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Soft Actor Critic

The paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor by Tuomas Haarnoja et al. from Jan 2018 introduces a different off-policy
algorithm for continuous action space.

It was followed by a continuation paper Soft Actor-Critic Algorithms and Applications in Dec
2018.

The general idea is to introduce entropy directly in the value function we want to maximize,
instead of just ad-hoc adding the entropy penalty. Such an approach is an instance of
regularized policy optimization.
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Soft Actor Critic Objective

Until now, our goal was to optimize

Assume the rewards are deterministic and that  is on-policy distribution of a policy .

In the soft actor-critic, the authors instead propose to optimize the maximum entropy objective

Note that the value of  is dependent on the magnitude of returns and that for a fixed policy,

the entropy penalty can be “hidden” in the reward.

E  [G  ].π 0

μ  π π

  

π  ∗ =  E  [E  [r(s, a)]+ αH(π(⋅∣s))]
π

arg max s∼μ  π a∼π(s)

=  E  [r(s, a) − α log π(a∣s)].
π

arg max s∼μ  ,a∼π(s)π

α
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Soft Actor Critic Objective

To maximize the regularized objective, we define the following augmented reward:

From now on, we consider soft action-value function corresponding to this augmented reward.

r  (s, a)π =def
r(s, a) + E  [αH(π(⋅∣s ))].s ∼p(s,a)′

′
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Soft Policy Evaluation

Our goal is now to derive soft policy iteration, an analogue of policy iteration algorithm.

We start by considering soft policy evaluation. Let a modified Bellman backup operator  be

defined as

where the soft (state-)value function  is defined as

This modified Bellman backup operator corresponds to the usual one for the augmented
rewards , and therefore the repeated application  converges to  according to the

original proof.

T  π

T  q(s, a)π =def
r(s, a) + γE  [v(s )],s ∼p(s,a)′

′

v(s)

v(s) = E  [q(s, a)]+a∼π αH(π(⋅∣s)) = E  [q(s, a) −a∼π α log π(a∣s)].

r  (s, a)π T  qπ
k q  π
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Soft Policy Improvement

While the soft policy evaluation was a straightforward modification of the original policy
evaluation, the soft policy improvement is quite different.

Assume we have a policy , its action-value function  from the soft policy evaluation, and we

want to improve the policy. Furthermore, we should select the improved policy from a family of
parametrized distributions .

We define the improved policy  as

where  is the partition function (i.e., normalization factor such that the right-hand side is

a distribution), which does not depend on the new policy and thus can be ignored.

π q  π

Π

π′

π (⋅∣s)′ =
def

 J  ( )
∈Ππ̄

arg min π π̄ =
def

 D  ( (⋅∣s)   ),
∈Ππ̄

arg min KL π̄
z  (s)π

exp (  q  (s, ⋅))α
1

π

z  (s)π
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Soft Policy Improvement

We now prove that  for any state  and action .

We start by noting that , because we can always choose  as the improved

policy. Therefore,

which results in

We now finish the proof analogously to the original one:

q  (s, a) ≥π′ q  (s, a)π s a

J  (π ) ≤π
′ J  (π)π π

E  [α log π (a∣s) −a∼π′
′ q  (s, a) +π α log z  (s)] ≤π E  [α log π(a∣s) −a∼π q  (s, a) +π α log z  (s)],π

E  [q  (s, a) −a∼π′ π α log π (a∣s)] ≥′ v  (s).π

  

q  (s, a)π = r(s, a) + γE  [v  (s )]s′ π
′

≤ r(s, a) + γE  [E  [q  (s , a ) − α log π (a ∣s )]s′ a ∼π′ ′ π
′ ′ ′ ′ ′

…

≤ q  (s, a).π′
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Soft Policy Iteration

The soft policy iteration algorithm alternates between the soft policy evaluation and soft policy
improvement steps.

The repeated application of these two steps produce better and better policies. In other words,
we get a monotonically increasing sequence of soft action-value functions.

If the soft action-value function is bounded (the paper assumes a bounded reward and a finite
number of actions to bound the entropy), the repeated application converges to some , from

which we get a  using the soft policy improvement step. (It is not clear to me why the

algorithm should converge in finite time, but we can make the rest of the slide conditional on
“if the algorithm converges”).

