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The paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor by Tuomas Haarnoja et al. from Jan 2018 introduces a different off-policy
algorithm for continuous action space.

It was followed by a continuation paper Soft Actor-Critic Algorithms and Applications in Dec
2018.

The general idea is to introduce entropy directly in the value function we want to maximize,
instead of just ad-hoc adding the entropy penalty. Such an approach is an instance of
regularized policy optimization.
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Until now, our goal was to optimize
E.|Go).

Assume the rewards are deterministic and that u, is on-policy distribution of a policy .

In the soft actor-critic, the authors instead propose to optimize the maximum entropy objective

T, = argmax E,,_ {]an(s) [r(s, a)] - ozH(7r(-|s))]

s

= argmaxE,_,_qn(s) |7(s,a) — alogm(als)].

Note that the value of « is dependent on the magnitude of returns and that for a fixed policy,
the entropy penalty can be “hidden” in the reward.
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Soft Actor Critic Objective

To maximize the regularized objective, we define the following augmented reward:
re(s,a) = r(s,a) + Egp(s,a) |0H(m(:]5"))].

From now on, we consider soft action-value function corresponding to this augmented reward.
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Our goal is now to derive soft policy iteration, an analogue of policy iteration algorithm.

We start by considering soft policy evaluation. Let a modified Bellman backup operator 7. be
defined as

7;7(1(37 a’) = ’I°(8, a’) + ’Y]Es’fvp(s,a) [U(SI)] 9
where the soft (state-)value function v(s) is defined as
U(S) = Eqr [Q('S) a)} + aH(ﬂ-(|S)) = Eqr [Q(Sv CL) — alogw(a!s)] y

This modified Bellman backup operator corresponds to the usual one for the augmented
rewards 7 (8, @), and therefore the repeated application 7;kq converges to g, according to the

original proof.
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While the soft policy evaluation was a straightforward modification of the original policy
evaluation, the soft policy improvement is quite different.

Assume we have a policy m, its action-value function g, from the soft policy evaluation, and we
want to improve the policy. Furthermore, we should select the improved policy from a family of
parametrized distributions II.

We define the improved policy 7’ as
def exp (é%r(sa ))

7' (-|s) = argmin J,(7) = arg min Dgg, [ 7(:|s)
mell well zr(8)

where z.($) is the partition function (i.e., normalization factor such that the right-hand side is
a distribution), which does not depend on the new policy and thus can be ignored.
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We now prove that ¢ (s, a) > ¢ (s, a) for any state s and action a.

We start by noting that J(7') < J,(7), because we can always choose 7 as the improved
policy. Therefore,

E, [a log 7' (als) — q.(s,a) + alog zﬂ(s)] <E, . [a log (als) — q.(s,a) + alog zﬂ(s)},
which results in

Eqr |gr(8,a) — alog ' (als)| > vx(s).
We now finish the proof analogously to the original one:

%r(sa CL) — ’I“(S, CL) + 7E8’ [UW(SI)]
S T(S, a) + ’YES’ [Ea’wﬂ" [Q?T(S,7 CLI) — log ﬂ-l(a’llsl)]

< qr(s,a).
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The soft policy iteration algorithm alternates between the soft policy evaluation and soft policy
improvement steps.

The repeated application of these two steps produce better and better policies. In other words,
we get a monotonically increasing sequence of soft action-value functions.

If the soft action-value function is bounded (the paper assumes a bounded reward and a finite
number of actions to bound the entropy), the repeated application converges to some g, from
which we get a m, using the soft policy improvement step. (It is not clear to me why the

algorithm should converge in finite time, but we can make the rest of the slide conditional on
“if the algorithm converges”).

It remains to show that the 7, is indeed the optimal policy fulfilling ¢, (s,a) > ¢ (s, a).

However, this follows from the fact that at convergence, J, () < J, (7), and following the
same reasoning as in the proof of the soft policy improvement, we obtain the required

Qﬂ'* (87 a’) Z q7T(S7 a’)
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The following derivation is not in the original paper, but it is my understanding of how the
softmax of the action-value function arises. For simplicity, we assume finite number of actions.

