NPFL122, Lecture 9 Uz

Eligibility Traces, Impala, R2D2,
Agentb7

Milan Straka

m November 28, 2022

a L Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 8zvek:pmeln't:angd EducatiR::Jn " pp g UnleSS Othel’Wlse Stated

U=

Off-policy Correction Using Control Variates =

Denoting the TD error as &; = Ryy1 + YV (Si41) — V(S:), we can write the n-step estimated
return as a sum of TD errors:

n—1
Griin = V(S:) + 27z5t+z'-
1=0
Furthermore, denoting the importance sampling ratio p; = = W((j \|§z)) Dt:ttn oo H:;":O Diri, We

can introduce the control variate to the estimate
def
Giten = pt(Rev1 + VG m) + (1= p)V(Sy),

which can then be written as

n—1 .
Gitin = V(St) + Zi:o V' Prit+iOtti-

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57 2/54

Eligibility Traces

Eligibility traces are a mechanism of combining multiple n-step return estimates for various
values of n.
First note instead of an m-step return, we can use any average of n-step returns for different

values of n, for example %Gt:t+2 + %Gt:t+4.

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57 3/54

A-return Uz

For a given A € |0, 1], we define A-return as

00
A\ def i—1
Gy = (1—)\) E :)\ Gitti-
1=1
i eight given to
Alternatlvely' the)_ N t\fIIVe I:£3;-st(€=3£)vreturn total area = 1
i : MURRC
return can be written \ is (1—X)A

recursively as %

Gi\ — (1= NGy Weighting 1-2 %
' A(RIH—]_ —"_ 7G?_+_1).

decay by A

weight given to
actual, final return

iS)\T—t—l

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt

TransRews R2D2 Agent57 4/54

A-return

In an episodic task with time of termination 1", we can rewrite the A-return to

NPFL122, Lecture 9

T—t—1
Gy =1-2) > NGy + NGy

1

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

RMS error
at the end
of the episode
over the first
10 episodes

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the off-line A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (A or n) performed best. The results with the off-line A-return algorithm

are slightly better at the best values of @ and A, and at high a.
Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".

Refresh ETraces Returns TD(A) Vtrace IMPALA PopArt TransRews R2D2 Agent57

5/54

We might also set a limit on the largest value of n, obtaining truncated A-return

n—1

Grrin = (L= X)) N "'Grari + X 'Grpin.
1=1

The truncated A return can be again written recursively as

Similarly to before, we can express the truncated A return as a sum of TD errors

Griin — V(5) = (1 = A)(Res1 + YWV (Sts1)) + A(Res1 + G i1i4m) — V(S)
=Ry 1 + 9V (Se1) — V(S:) + Ay (Gt+1 tin V(St+1))’

obtaining an analogous estimate G\ v = V(St) + Zz 0 ’y’/\i(StJri.

ETraces 6/54

The (truncated) A-return can be generalized to utilize different A; at each step 7. Notably, we
can generalize the recursive definition

Gt t+n ()‘)Gt 41 T)‘(Rt+1 -+ ’YGH—l t+n)
to

Gt t+n (1 T AZH-].)Gt t+1 —"_ AIf—l-].(-RlH-l —|_ /YGIH—]. t—|—n)

and express this quantity again by a sum of TD errors:

n—1 1
Gt ten = V(St) + ZW’i (H)\t—l—j> O 44
i=0 j=1

ETraces

7/54

Finally, we can combine the eligibility traces with off-policy estimation using control variates:

n—1

A,CV de 1— n—
Gtt+ndf(1_)‘)z)‘ 1Gtt+z A 1Gtt+n

i=1
Recalling that

Gt ttn (Rt+1 - VGt+1 t+n) T (1 - pt)V(St)a

we can rewrite Gi‘:ﬁ\é recursively as
A,CV A,CV
Gt = (1= NG, + A (B +9GR) + (1= p)V(S)),
which we can simplify by expanding G, 1 = pt(Rer1 + YV (Se1)) + (1 — p) V(St) to

Gritin = V(81) = pt(Rera + 7V (Si1) = VI(S1)) + 720 (GLin — V(Sti1))-

ETraces 8/54

Off-policy Traces with Control Variates

Consequently, analogously as before, we can write the off-policy traces estimate with control
variates as

n—1 . .
Grivin = V(S) + Zi:O VA pit+iOtri,

and by repeating the above derivation we can extend the result also for time-variable \;, we
obtain

1

A, CV n-1l
Giiin = V(St) + Zizo Y H)\t—l—j Prit+iOt+i-

j=1

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57

U=

9/54

Recursive definition Formulation with TD errors

Gtin = Rev1 + 7YGititin V(S + >, R
GEin = Pt (Rer1 + G 1:04n)

Gon = P (Riv1 +YGEiin) + (1 — p)V(Sh) V(S) + >, Y Pt iOrri
Gét% = (1 =A)Grir1 + ARy + 7G5\+1-t+n) V(S + >, ’YZ>\Z5t+z'

Gé%n = (1 o)‘t+1)Gt 441 T)\t+1 (Rt+1 + 'YGt+1 t+n) V(St) + Zz 0 ’Y' (] 1)‘Hj) 5t+z‘
A,C e
Gt:t—l—\vfz = (1- NG 41
+ Aot (Re +9G3T10) + (1= p)V(SY))
Grol = (1= A1) Gy V(St)
+ i1 (e (Resr + 'YG?jerrn) + (1 - p)V(S)) |+ S (ITiss Aers) PrtriOeri

V(S:)+ > YN prp i O

Returns 10/54

TD()\) Ukt

We have defined the A-return in the so-called forward view.