It remains to show that the  is indeed the optimal policy fulfilling .

However, this follows from the fact that at convergence, , and following the

same reasoning as in the proof of the soft policy improvement, we obtain the required 

.

q  ∗

π  ∗

π  ∗ q  (s, a) ≥π  ∗ q  (s, a)π

J  (π  ) ≤π  ∗ ∗ J  (π)π  ∗

q  (s, a) ≥π  ∗ q  (s, a)π
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Soft Policy Improvement Derivation

The following derivation is not in the original paper, but it is my understanding of how the
softmax of the action-value function arises. For simplicity, we assume finite number of actions.

Assuming we have a policy  and its action-value function , we usually improve the policy

using

which results in a greedy improvement with the form of

π q  π

  

ν(⋅∣s) =  E  [q  (s, a)]
ν

arg max a∼ν(⋅∣s) π

=   q  (s, a)ν(a∣s)
ν

arg max∑
a

π

=  q  (s, ⋅) ν(⋅∣s),
ν

arg max π
T

ν(s) = arg max  q  (s, a).a π
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Soft Policy Improvement Derivation

Now consider instead the regularized objective

To maximize it for a given , we form a Lagrangian

The derivative with respect to  is

Setting it to zero, we get , resulting in .

  

ν(⋅∣s) =  (E  [q  (s, a)]+ αH(ν(⋅∣s)))
ν

arg max a∼ν(⋅∣s) π

=  (E  [q  (s, a) − α log ν(a∣s)])
ν

arg max a∼ν π

s

L = (  ν(a∣s)(q  (s, a) −∑
a

π α log ν(a∣s))) − λ(1 −  ν(a∣s)).∑
a

ν(a∣s)

 =
∂ν(a∣s)

∂L
q  (s, a) −π α log ν(a∣s) − α + λ.

α log ν(a∣s) = q  (s, a) +π λ− α ν(a∣s) ∝ e  q  (s,a)
α
1

π
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Soft Actor Critic

Our soft actor critic will be an off-policy algorithm with continuous action space. The model
consist of two critics  and , two target critics  and  and finally a single actor .

The authors state that

with a single critic, all the described experiments still converge;
they adopted the two critics from the TD3 paper;
using two critics “significantly speed up training”.

q  θ  1 q  θ  2 q  

 θ̄1
q  

 θ̄2
π  φ
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Soft Actor Critic – Critic Training

To train the critic, we use the modified Bellman backup operator, resulting in the loss

where

The target critics are updated using exponentiation moving averages with momentum .

J  (θ  ) =q i E  [(q  (s, a) −s∼μ  ,a∼π  (s)π φ θ  i
(r(s, a) + γE  [v  (s )])) ],s ∼p(s,a)′ min

′ 2

v  (s) =min E  [  (q  (s, a))−a∼π  (s)φ
i

min
 θ̄i

α log π  (a∣s)].φ

τ
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Soft Actor Critic – Actor Training

The actor is updated by directly minimizing the KL divergence, resulting in the loss

Given that our critics are differentiable, we now reparametrize the policy as

Specifically, we sample  and let  produce an unbounded Gaussian distribution (a

diagonal one if the actions are vectors).

Together, we obtain

J  (φ) =π E  [α log (π  (a, s))−s∼μ  ,a∼π  (s)π φ φ  (q  (s, a))].
i

min θ  i

a = f  (s, ε).φ

ε ∼ N (0, 1) f  φ

J  (φ) =π E  [α log (π  (f  (s, ε), s))−s∼μ  ,ε∼N (0,1)π φ φ  (q  (s, f  (s, ε)))].
i

min θ  i φ
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Soft Actor Critic – Bounding Actions

In practice, the actions need to be bounded.

The authors propose to apply an invertible squashing function  on the unbounded

Gaussian distribution.