Assuming we have a policy 7 and its action-value function q,, we usually improve the policy

using

v(-|s) = arg max Egu(-|s) [qﬁ(s, a)]

= arg max Za g (s,a)v(als)

— argmaxq_(s,-) v(|s),

which results in a greedy improvement with the form of

v(s) = argmax, q, (s, a).
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Now consider instead the regularized objective

v(-|s) = argmax (Equ(|s) [gr (s, @)] + aH(v(]s)))

v

= arg max (any [%(37 a) — alog V(a|3)])

v

To maximize it for a given s, we form a Lagrangian

L= (Za v(als)(g.(s,a) — alog I/(a\s))) - )\(1 - Za I/(a\s)).

The derivative with respect to v(als) is

oL

v (als) = ¢-(s,a) — alogv(als) — a+ A

Setting it to zero, we get alog v(als) = ¢, (s,a) + A — a, resulting in v(a|s) o eat(5:9),
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Our soft actor critic will be an off-policy algorithm with continuous action space. The model
consist of two critics gg, and gg,, two target critics g, and gg, and finally a single actor 7.

The authors state that

® with a single critic, all the described experiments still converge;
® they adopted the two critics from the TD3 paper;
® using two critics “significantly speed up training”.
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Soft Actor Critic — Critic Training

To train the critic, we use the modified Bellman backup operator, resulting in the loss
, 2
Jq(0i) = Espiyamm(s) [(q@ (s,a) — (r(*g? a) + VEs p(s,0) [Vmin (s )])) }’

where
Umin(8) = B, | min (g5, (5, 0)) — alogmy (als) .

The target critics are updated using exponentiation moving averages with momentum 7.
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The actor is updated by directly minimizing the KL divergence, resulting in the loss
Jr(0) = By ammo(s) [a log (mp (a, s)) — miin (qgi (s, a))].

Given that our critics are differentiable, we now reparametrize the policy as
a= fo(s,¢€).

Specifically, we sample € ~ N(O, 1) and let f, produce an unbounded Gaussian distribution (a
diagonal one if the actions are vectors).

Together, we obtain

JW(QO) — ESNMW,ENN(O,].) [O‘ log (7T<P(f90(37 8)7 S)) _ miin (qei (87 f(,o(S, 5)))} .
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In practice, the actions need to be bounded.

The authors propose to apply an invertible squashing function tanh on the unbounded
Gaussian distribution.

Consider that our policy produces an unbounded action 7(u|s). To define a distribution 7(a|s)
with a = tanh(u), we need to employ the change of variables, resulting in

#(als) = m(uls) (%) L r(uls) (ma;j(“) ) N

Therefore, the log-likelihood has quite a simple form

log 7 (al|s) = logm(uls) — log (1 — tanh” (w)).
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One of the most important hyperparameters is the entropy penalty c.

In the second paper, the authors presented an algorithm for automatic adjustment of its value.

Instead of setting the entropy penalty «, they propose to specify target entropy value H and
then solve a constrained optimization problem

T, = argmax E, o on(s) [r(s, a)] such that E;_,_.r(s) [ — log w(ais)] > H.

s

We can then form a Lagrangian with a multiplier «
Esm iy amr(s) [r(s, a) + oz( — logw(als) — ’H)},

which should be maximized with respect to 7 and minimized with respect to o > 0.
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To optimize the Lagrangian, we perform dual gradient descent, where we alternate between
maximization with respect to m and minimization with respect to a.

While such a procedure is guaranteed to converge only under the convexity assumptions, the
authors report that the dual gradient descent works in practice also with nonlinear function
approximation.