Figure 12.4: The forward view. We decide how to update each state by looking forward to

future rewards and states.
Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9 Refresh ETraces Returns TD(X) Vitrace IMPALA PopArt TransRews R2D2 Agent57 11/54

TD()\) UL

However, to allow on-line updates, we might consider also the backward view

Figure 12.5: The backward or mechanistic view of TD()A). Each update depends on the current
TD error combined with the current eligibility traces of past events.

Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9 Refresh ETraces Returns TD(X) Vitrace IMPALA PopArt TransRews R2D2 Agent57 12/54

TD(A) Uz

TD(A) is an algorithm implementing on-line policy evaluation utilizing the backward view.

Semi-gradient TD()\) for estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : §T x RY — R such that ©(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z<+ 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(:|S)
| Take action A, observe R, S’
|z Az + Vo(S,w)
| 0 R+~yo(S"\w) —0(S,w)
| W< wHadz
| S« Y

until S’ is terminal

Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL122, Lecture 9 Refresh ETraces Returns TD() Vitrace IMPALA PopArt TransRews R2D2 Agent57 13/54

V-trace is a modified version of n-step return with off-policy correction, defined in the Feb
2018 IMPALA paper as (using the notation from the paper):

1—1
Guitn® = V(S:) + Z’Y (H Ct+]) Pt+i0t1is

where p; and ¢; are the truncated importance sampling ratios for p > ¢:

p; = min (p m(4:|51) ¢ = min | ¢, (A 5)
t ’ b(At‘St) 9 t — .

Note that if b = 7 and assuming ¢ > 1, v, reduces to n-step Bellman target.

Vtrace 14/54

Note that the truncated IS weights p; and ¢; play different roles:

® The p; appears defines the fixed point of the update rule. For p = 00, the target is the
value function v, if p < 00, the fixed point is somewhere between v, and vp. Notice that
we do not compute a product of these p; coefficients.

Concretely, the fixed point of an operator defined by G};'"2° corresponds to a value

function of the policy
m5(als) o< min (pb(als), w(als)).

® The ¢; impacts the speed of convergence (the contraction rate of the Bellman operator),
not the sought policy. Because a product of the ¢; ratios is computed, it plays an important
role in variance reduction.

However, the paper utilizes ¢ = 1 and out of p € {1,10,100}, p = 1 works empirically the
best, so the distinction between ¢; and p; is not useful in practice.

Vtrace 15/54

Let us define the (untruncated for simplicity; similar results can be proven for a truncated
one) V-trace operator R as:

de U o C 0
RV(S,) det V(S + Es [Zi>07 (szo Ct—l—j) Pt+z‘5t+z'])

where the expectation I is with respect to trajectories generated by behaviour policy b.

Assuming there exists 8 € (0, 1] such that [E;pg > S, it can be proven (see Theorem 1 in

Appendix A.1 in the Impala paper if interested) that such an operator is a contraction with a
contraction constant

. i1
- =) i>0 v Ey KHJ'O Ej) ﬁi] st-=mp<t

~\

>14+vEp po

therefore, /R has a unique fixed point.

Vtrace 16/54

We now prove that the fixed point of R is V™. We have:

Ey (6] = By Bt (Bess + 7V (Si1) = V7 (5) |1

3 _ T\a S T5 / 5
=) b(a|S;) min (p, b((a|| S:))) [Rm +YEy (s, V7 (8) =V p(St)]

= Za m5(a|St) [Rt—H +YEy op(s,a) V(') = V™ (St)] Zmin (Pb(a'|Sy), w(a[Sy))

7

-0
— (),
where the tagged part is zero, since it is the Bellman equation for V™. This shows that

RV™(s) = V™ (s) + Ey {Zizo o0& (Hi_%) 5t+j) ﬁt+i5t+i] = V7™, and therefore V7 is the

j=
unique fixed point of R.

. i —1) :
Consequently, in Gi‘:t’EX =V(S:) + Z?:o v (il)‘tJrj) Pt:t+i0t+i, only the last pyi; from

every Pt is actually needed for off-policy correction; pr¢+;—1 can be considered as traces.
Vtrace 17/54

IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters
of the policy, IMPALA actors communicate trajectories to the centralized learner.

Observations
Parameters

O
@

Observations

Environment steps . Forward pass .

. Actor 0
Worker 4 time steps Actor 1
Actor 2

Learner Actor 0
' s aas B
Actor 3 Actor 6
Actor 7
Gradients (a) Batched A2C (sync step.) ‘

4 time steps - .
Actor 0 FEFEFECE EEETECECEE
vt PRI R i |
T Actor 3 M- E-E EEERE (c) IMPALA
(b) Batched A2C (sync traj.)