Consider that our policy produces an unbounded action . To define a distribution 

with , we need to employ the change of variables, resulting in

Therefore, the log-likelihood has quite a simple form

tanh

π(u∣s) (a∣s)π̄

a = tanh(u)

(a∣s) =π̄ π(u∣s)(  ) =
∂u
∂a −1

π(u∣s)(  ) .
∂u

∂ tanh(u) −1

log (a∣s) =π̄ log π(u∣s) − log (1 − tanh (u)).2
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Soft Actor Critic – Automatic Entropy Adjustment

One of the most important hyperparameters is the entropy penalty .

In the second paper, the authors presented an algorithm for automatic adjustment of its value.

Instead of setting the entropy penalty , they propose to specify target entropy value  and

then solve a constrained optimization problem

We can then form a Lagrangian with a multiplier 

which should be maximized with respect to  and minimized with respect to .

α

α H

π  =∗  E  [r(s, a)]  such that  E  [−
π

arg max s∼μ  ,a∼π(s)π s∼μ  ,a∼π(s)π
log π(a∣s)] ≥ H.

α

E  [r(s, a) +s∼μ  ,a∼π(s)π
α(− log π(a∣s) − H)],

π α ≥ 0
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Soft Actor Critic – Automatic Entropy Adjustment

To optimize the Lagrangian, we perform dual gradient descent, where we alternate between
maximization with respect to  and minimization with respect to .

While such a procedure is guaranteed to converge only under the convexity assumptions, the
authors report that the dual gradient descent works in practice also with nonlinear function
approximation.

To conclude, the automatic entropy adjustment is performed by introducing a final loss

π α

J(α) = E  [−s∼μ  ,a∼π(s)π
α log π(a∣s) − αH].
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Soft Actor Critic

 

Algorithm 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.
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Soft Actor Critic

 

Table 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.
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Soft Actor Critic

 

Figure 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.
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Soft Actor Critic

 

Figure 3 of "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.
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Off-policy Correction Using Control Variates

Let  be the estimated -step return

which can be written recursively as

For simplicity, we do not explicitly handle the first case (“the episode has already ended”) in the
following.

G  t:t+n n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) [episode still running in t+ n]γ V (S  ),n

t+n

G     t:t+n
⎩
⎨

⎧0
V (S  )t
R  + γG  t+1 t+1:t+n

if  episode ended before t,
if  n = 0,
otherwise.
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Off-policy Correction Using Control Variates

Note that we can write

which yields

Denoting the TD error as , we can therefore write the -step

estimated return as a sum of TD errors:

Incidentally, to correctly handle the “the episode has already ended” case, it would be enough to

define .

  

G  − V (S  )t:t+n t = R  + γG  − V (S  )t+1 t+1:t+n t

= R  + γ(G  − V (S  ))+ γV (S  ) − V (S  ),t+1 t+1:t+n t+1 t+1 t

G  −t:t+n V (S  ) =t R  +t+1 γV (S  ) −t+1 V (S  ) +t γ(G  −t+1:t+n V (S  )).t+1

δ  t =def
R  +t+1 γV (S  ) −t+1 V (S  )t n

G  =t:t+n V (S  ) +t  γ δ  .
i=0

∑
n−1

i
t+i

δ  t =def
R  +t+1 [¬done] ⋅ γV (S  ) −t+1 V (S  )t
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Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i
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Off-policy Correction Using Control Variates

Now consider applying the IS off-policy correction to  using the importance sampling

ratio

First note that

which can be extended to

G  t:t+n

ρ  t =def
 ,    ρ  

b(A  ∣S  )t t

π(A  ∣S  )t t
t:t+n =def

 ρ  .
i=0

∏
n

t+i

E  [ρ  ] =A  ∼bt t  b(A  ∣S  )  =
A  t

∑ t t
b(A  ∣S  )t t

π(A  ∣S  )t t 1,

E  [ρ  ] =b t:t+n 1.
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Off-policy Correction Using Control Variates

Until now, we used

However, such correction has unnecessary variance. Notably, when expanding 

the  depends only on , not on , and given that the expectation of the

importance sampling ratio is 1, we can simplify to

Such an estimate can be written recursively as

G  t:t+n
IS =def

ρ  G  .t:t+n−1 t:t+n

G  t:t+n

G  =t:t+n
IS ρ  (R  +t:t+n−1 t+1 γG  ),t+1:t+n

R  t+1 ρ  t ρ  t+1:t+n−1

G  =t:t+n
IS ρ  R  +t t+1 ρ  γG  .t:t+n−1 t+1:t+n

G  =t:t+n
IS ρ  (R  +t t+1 γG  ).t+1:t+n

IS

25/33NPFL122, Lecture 8 SAC SPE SPI SACAlgorithm ControlVariates EligibilityTraces



Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i

G  t:t+n
IS =def

ρ  (R  +t t+1 γG  )t+1:t+n
IS
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Off-policy Correction Using Control Variates

We can reduce the variance even further – when , we might consider estimating the

return using  instead of 0.

