  $lpha_t$ :

$$r_t^i \stackrel{ ext{def}}{=} r_t^{ ext{episodic}} \cdot ext{clip} \left( 1 \leq lpha_t \leq L = 5 
ight).$$

NPFL122, Lecture 9

s  $TD(\lambda)$ 

Vtrace IMPALA

PopArt TransRews

vs R2D2

46/54





The visit count is estimated using similarities of k-nearest neighbors of  $f(S_t)$  measured via an inverse kernel  $K(x,z)=rac{arepsilon}{rac{d(x,z)^2}{d_m^2}+arepsilon}$  for  $d_m$  a running mean of the k-nearest neighbor distance:  $r_t^{
m episodic}$ \_\_\_\_\_ -, with pseudo-count c=0.001.  $\sum_{f_i \in N_k} K(f(S_t), f_i) + c$ 

NPFL122, Lecture 9

Refresh

**E**Traces

Returns  $TD(\lambda)$  Vtrace

IMPALA

PopArt **TransRews** R2D2

The state embeddings are trained to ignore the parts not influenced by the actions of the agent.

To this end, Siamese network f is trained to predict  $p(A_t|S_t, S_{t+1})$ , i.e., the action  $A_t$  taken by the agent in state  $S_t$  when the resulting state is  $S_{t+1}$ .

Refresh



The life-long novelty  $\alpha_t = 1 + \frac{\|\hat{g}-g\|^2 - \mu_{\text{err}}}{\sigma_{\text{err}}}$  is trained using random network distillation (RND), where a predictor network  $\hat{g}$  tries to predict the output of an untrained convolutional network g by minimizing the mean squared error; the  $\mu_{\text{err}}$  and  $\sigma_{\text{err}}$  are the running mean and standard deviation of the error  $\|\hat{g}-g\|^2$ .

e IMPALA

NPFL122, Lecture 9

Refresh

ETraces

Returns

49/54

The NGU agent uses transformed Retrace loss with the augmented reward

$$r_t^i \stackrel{ ext{def}}{=} r_t^{ ext{episodic}} \cdot ext{clip} \left( 1 \leq lpha_t \leq L = 5 
ight).$$



 $TD(\lambda)$ 

Vtrace

IMPALA

PopArt

TransRews

R2D2

Fully Connected (Units:18 Fully Connected (Units:1) Fully Connected Fully Connected (Units:512) (Units:512) LSTM Core (Units: 512)  $a_{t-1} r^{e}_{t-1} r^{i}_{t-1} \beta$ RELU Fully Connected (Units: 512) RELU RELL Conv (Kernel:4x4 Stride:2x Channels:64 Conv (Kernel 8x8 Stride 4x Channels:32  $x_t$ (b) Detailed R2D2 Agent Figure 17 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al. Agent57

| Algorithm     | Gravitar   | MR               | Pitfall!        | PrivateEye        | Solaris         | Venture         |
|---------------|------------|------------------|-----------------|-------------------|-----------------|-----------------|
| Human         | 3.4k       | 4.8k             | 6.5k            | 69.6k             | 12.3k           | 1.2k            |
| Best baseline | 15.7k      | 11.6k            | 0.0             | 11k               | 5.5k            | 2.0k            |
| RND           | 3.9k       | 10.1k            | -3              | 8.7k              | 3.3k            | 1.9k            |
| R2D2+RND      | 15.6k±0.6k | $10.4k \pm 1.2k$ | $-0.5 \pm 0.3$  | 19.5k±3.5k        | $4.3k\pm0.6k$   | $2.7k{\pm}0.0k$ |
| R2D2(Retrace) | 13.3k±0.6k | $2.3k\pm0.4k$    | $-3.5 \pm 1.2$  | $32.5k \pm 4.7k$  | $6.0k \pm 1.1k$ | $2.0k\pm0.0k$   |
| NGU(N=1)-RND  | 12.4k±0.8k | $3.0k\pm0.0k$    | 15.2k±9.4k      | $40.6k \pm 0.0k$  | $5.7k \pm 1.8k$ | $46.4 \pm 37.9$ |
| NGU(N=1)      | 11.0k±0.7k | 8.7k±1.2k        | $9.4k \pm 2.2k$ | 60.6k±16.3k       | $5.9k \pm 1.6k$ | 876.3±114.5     |
| NGU(N=32)     | 14.1k±0.5k | $10.4k \pm 1.6k$ | $8.4k\pm4.5k$   | 100.0k $\pm$ 0.4k | $4.9k \pm 0.3k$ | $1.7k{\pm}0.1k$ |

Table 1: Results against exploration algorithm baselines. Best baseline takes the best result among R2D2 (Kapturowski et al., 2019), DQN + PixelCNN (Ostrovski et al., 2017), DQN + CTS (Bellemare et al., 2016), RND (Burda et al., 2018b), and PPO + CoEx (Choi et al., 2018) for each game.