W
=
e
a8

ard pass

...next unroll
|

EEn mEE E3
]

EEEEEEENR g
H gEE gh
EggEEgyn

Parameters

Observations

Figure 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Figure 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner

Architectures" by Lasse Espeholt et al. Architectures” by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.

NPFL122, Lecture 9 Refresh

ETraces Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 18/54

Consider a parametrized functions computing v(s; @) and 7(a|s; w), we update the critic in
the direction of

(Glitraee — v(51;0)) Vou(Si;)

and the actor in the direction of the policy gradient
,Eti 10g 7T(At|5t; QJ) (Rt_|_1 -+ ’}/Gzﬂr?ien — ’U(St; 0)) .

Finally, we again add the entropy regularization term ,BH(W(-\St; w)) to the loss function.

IMPALA 19/54

Architecture CPUs GPUs! FPS?

Single-Machine Task 1 Task 2
A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors’ 48 1 21K 24K
Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by
amount of rendering possible on a single machine.

IMPALA 20/54

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

(a) Sequential Optimisation

Performance

..... et
Training

Weights

— —
O Hyperparameters O—>O O-’O

| . @,
BT D U LS D

(b) Parallel Random/Grid Search

Performance
—

Hyperparameters O .

IMPALA

Weights D RN .

(c) Population Based Training

[9)

b>exploit
L =
O—»explore-»O...

21/54

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

® it may be overwritten by parameters and hyperparameters of another randomly chosen
agent, if it is sufficiently better (5000 episode mean capped human normalized score returns

are 5% better);
® and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or

1/1.2 with 33% chance).

IMPALA

22/54

IMPALA - Architecture U

| Embedding 20 |

: t
| blue ladder
| Residual Block |

| f
i Residual Block | ™.
Rotv | 32 | Embedding 20 | § | f Lo !
| Conv. 4 x 4, stride 2 | ¥ 16 3;22 b | Max 3 x 3, stride 2 | | Conv. 3 x 3,stride 1 |—>6
16 blue ladder [10:32,32]ch |
HelU . | Conv. 3 x 3,stride 1 |
| Conv. 8 x 8, stride 4 | | T !

- : | | Conv. 3 x 3,stride 1 |

96 x 72
Figure 3 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD(\)

96 x 72

Vitrace IMPALA PopArt TransRews R2D2 Agent57 23/54

—— IMPALA - 1 GPU - 200 actors Batched A2C - Single Machine - 32 workers —— A3C - Single Machine - 32 workers —— A3C - Distributed - 200 workers

rooms_watermaze rooms_keys _doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

0
B89 02 04 06 08 1o 90 0.2 0.4 0.6 0.8 To 30 0.2 0.4 0.6 0.8 1.0) 0.2 0.4 0.6 0.8 To 30 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9 Environment Frames 1e9

rooms_watermaze rooms_keys_doors_puzzle lasertag_three_opponents_small explore_goal_locations_small seekavoid_arena_01

1 5 9 13 17 21 24 1 5 9 13 17 21 24 1 5 9 13 17 21 24 1 5 9 3 17 2t 24 % 5 9 13 17 21 24
Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination Hyperparameter Combination

Figure 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL , Lecture 9 Refresh ETraces Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 24 /54

IMPALA — Learning Curves

Mean Capped Normalized Score
N w
o o

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames lel0
—— IMPALA, deep, PBT - 8 GPUs —— [IMPALA, shallow

IMPALA, deep, PBT
- |MPALA, deep

Mean Capped Normalized Score

~—— |IMPALA-Experts, deep
— A3C, deep

0 20

Figures 5, 6 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

NPFL122, Lecture 9 Refresh

ETraces Returns

40 60 80 100 120 140 160 180
Wall Clock Time (hours)

TD(\) Vtrace IMPALA PopArt TransRews R2D2

Agent57

25/54

Human Normalised Return Median

Mean

A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%
Reactor, experts 187% N/A
IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%
IMPALA, deep, multi-task 59.7% 176.9%

IMPALA

26/54

IMPALA — Atari Hyperparameters UL

Parameter Value
Image Width 84
Image Height 84
Grayscaling Yes
Action Repetitions 4
Max-pool over last N action repeat frames 2
Frame Stacking 4

End of episode when life lost Yes
Reward Clipping [-1, 1]
Unroll Length (n) 20
Batch size 32
Discount (7y) 0.99
Baseline loss scaling 0.5
Entropy Regularizer 0.01
RMSProp momentum 0.0
RMSProp e 0.01
Learning rate 0.0006
Clip global gradient norm 40.0
Learning rate schedule Anneal linearly to 0

From beginning to end of training.
Population based training (only multi-task agent)

- Population size 24

- Start parameters Same as DMLab-30 sweep

- Fitness Mean capped human normalised scores
(3 min [1, (s —)/ (ke — 7)) /N

- Adapted parameters Gradient clipping threshold

Entropy regularisation
Learning rate
RMSProp ¢

Table G1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 27/54

No-correction: no off-policy
correction;
e-correction: add a small value

e = 1079 during gradient
calculation to prevent m to be
very small and lead to unstabilities
during log ™ computation;

1-step: no off-policy correction in
the update of the value function,
TD errors in the policy gradient

are multiplied by the
corresponding p but no c¢s; it can

be considered V-trace “without
traces’.