To conclude, the automatic entropy adjustment is performed by introducing a final loss

J(a) = Esep, amn(s) [ — alogw(als) — a’H}.
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Algorithm 1 Soft Actor-Ceritic

Input: 0, 02, ¢
(91 < (91, 92 < 92
D <+ (
for each iteration do
for each environment step do
ay ~ g (ast)
St+1 ~ P(Se+1[St, ar)
D+ DU {(St7 A, T(St7 at)a St+1)}
end for
for each gradient step do

0, < 0; — )\QV@JQ(Q@) for ¢ € {1, 2}

QZ5 — ¢ - AWAV¢JW(¢)
a+—a—AVJ(a)
0, (—T@z—l—(l —7')91' for: € {1,2}
end for
end for
Output: 64, 05, ¢

> Initial parameters
> Initialize target network weights
> Initialize an empty replay pool

> Sample action from the policy
> Sample transition from the environment
> Store the transition in the replay pool

> Update the Q-function parameters
> Update policy weights

> Adjust temperature

> Update target network weights

> Optimized parameters
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Table 1: SAC Hyperparameters

Parameter Value

optimizer Adam (Kingma & Ba, 2015)
learning rate 3-1074

discount () 0.99

replay buffer size 109

number of hidden layers (all networks) | 2

number of hidden units per layer 256

number of samples per minibatch 256

entropy target —dim (\A) (e.g., -6 for HalfCheetah-v1)
nonlinearity ReLLU

target smoothing coefficient (7) 0.005

target update interval 1

gradient steps 1
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Soft Actor Critic
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Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging

tasks.
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Soft Actor Ciritic U
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Figure 3. Sensitivity of soft actor-critic to selected hyperparameters on Ant-v1 task. (a) Evaluating the policy using the mean action
generally results in a higher return. Note that the policy is trained to maximize also the entropy, and the mean action does not, in general,
correspond the optimal action for the maximum return objective. (b) Soft actor-critic is sensitive to reward scaling since it is related to the
temperature of the optimal policy. The optimal reward scale varies between environments, and should be tuned for each task separately.
(c) Target value smoothing coefficient 7 is used to stabilize training. Fast moving target (large 7) can result in instabilities (red), whereas

slow moving target (small 7) makes training slower (blue).
Figure 3 of "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.
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Off-policy Correction Using Control Variates et

Let Gt.41n be the estimated n-step return
t+n—1
Griin = ( Z 7ktRk+1) + [episode still running in t + n |¥"V (S10),
k=t

which can be written recursively as

0 if episode ended before ¢,
Gttn V(St) if n =0,
L Rt+1 + 'YGt—l—l:t—l—n otherwise.

For simplicity, we do not explicitly handle the first case (“the episode has already ended”) in the
following.
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Note that we can write

Gitin — V(St) = Rir1 +YGii1e0n — V(St)
= Ry + ’Y(Gt+1:t+n — V(St+1)) + YV (Si41) — V(St),

which yields
Gttin — V(St) = Rer1 + YV (Ser1) — V(Sy) + ’Y(Gt—kl:t—I—n — V(St+1))-

def

Denoting the TD error as §; = Ry11 + YV (Str1) — V(St), we can therefore write the m-step
estimated return as a sum of TD errors:

n—1
Grin = V(S1) + Z’YiétJri-

1=0

Incidentally, to correctly handle the “the episode has already ended” case, it would be enough to
define 8, = R,.1 + [~done] - 7V (Si11) — V(Sy).
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Return Formulations =

Grirn = Riv1 +YGrititin V(S)+ >, ’Yzét—i—z'
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Off-policy Correction Using Control Variates

Now consider applying the IS off-policy correction to Gy.¢4r, using the importance sampling
ratio

def 7T(At|St) def -
pt — b(At‘St) 9 pt:t—l—n — gpt-l—’l,'

First note that

which can be extended to

£y [pt:t—l—n] = 1.
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Off-policy Correction Using Control Variates

Until now, we used
def
Gt tin — Ptit+n— 1Gttin-

However, such correction has unnecessary variance. Notably, when expanding Gt.t1n

Gt t+n — Ptt+n—1 (Rt—l—l - 7Gt—|—1:t+n)7

the R; 1 depends only on p;, not on p;1.t1n_1, and given that the expectation of the
importance sampling ratio is 1, we can simplify to