To utilize this idea, we turn to control variates, which is a general method of reducing
variance of Monte Carlo estimators. Let  be an unknown expectation, which we estimate using

an unbiased estimator . Assume we have another correlated statistic  with a known

expectation .

We can then use an estimate , which is also an unbiased estimator of ,

with variance

To arrive at the optimal value of , we can set the derivative of  to 0, obtaining

ρ  =t 0
V (S  )t

μ

m k

κ

m∗ =def
m − c(k − κ) μ

Var(m ) =∗ Var(m) + c Var(k) −2 2cCov(m, k).

c Var(m )∗

c =  .
Var(k)

Cov(m, k)
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Off-policy Correction Using Control Variates

In case of the value function estimate

we might consider using  as the correlated statistic , with known expectation ,

because if , then our return estimate is probably an overestimate, and vice versa.

The optimal value of  should then be

which is however difficult to compute. Instead, considering the estimate when , we get

Because a reasonable estimate in case of  is , we use .

G  =t:t+n
IS ρ  (R  +t t+1 γG  ),t+1:t+n

IS

ρ  t k κ = 1
ρ  ≫t 1

c

c =  =
Var(k)

Cov(m, k)
 ,

E  [(ρ  − 1) ]b t
2

E  [(G  − v  (S  ))(ρ  − 1)]b t:t+n
IS

π t t

ρ  =t 0

ρ  (R  +t t+1 γG  )+t+1:t+n
IS c(1 − ρ  )t

ρ  =0t c.

ρ  =t 0 V (S  )t c = V (S  )t
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Off-policy Correction Using Control Variates

The estimate with the control variate term is therefore

which adds no bias, since the expected value of  is zero and  and  are independent.

Similarly as before, rewriting to

results in

G  t:t+n
CV =def

ρ  (R  +t t+1 γG  )+t+1:t+n
CV (1 − ρ  )V (S  ),t t

1 − ρ  t ρ  t S  t

  

G  − V (S  )t:t+n
CV

t = ρ  (R  + γG  )− ρ  V (S  )t t+1 t+1:t+n
CV

t t

= ρ  (R  + γV (S  ) − V (S  ) + γ(G  − V (S  )))t t+1 t+1 t t+1:t+n
CV

t+1

G  =t:t+n
CV V (S  ) +t  γ ρ δ  .∑

i=0

n−1
i
t:t+i t+i
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Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i

G  t:t+n
IS =def

ρ  (R  +t t+1 γG  )t+1:t+n
IS

G  t:t+n
CV =def

ρ  (R  +t t+1 γG  )+t+1:t+n
CV (1 − ρ  )V (S  )t t V (S  ) +t  γ ρ  δ  ∑i=0

n−1 i
t:t+i t+i
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Eligibility Traces

Eligibility traces are a mechanism of combining multiple -step return estimates for various

values of .

First note instead of an -step return, we can use any average of -step returns for different

values of , for example .

n

n

n n

n  G  +3
2

t:t+2  G  3
1

t:t+4
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-returnλ

 

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

For a given , we define -return as

Alternatively, the -

return can be written
recursively as

λ ∈ [0, 1] λ

G  t
λ =def (1 − λ)  λ G  .

i=1

∑
∞

i−1
t:t+i

λ

  

G  t
λ = (1 − λ)G  t:t+1

+ λ(R  + γG  ).t+1 t+1
λ
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-returnλ

In an episodic task with time of termination , we can rewrite the -return to

 

Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".

T λ

G  =t
λ (1 − λ)  λ G  +

i=1

∑
T−t−1

i−1
t:t+i λ G  .T−t−1

t
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