Task 1 Task2 Task3 Task4 Task5

Without Replay

V-trace 46.8 329 31.3 229.2 43.8
1-Step 51.8 359 254 215.8 43.7
g-correction 442 273 43 107.7 41.5
No-correction 40.3 29.1 50 949 16.1
With Replay

V-trace 47.1 35.8 34.5 250.8 46.9
1-Step 547 344 264 204.8 41.6
g-correction 304 30.2 3.9 101.5 37.6
No-correction 350 21.1 2.8 850 11.2

Tasks: rooms_watermaze, rooms_keys_doors_puzzle,
lasertag_-three_opponents._small,
explore_goal_-locations_small, seekavoid_arena-01

IMPALA

28/54

IMPALA - Ablations

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.

Figure E.1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

Refresh ETraces

Lecture 9

Return

Return

Return

Return

Returns

rooms_watermaze

e-correction No-correction V-trace

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames 1e0 Environment Frames 1e9 Environment Frames 1e9
rooms_keys_doors_puzzle
e-correction No-correction V-trace

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames 1e9 Environment Frames 1e3 Environment Frames 1e9
lasertag_three_opponents_small
35 e-correction No-correction V-trace
30
25 0 0
20
15
10
3 B S < e 19 ~ 5 gz, 10
- 500 500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames b Environment Frames 1es Environment Frames 1e9
explore_goal_locations_small
250 e-correction No-correction V-trace
10
o 0
500
10
,,W Wm. o : :: : 500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Environment Frames ley Environment Frames 1e9 Environment Frames 1e9
seekavoid_arena_01
45 e-correction No-correction V-trace
0
10
500
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Environment Frames Environment Frames 1e9 Environment Frames 1e9

TD(A) Vtrace IMPALA PopArt TransRews R2D2

Agentb7

29/54

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards

instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate v(s; 0,0, i) is computed using a normalized value predictor n(s; 6)
def
v(s;0,0,u) = on(s;0) + u,
and further assume that n(s; @) is an output of a linear function
def T
n(s;0) = w" f(s;0 — {w,b}) +b.

We can update the o and u using exponentially moving average with decay rate 3 (in the
paper, first moment p and second moment v is tracked, and the standard deviation is

computed as 0 = /v — pu?; decay rate 8 = 3 - 10~% is employed).

PopArt 30/54

Utilizing the parameters 1 and o, we can normalize the observed (unnormalized) returns as
(G —) /o, and use an actor-critic algorithm with advantage (G —) /o — n(S;8).

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters w, b used to compute the value estimate

v(s;0,0,0) £ o (W f(50 — {w,b}) +b) + p

are updated under any change u — ' and 0 — ¢’ as

/ o
W — —w,

0-/
ob+p—

!

b <

o

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, p, o, and n(s; @) are vectors).

PopArt

31/54

—
PopArt Results =
Atari-57 Atari-57 (unclipped) DmLab-30
Agent Random Human Random Human Train Test
IMPALA 59.7% 28.5% 0.3% 1.0% 60.6% 58.4%
PopArt-IMPALA 110.7% 101.5% 107.0% 93.7% 73.5% 72.8%
Table 1 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
120 Atari-57 (clipped) 120 Atari-57 (unclipped)
=== POpArt-IMPALA == PopArt-IMPALA
= MultiHead-IMPALA = MultiHead-IMPALA
100 100 mpaLA
g o
] o
£ E o
] o
Z 60 =
: g 40
3 2
.E .E 20
3 3
= =
20 0
0 -20
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Environment Frames 1e9 Environment Frames 1e9
Figures 1, 2 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
NPFL122, Lecture 9 Refresh ETraces Returns TD(\) Vitrace IMPALA PopArt TransRews R2D2 Agent57 32/54

PopArt Results

breakout crazy_climber gbert seaquest
b3 i
4000
100
G800
20 3500
~ 3000 "
.,t? 400
5 2500 B0
-0
o 2000 4
3 200
= g 1500
0
1000
0 0
500 0
—— PopArt-IMPALA (Stats)
-5 0 —20
00 02 04 06 08 10 12 DO 02 04 06 08 10 12 00 02 D4 08 10 00 02 04 06 08 10 12
110 1e10 110
400 160000 5000 2500
c 350 140000
5 4000 2000
= 300 120000
[0}
o
o =0 100000 000 1500
2
c 200 80000
S
8 0 E000D A 00
L2
'8 100 40000
1000 500
D
50 20000
—— PopArt-IMPALA (Return)
0 0 0 0
00 02 04 06 08 10 12 DO 02 04 06 08 10 12 00 02 04 08 10 00 02 04 06 08 10 12

1eld

Fnvirnnmant Frames

1eld

Fnvironment Framas
Figure 3 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Normalization statistics on chosen environments.

NPFL122, Lecture 9 Refresh

ETraces

Returns

TD(A)

Vtrace

IMPALA

Fnvirnnment Frames

PopArt

. 1e10
Fnvirnnmant Frames

TransRews R2D2 Agentb7

33/54

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator T
(Ta)(s,a) £ Eg,pp |r +ymaxq(s',) |.