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.



Vtrace

 $TD(\lambda)$ 

Returns

Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

PopArt

IMPALA

TransRews

R2D2

Agent57

NPFL122, Lecture 9

**E**Traces

Refresh

#### **Never Give Up Ablations**



Figure 2: (Left and Center) Sample screens of Random Disco Maze. The agent is in green, and pathways in black. The colors of the wall change at every time step. (Right) Learning curves for Random projections vs. learned controllable states and a baseline RND implementation.

Figure 2 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.



NPFL122, Lecture 9

51/54

# Agent57

Then Agent57 improves NGU with:

- splitting the action-value as  $q(s, a, j; \theta) \stackrel{\text{\tiny def}}{=} q(s, a, j; \theta^e) +$  $\beta_i q(s, a, j; \boldsymbol{\theta}^i)$ , where  $\circ q(s, a, j; \theta^e)$  is trained with  $r_e$  as targets, and  $\circ q(s, a, j; \theta^i)$  is trained with  $r_i$  as targets.
- instead of considering all  $(eta_j, \gamma_j)$  equal, we train a metacontroller using a non-stationary multi-arm bandit algorithm, where arms correspond to the choice of j for a whole episode (so an actor first samples a j using multi-arm bandit problem) and then updates it according to the observed return), and the reward signal is the undiscounted extrinsic episode return; each actor uses a different level of  $\varepsilon_l$ -greedy behavior;
- $\gamma_{N-1}$  is increased from 0.997 to 0.9999.

NPFL122, Lecture 9



# Agent57 – Results



Figure 1. Number of games where algorithms are better than the human benchmark throughout training for Agent57 and state-ofthe-art baselines on the 57 Atari games.

Figure 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

*Table 1.* Number of games above human, mean capped, mean and median human normalized scores for the 57 Atari games.

| 3         95.07           51         51           56         3421.80           92         1359.78 | 94.20<br>52<br>) 3518.36<br>} 1457.63 | 94.33<br>52<br>4622.09       | 89.92<br>51<br><b>5661.84</b>                                                                                                               |
|---------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 51<br>56<br>52<br>1359.78                                                                         | 52<br>) 3518.36<br>} 1457.63          | 52<br>4622.09                | 51<br><b>5661.84</b>                                                                                                                        |
| 563421.80921359.78                                                                                | 3518.36           1457.63             | 4622.09                      | 5661.84                                                                                                                                     |
| )2 1359.78                                                                                        | 1457.63                               | 1025.96                      |                                                                                                                                             |
|                                                                                                   | 1 1 - 57.05                           | 1955.80                      | 2381.51                                                                                                                                     |
| <b>30</b>   610.44                                                                                | 817.77                                | 1176.05                      | 1172.90                                                                                                                                     |
| 7 267.10                                                                                          | 420.67                                | 529.23                       | 503.05                                                                                                                                      |
| 1 226.43                                                                                          | 267.25                                | 215.31                       | 171.39                                                                                                                                      |
| 2   107.78                                                                                        | 116.03                                | 115.33                       | 75.74                                                                                                                                       |
|                                                                                                   | 48.32                                 | 50.27                        | 0.03                                                                                                                                        |
| 2                                                                                                 | 107.78<br>64.10                       | 107.78 116.03<br>64.10 48.32 | 107.78         116.03         115.33           64.10         48.32         50.27           f "Agent57: Outperforming the Atari Human Benchm |

NPFL122, Lecture 9

**E**Traces Returns

Refresh

 $TD(\lambda)$ 

Vtrace

IMPALA

TransRews R2D2 PopArt

# **Agent57 – Ablations**



Figure 4. Performance progression on the 10-game *challenging* Figure 8. Best arm chosen by the evaluator of Agent57 over trainset obtained from incorporating each one of the improvements.

Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

et al.

54/54

NPFL122, Lecture 9

Refresh ETraces

Returns  $TD(\lambda)$ 

Vtrace IMPAL

IMPALA

PopArt TransRews

Agent57

R2D2