Gt t+n T pth—i—l + pt:t—l—n—l'YGt—i—lzt—l—n-
Such an estimate can be written recursively as

Gt t4n — Pt (Rt-|—1 —+ 7Gt+1 t—l—n)
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Return Formulations

def

Gitrn = Rev1 + YGi1:ten

V(Se) + g 7' e

Gt ttn — = Pt (Rt+1 + 7G£—8|—1:t—|—n)
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We can reduce the variance even further — when p; = 0, we might consider estimating the
return using V' (.S;) instead of 0.

To utilize this idea, we turn to control variates, which is a general method of reducing
variance of Monte Carlo estimators. Let p be an unknown expectation, which we estimate using

an unbiased estimator m. Assume we have another correlated statistic k£ with a known
expectation K.

. def . . . .
We can then use an estimate m* = m — ¢(k — k), which is also an unbiased estimator of u,
I
with variance

Var(m*) = Var(m) + ¢ Var(k) — 2¢ Cov(m, k).

To arrive at the optimal value of ¢, we can set the derivative of Var(m*) to 0, obtaining

~ Cov(m, k)
T Var(k)
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In case of the value function estimate
Gt ttn — Pt (Rt+1 =+ ’YGt+1 t+n)

we might consider using p; as the correlated statistic k, with known expectation © = 1,
because if p; > 1, then our return estimate is probably an overestimate, and vice versa.

The optimal value of ¢ should then be

COV(m, k) _ [(Gt :t+n UW(St) (Pt — 1)]
Var(k) Ey |(pr — 1)?]

C — 3

which is however difficult to compute. Instead, considering the estimate when p; = 0, we get

¢=0
Pt (Rt+1 + ’YGt+1 t+n) +c(l-p)F=c

Because a reasonable estimate in case of p, = 0 is V(S;), we use ¢ = V(S5;).
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Off-policy Correction Using Control Variates

The estimate with the control variate term is therefore

Gitn = pr(Res1 +7G i) + (L= p)V(Sy),

which adds no bias, since the expected value of 1 — p; is zero and p; and S; are independent.

Similarly as before, rewriting to

Gt t+n (St) — Pt (Rt-l—l + ’yGt—i—l t—l—n) T V(St)
— Pt (Rt+1 =+ ’)’V(St+1) - V(St) T ’Y(Gt+1 ttn V(St+1)))

results in

n—1 .
ngi—n =V(S) + Zizo V' Prit+iOtti-
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Return Formulations UF\RL

Grirn = Riv1 +YGrititin VI(S)+ > 725t+i
Ghin = = pt (Rt+1 +vGR1. t—l—n)
Gt t+n = Pt (Rt—l—l -+ 7Gt+1 t—l—n) + (1 — pt)V(St) (St) -+ Zz 0 fypt t+25t—|—z'
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Eligibility Traces Fx

Eligibility traces are a mechanism of combining multiple n-step return estimates for various
values of n.
First note instead of an m-step return, we can use any average of n-step returns for different

values of n, for example %Gt:t+2 + %Gt:t+4.
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A-return U=

For a given A € |0, 1], we define A-return as

00
A\ def i—1
Gy = (1—)\) E :)\ Giitti-
1=1
i eight given to
Alternatlvely' the )\_ N t\fIIVe I:£3;-st(€a;£)vreturn total area = 1
i : MRRC
return can be written \ is (1— M)A

recursively as %

Gi\ — (1= NGy Weighting 1-2 %
_'_ A(RIH—]_ —"_ 7G?_+_1).

decay by A

weight given to
actual, final return

iS )\T—t—l

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".
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A-return

In an episodic task with time of termination 1", we can rewrite the A-return to
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over the first

T—t—1
Gy =1-2) > NGy + NGy

1

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

RMS error
at the end
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the off-line A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (A or n) performed best. The results with the off-line A-return algorithm

are slightly better at the best values of @ and A, and at high a.
Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".
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