Instead of clipping the magnitude of rewards, we might use a function A : R — R to reduce
their scale. We define a transformed Bellman operator 7}, as

(Thg)(s,a) = Eg rp [h('r + Y max h1 (q(s’, a’)))]

TransRews 34/54

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:
Achieving Consistent Performance on Atari by Tobias Pohlen et al.
k— o0

1. If h(z) = az for a > 0, then ﬁlkq% hoq, = ag..

The statement follows from the fact that it is equivalent to scaling the rewards by a

constant o.

k
2. When h is strictly monotonically increasing and the MDP is deterministic, then 7;lkq AN

h o q,.

This second proposition follows from
hOQ* = hOTQ* — hOT(h_l OhOQ*) — E(th*),

where the last equality only holds if the MDP is deterministic.

TransRews 35/54

For stochastic MDP, the authors prove that if A is strictly monotonically increasing, Lipschitz
continuous with Lipschitz constant Ly, and has a Lipschitz continuous inverse with Lipschitz

constant Ly-1, then for v < th -, Ty, is again a contraction. (Proof in Proposition A.1.)
-

For the Atari environments, the authors propose the transformation
h(z) ¥ sign(z) (\/\az\ T1- 1) tex

with € = 1072, The additive regularization term ensures that A1 is Lipschitz continuous.

It is straightforward to verify that

V1+tde(|z|+1+¢€) -1
2¢e

—1

h™!(z) = sign(z)

In practice, discount factor larger than th : is being used — however, it seems to work.
o

TransRews

36,/54

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.
R2D2 utilizes prioritized replay, n-step double Q-learning with n = 5, convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used.

Instead of individual transitions, the replay buffer consists of fixed-length (m = 80) sequences

of (s, a,r), with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step
TD errors §; over the sequence: p = nmax; d; + (1 —)4, for 17 and the priority exponent set

to 0.9.

R2D2 37/54

Recurrent Replay Distributed DQN (R2D2) Vet

(a) Computation of AQ (b) In|t|al state | * Final state
he | 0 o .
uln . " il II wn du
. eogl eorm ltos eogl eorm ltos rw
explore obstructed explore object
(c) goals large rewards many lasertag three opponents small rooms watermaze
1 1 1 1 I I I 1 1 I 1 1 1 1 1 I I 1 50 | I I I 1 1 1 1 I . 1 1 1 I I
% 07 n
£ 150 - - v
S:’ 40 40
[0 30 -
D 100- y oy 30 -
ug-l_ //*/V 20 - Burg-in Zero-State Stored-State [, _
= ’ 10- 20 wewmm e |
S 4 I
2 0 - 0 0 -
T T 1 1 I I I 1 1 1 I m I 1 W I
0 1 2 3 4 2 0 1 2 3 4 0 1 2 3 4
Updates 1e6 # Updates 1e6 # Updates 1e6 # Updates 1e6

Figure 1: Top row shows Q-value discrepancy A() as a measure for recurrent state staleness. (a)
Diagram of how A(is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, [= 0 (no burn-in). (b) AQ measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom

row. (¢) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.
Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57 38/54

Recurrent Replay Distributed DQN (R2D2)

2000%
®R2D2(120h)
®R2D2(72h)
1500%
29
R
O
O~
NS ®R2D2(48h)
€ & 1000%
s>
0O
¢ c
%% ®R2D2(24h)
E o
S5 =
I ~
(o)
® Ape-X (70h)
Ape-X (20h)
IMPALA(deep) ® Rainbow
» ® Reactor ® pPrio.DQN
e IMPALA(shallow) e DQN
0%
° 0 50 100 150 200 250 300

Training Time (Hours)

Figure 2 of "Recurrent Experience Replay in Distributed
Reinforcement Learning” by Steven Kapturowski et al.

ETraces

NPFL122, Lecture 9 Refresh

Returns

F\RL
Atari-57 DMLab-30
Human-Normalized Score Median Mean | Median Mean-Capped
Ape-X (Horgan et al., 2018) 434.1% 1695.6% - -
Reactor (Gruslys et al., 2018) 187.0% - - -
IMPALA, deep (Espeholt et al., 2018) 191.8% 957.6% 49.0% 45.8%
IMPALA, shallow (re-run) - - 89.7% 73.6%
IMPALA, deep (re-run) - - 107.5% 85.1%
R2D2+ - - 99.5% 85.7%
R2D2, feed-forward 589.2% 1974.4% - -
R2D2 1920.6% 4024.9% 96.9% 78.3%
Table 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57 39/54

Number of actors 256
Actor parameter update interval 400 environment steps
Sequence length m 80 (+ prefix of [= 40 in burn-in experiments)
Replay buffer size 4 x 10 observations (10° part-overlapping sequences)
Priority exponent 0.9
Importance sampling exponent 0.6
Discount -y 0.997
Minibatch size 64 (32 for R2D2+ on DMLab)
Optimizer Adam (Kingma & Ba, 2014)
Optimizer settings learning rate = 1074, ¢ = 1073
Target network update interval 2500 updates
Value function rescaling h(z) = sign(z)(y/|z| +1—1) + ex, e = 1077

Table 2: Hyper-parameters values used in R2D2. All missing parameters follow the ones in Ape-X
(Horgan et al., 2018).

R2D2 40/54

Recurrent Replay Distributed DQN (R2D2)

Atari-57 - Human-normalized Median

2000%
e R2D2
1600% | == R2D2, FF
I Ape_x
12000 | = Rainbow
mmms Reactor

800%

400%

0%
10’ 108 10° 101°
Environment Frames (Log-Scale)

Figure 9 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2

Agentb7

U=

41/54

Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor v = 0.99 (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not

LSTM

unrolling).

Breakout
E 800 - L
>
ko)
o 600 - L
()
o
'8 400 - L
S mm— R2D2
< 200- C!ipped |
9] mmmm Discount
= . mmmm Feed-Forward |
1 1 1 1 1
0.0 0.5 1.0 1.5 2.0
Updates 1e6
Breakout
1 1 1 1 1 1
E 800 -
>
ko)
o 600 - L
()
©
3 400- L
a
w
c - L
® 2001 e Life-Loss (reset)
= . mmmm | jfe-Loss (roll)

1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

NPFL122, Lecture 9 Refresh

MsPacman

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

-I 1 1 1 3
0.0 1.0

0.5 15 270
Updates

le6

700000 -

' QB'ert '

170 115
Updates

|
0.0
le6

1
2.0

SeaQuest

"~ 1000000 -
800000 -
600000 -
" 400000 -
200000 -
0 -

1 1 1 1 1

0.0 0.5 1.0 15 2.0
Updates 1e6

Figure 4 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

Gravitar
12000 - t t t -
40000
30000
20000
10000
0
1 1 1 1 1
0.0 0.5 1.0 1.5 2.0
Updates 1e6
Gravitar
1 60000 -
12000 - —
50000 -

10000 -

8000 -

6000 -

4000 -

2000 -

0
1 1 1 1 1 1 1 1
0.0 02 04 06 08 1.0 1.2 1.4

Updates 1e6

40000 -

30000 -

20000 -

10000 -

0 -

MsPacman

1 1 1 1 1 1 1 I-
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

L 1000000 -
800000 -
600000 -
400000 -

200000 -

0

QBert

1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

t 1000000—I
~ 800000 -
~ 600000 -
= 400000 -

- 200000 -

SeaQuest

0
1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4

Updates 1e6

Figure 7 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

ETraces Returns

TD(A)

Vtrace IMPALA

PopArt

TransRews

R2D2 Agentb7

42/54

Utilization of LSTM Memory During Inference

Mean Episode Reward

25000
c
(G 20000 _——
g 15000
(o)
Q_I 10000
- Zero State
v 5000
E = Stored State
0
00 120 80 40
k
Q
N
M 40
- 30 -
L 3
© 5o 1 I
;I 15 1 I/
E 10
+— 5
g 0
T 00 120 80k 40

NPFL122, Lecture 9 Refresh

ETraces

TR
% Greedy Action Match AQ
100 20
80 16
60 12
40 8
20 4
0 0 — e
0 120 80 40 0 120 80 40 0
k
100 0.8
80 0.6
60 ==
0.4
40 —
20 0.2
0 0
0 120 80 40 0 120 80 40 0
Figure 5 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 43/54

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

lts most important components are:

® Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,

https://arxiv.org/abs/1606.02647,
® Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by

Badia et al., https://arxiv.org/abs/2002.06038,
® Agenth7 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,

https://arxiv.org/abs/2003.13350.

Refresh ETraces Returns TD(A) Vtrace IMPALA PopArt TransRews R2D2 Agent57 44/54

https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2003.13350

Rq(s,a) = q(s,a) + Ey [27 (H) (Rt—i—l +YE 4, ~7q(St1, Apy1) — Q(StaAt))la

t>0

where there are several possibilities for defining the traces ¢;:

7T(At|st)
b(At|Sy) !
O the usual off-policy correction, but with possibly very high variance,
O note that ¢; = 1 in the on-policy case;

® Tree-backup TB(}), c; = Am(A:]Sy),

O the Tree-backup algorithm extended with traces,
O however, ¢; can be much smaller than 1 in the on-policy case;

®* importance sampling, ¢; = p; =

® Retrace(7), ¢ = Amin (1, Z((i;ﬂg:))),

O off-policy correction with limited variance, with ¢; = 1 in the on-policy case.

The authors prove that R has a unique fixed point g, for any 0 < ¢; < Z((jzﬂgz)).

Agentb7

45 /54

The NGU (Never Give Up) agent performs curiosity-driver exploration, and augment the

extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time £ is then

tﬂ o« ré + Br!, with 8 a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:
1. quickly discourage visits of the same state in the same episode;
2. slowly discourage visits of the states visited many times in all episodes;

3. ignore the parts of the state not influenced by the agent's actions.

episodic

The intrinsic rewards is a combination of the episodic novelty 7, and life-long novelty a;:

pi & pepisodic olin (1 <o <L= 5).

Agent57 46 /54

The episodic novelty works
by storing the embedded
states f(.S;) visited during

the episode in episodic
memory M .

i

A

codic
The 7,77 is then

estimated as

episodic 1

r = .
: \/ visit count of f(S;)

plalrs, ziq1)

@)
classifier b %‘

: embedding \

network

o

<---->

life-long novelty
module

episodic novelty
module

|
g : multiplicative
| modulation

> 077

| ———O0—
A

|
——> —> |
|
|

\
: k-nearest \
| neighbors \
| controllable state \
| episodic |
- O |
| \
: embedding network }
| \
| f episodic memory M \

The visit count is estimated using similarities of k-nearest neighbors of f(.S;) measured via an

3

d(ac,z)2

inverse kernel K (z,z) =
) +€
dm

episodic 1

Ty

Refresh ETraces Returns

TD(A)

: \/ZfiENk K(f(S), fi) +c

Vtrace

IMPALA

for d,,, a running mean of the k-nearest neighbor distance:

, with pseudo-count ¢=0.001.

PopArt TransRews R2D2 Agent57 47/54

The state embeddings are ielong novely | RNP o eor
dul
trained to ignore the parts (“’xt"”f“) e % —~
| g
—
l

|
: multiplicative
| modulation

not influenced by the actions st é‘

of the agent. %
. . embedding
To this end, Siamese @ network @
. . !

network f is trained to SEEAN
predict p(A4;|S;, Siy1), ie
the action A, taken by the
agent in state S; when the 0 episodiememory M

|
— > |
|
_| | RND prediction network |

% k-nearest
‘ neighbors
l
l

controllable state

O 7,?pisodic

episodic novelty
module

resulting state is Sy, 1.

A 2
The life-long novelty oy = 1 + 19=9"Zterr 5 trained using random network distillation (RND),

err

where a predictor network g tries to predict the output of an untrained convolutional network g
by minimizing the mean squared error; the o, and g are the running mean and standard
deviation of the error ||g — g||*.

Refresh ETraces Returns TD(A) Vtrace IMPALA PopArt TransRews R2D2 Agent57 48/54

Never Give Up =
The NGU agent uses transformed Retrace loss with the augmented reward
; def episodic .
rl =rpp cclip(l<o <L=5).
t t = =
§ow .= To support multiple policies concentrating either on the
£ oo : extrinsic or the intrinsic reward, the NGU agent trains a
£ : parametrized action-value function q(s, a, 3;) which
g oos s corresponds to reward ;" for By = 0 and vy = 0.997,
; O I:gicesofthezglic Bb ey _ p— and I — 0.99
(a) Values taken by thelj{ﬂi}]/»fgl IBN 1 /B /YN 1
For evaluation, ¢(s, a,0) is employed.
° Irllgices of the slglicy »
(b) Values taken by the {v;} ¥ 5* :
Figure 7b of "Never Give l_Jp.I'I Learning (b) Eifeallll?odf%\i]\irzggint
Directed Exploration Strategies" by A. P. Leagming Dorected Exp/oratigr}
Badia et al Strategies” by A. P. Badia et al.
NPFL122, Lecture 9 Refresh ETraces Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 49 /54

Never Give Up

Algorithm Gravitar MR Pitfall! PrivateEye Solaris Venture
Human 3.4k 4.8k 6.5k 69.6k 12.3k 1.2k

Best baseline 15.7k 11.6k 0.0 11k 5.5k 2.0k

RND 3.9k 10.1k -3 8.7k 3.3k 1.9k
R2D2+RND 15.6k+0.6k 10.4k+1.2k -0.5+0.3 19.5k+3.5k 4.3k+0.6k 2.7k+0.0k
R2D2(Retrace) 13.3k+0.6k 2.3k+0.4k -3.5£1.2 32.5k+4.7k 6.0k+1.1k 2.0k+0.0k
NGU(N=1)-RND | 12.4k+0.8k 3.0k£0.0k 15.2k+9.4k 40.6k+0.0k 5.7k+1.8k 46.4+37.9
NGU(N=1) 11.0k+0.7k 8.7k+1.2k 9.4k+2.2k 60.6k+16.3k 5.9k+1.6k 876.3+114.5
NGU(N=32) 14.1k+0.5k 10.4k+1.6k 8.4k+4.5k 100.0k+0.4k 4.9k+0.3k 1.7k+0.1k

Table 1: Results against exploration algorithm baselines. Best baseline takes the best result among
R2D2 (Kapturowski et al., 2019), DQN + PixelCNN (Ostrovski et al., 2017), DQN + CTS (Bellemare
et al., 2016), RND (Burda et al., 2018b), and PPO + CoEx (Choi et al., 2018) for each game.

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Mean HN Score on Hard Exploration Games

1:75 1.75
g 2
5 1.50 2 1.50
&) (&}
9] w
= 1:25 = 125
(<] 5]
N N
= 1.00 = 1.00
g e st g g
5 0.75 — NGU(32) £0.75
Z —— R2D2(Retrace) Z
% 0.50 —— NGU(1) E 0.50
g = g g
5 0.25 e TAEND 3 0.25
e ---- RND aw
0.00 0.00
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 0
Frames lelo

Median HN Score on Hard Exploration Games

NGU(32)
R2D2(Retrace)
NGU(1)

NGU(1)-RND

1.0

1.5 2.0
Frames

2.5 3.0

Figure 4: Human Normalized Scores on the 6 hard exploration games.

NPFL122, Lecture 9 Refresh

ETraces

Returns

Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.
PopArt

TD(A)

Vtrace

IMPALA

TransRews

R2D2

Agentb7

50/54

Never Give Up Ablations Uz

100+

80-

60 -

= Random embedding

— Action prediction embedding

40- —— Baseline RND

% states explored

20-

0 50000 100000 150000 200000 250000
Learner updates

Figure 2: (Left and Center) Sample screens of Random Disco Maze. The agent is in green, and
pathways in black. The colors of the wall change at every time step. (Right) Learning curves for

Random projections vs. learned controllable states and a baseline RND implementation.
Figure 2 of “"Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Average Human Normalized Score

[4b]

§ mm NGU(N=32)
2 2.0 20 ' s CMR=0.5
48] =

815 | | g = N=16

< mm 3=0.2

= 1.0 10 =05

= B w/o RND
50'5 ﬁ 5 nl | | W/O re

Z 0.0 0

Hard exploration games Dense reward games
Figure 3 of “"Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD(N) Vitrace IMPALA PopArt TransRews R2D2 Agent57 51/54

Then Agent57 improves NGU with:

® splitting the action-value as ¢(s, a, j; 0) = q(s,a,3;0°) +

Bia(s,a,j;0"), where
o q(s,a,j;0° is trained with 7, as targets, and

o q(s,a,j;0") is trained with ; as targets.

® instead of considering all (3;,7;) equal, we train a meta-

controller using a non-stationary multi-arm bandit algorithm,
where arms correspond to the choice of j for a whole episode

(so an actor first samples a 7 using multi-arm bandit problem

and then updates it according to the observed return), and
the reward signal is the undiscounted extrinsic episode return;
each actor uses a different level of €;-greedy behavior;

® ~n_1 is increased from 0.997 to 0.9999.

Refresh ETraces Returns TD(A) Vtrace IMPALA PopArt TransRews R2D2 Agent57 52/54

Agentb7 — Results =

f=1

s

f=1

3

< 50

A

w0

e

z

=)

e

o

8 40

g ---- Optimal

2 —— Agent57

—— R2D2
NGU
MuZero
30 |
0 1 2 3 4 5 6 7 8 9
Number of frames lel0

Figure 1. Number of games where algorithms are better than the
human benchmark throughout training for Agent57 and state-of-
the-art baselines on the 57 Atari games.
Figure 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

Table 1. Number of games above human, mean capped, mean and median human normalized scores for the 57 Atari games.

Statistics Agent57 R2D2 (bandit) NGU R2D2 (Retrace) R2D2 MuZero

Capped mean 100.00 96.93 95.07 94.20 94.33 89.92

Number of games > human 57 54 51 52 52 51

Mean 4766.25 5461.66 3421.80 3518.36 4622.09 | 5661.84
Median 1933.49 2357.92 1359.78 1457.63 1935.86 | 2381.51
40th Percentile 1091.07 1298.80 610.44 817.77 1176.05 1172.90

30th Percentile 614.65 648.17 267.10 420.67 529.23 503.05

20th Percentile 324.78 303.61 226.43 267.25 215.31 171.39

10th Percentile 184.35 116.82 107.78 116.03 115.33 75.74

5th Percentile 116.67 93.25 64.10 48.32 50.27 0.03

Table 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

NPFL122, Lecture 9 Refresh ETraces Returns TD()) Vtrace IMPALA PopArt TransRews R2D2 Agent57 53/54

Agentb7 — Ablations

NGU + separate nets
- NGU + bandit + long trace

100
O\O
=
©
5 80
b _,uﬂ"ﬂvv‘ ¢
wn d‘{. q
o] . /3
N -y c{of""“ A A
E 60 ‘*;-ﬁ;(‘% '
g i
o
" y
= 40 f
& {
E "f |
é | --=-- Optimal
8 ” ; — Agent57
Q‘ |
) |
8 ‘
’ NGU
0 1 5 :

Number of frames

lel0

N
w

N
o

Index of chosen arm
= =
o w

0

Arm chosen on Crazy climber Arm chosen on Beam rider

30

25

20

15

10

Index of chosen arm

5

0
0

Arm chosen on Skiing

30
5
0 1 2

N w
w o

N
o

Index of chosen arm
= —
o w

w

| mvaram |

3 4

5 0 1 2
lelO

30

N
w

N
o

=
o

Index of chosen arm
i
(9,]

wt

4 5
lelO

[=] [¢]
(=]

3 4

ﬂ

Arm chosen on Hero

Arm chosen on Gravitar

5
lelO

30

25

Index of chosen arm
-
wm

0 1 2 3

4 5
1e10

Arm chosen on Jamesbond

4 5
lelO

“ll'

4 5
1lel0

Fig ure 4. Performance progression on the 10- game challeng ing Figure 8. Best arm chosen by the evaluator of Agent57 over train-
set obtained from incorporating each one of the improvements.

Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

NPFL122, Lecture 9 Refresh

ETraces Returns

TD(A)

Vtrace

ing for different games.
Figure 8 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia

IMPALA

PopArt

TransRews

R2D2

Agentb7

et al.

54/54

