NPFL122, Lecture 7 U

Continuous Actions, DDPG, TD3

Milan Straka

m November 14, 2022

a N Charles University in Prague @ 3) (0
L EUROPEAN UNION Faculty of Mathematics and Physics -~
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH 82vel::pme|n't:angd EducatiR::Jn " pp g UnleSS Othel’Wlse Stated

An alternative to independent workers is to train in a synchronous and centralized way by
having the workers to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).

Actions

[
O O |
w w States | DNN
p-————]
RN
Worker 0 Worker nw (learn)
| | \ - _ /
Environments A
Y VvV VY \ A 2

Targets

PAAC 2/29

https://arxiv.org/abs/1705.04862

Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights 6, 6,
2: Instantiate set e of n. environments

3: repeat

4: fort = 1to t,ax do

5: Sample a; from 7(a:|s¢; 6)

6: Calculate v, from V' (s¢; 6,)

7 parallel for : = 1 to n. do

8: Perform action a; ; in environment e;

9: Observe new state s¢1,; and reward 741 ;
10: end parallel for
11: end for
12- R o 0 for terminal s;

. tmax+1 V (Styax+1;0) for non-terminal s¢

13: for t = tmax downto 1 do
14: Rt =7r:+ ")/Rt_|_1
15: end for
16: df = — tmam Sore Stimar(Ry; — v,i) Ve log m(as,i|sei;0) + BVe H (7 (se,t;0))
17: dfy = o — z ztmw 6, (Rei — V(st,i300))°
18: Update 6 using df and 0, using d@v.
19: N < N 4+ ne - tmax

20: until N > Npas

PAAC

3/29

Game Gorila A3C FF GA3C PAAC archy;ps PAAC archpauyre

Amidar 1189.70 263.9 218 701.8 1348.3
Centipede 8432.30 3755.8 7386 5747.32 7368.1
Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0
Boxing 94.9 59.8 92 99.6 99.8
Breakout 402.2 681.9 N/A 470.1 565.3
Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0
Name This Game 6182.16 10476.1 5643 9743.7 14068.0
Pong 18.3 5.6 18 20.6 20.9
Qbert 10815.6 15148.8 14966.0 16561.7 17249.2
Seaquest 13169.06 2355.4 1706 1754.0 1755.3
Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8
Up n Down 12561.58 74705.7 8623 88105.3 100523.3
Training 4d CPU cluster 4d CPU 1d GPU 12h GPU 15h GPU

The authors use 8 workers, n, = 32 parallel environments, 5-step returns, v = 0.99, € = 0.1,
B = 0.01, and a learning rate of & = 0.0007 - n, = 0.0224.

The archy;,s is from A3C: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, a dense layer with
256 units. The archpaiure is from DQN: 32 filters 8 X 8 stride 4, 64 filters 4 X 4 stride 2, 64
filters 3 X 3 stride 1 and 512-unit fully connected layer. All nonlinearities are RelU.

PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3 4/29

Parallel Advantage Actor Critic

Beam Rider

3500
3000¢
25001

[

g 2000

Q

0
15001
1000t
500t

Breakout

Training Epochs

Space Invaders

800 7=

600
n.=16

n.=32
n.=64
n.=128 |

Score

400

200

0 10 20 30 40 50 60 70 0

o 1 2 3 4 5 6 7 8
Timestep x107
‘ __ Pong
20 —
=
10 —— n.=16
n.=32
()
g o n.=64
“ n,=128
—10 — n.,=256 |
—20
0 5 10 15 20 25 30 35 40
Training Epochs

NPFL122, Lecture 7 PAAC

100 Boxing
—— n.=16
30 Ne=32
n.=64
, 0 n,=128
~
S -_—
& gl — n.=256
20
O L L L L L L i L L
0 10 20 30 40 50 60 70 80
Training Epochs
‘ _ QBert_
—— n.=16
15000 =82 a7 |
n,=64
2 10000 i 1Y
(})o) — n.=256
5000 =
0 L— /_/ i
0 10 20 30 40 50 60 70 80

Continuous Action Space

Training Epochs

Figure 3 of "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

DPG DDPG OrnsteinUhlenbeck

n.=256

0o 1 2 3 4 5 6
Timestep

MulJoCo TD3

78
x 107

5,29

Parallel Advantage Actor Critic

Beam Rider

100

3500¢
3000¢
2500

(]
g 2000t

Q

n
1500+
1000
500¢

80

60

Score

40+

20

_ Boxing

0 2 4 6 8 10
Time (hours)

Pong

12 14 0

Score

5000

0o 1 2 3 4 5
Time (hours)

NPFL122, Lecture 7 PAAC

Continuous Action Space

6 8 10 12 14 16
Time (hours)

QBert

15000+

Score

n.=256

DPG

1 6 8 10 12 14 16

Time (hours)

Figure 4 of "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

DDPG OrnsteinUhlenbeck

Breakout

0 2 4 6 8 10 12 14
Time (hours)

Space Invaders

800
600
n.=16
400 GE=H2
n.=64
200 n.=128 |
— n.=256

0 2 4 6 8 10 12 14
Time (hours)

MulJoCo TD3

6,29

Parallel Advantage Actor Critic

4500 Efficiency 0 _ Environment Interaction

4000 ool
< 3500 g
g 2000 _ CLT’Chm‘pS GPU .E 50+ — archpgture GPU |
% archpgture GPU g archy,s GPU
2, 2500 1 s 40 1
% archm-ps CPU 2 archygre CPU
g 2000 — archygpure CPU S 30} — archy;; CPU
& 1500 o

1000} 200

500 ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Environment Count (n.)

NPFL122, Lecture 7 PAAC

Continuous Action Space

Environment Count (n.)

e
o

Model Interaction

=1 (o8]
S o

Percent of runtime
D
o

archpgture GPU |
archyy,s GPU
archygture CPU |

50 K — archy,s CPU
40
30 ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500

600

Environment Count (n.)

Figure 2 of "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

DPG DDPG OrnsteinUhlenbeck

MulJoCo

TD3

7/29

Continuous Action Space UL

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range |a, b| for a,b € R, or more

generally from a Cartesian product of several such ranges:

H[az‘,bz']-

1

A simple way how to parametrize the action distribution "} B A A ﬂzlo |02'=0.|2 _ -
is to choose them from the normal distribution. o N\ 4e0 10—
Given mean p and variance o2, probability density - / \ p=-2, 0%=05,—
function of N (u, %) is UL / \ :
Jo N -

() def]- _M 0.2-_ \ ;

p Tr) == ———€ 20 . i —— s\X\ 7

271-0-2 00_|/||é||\||$ﬁ_-

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3 8/29

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the
softmax distribution, we suitably parametrize the action value, usually using the normal
distribution.

Considering only one real-valued action, we therefore have
m(als;0) = P(a ~ N (p(s5;0),0(s; 9)2)),

where p1(s; @) and o(s;0) are function approximation of mean and standard deviation of the
action distribution.

The mean and standard deviation are usually computed from the shared representation, with

® the mean being computed as a common regression (i.e., one output neuron without
activation);

® the standard deviation (which must be positive) being computed again as a single neuron,
but with either exp or softplus, where softplus(z) = log(1 + €?).

Continuous Action Space

9/29

U

Continuous Action Space in Gradient Methods FaL

During training, we compute u(s; @) and o(s; @) and then sample the action value (clipping it
to |a, b| if required). To compute the loss, we utilize the probability density function of the
normal distribution (and usually also add the entropy penalty).

mus = tf.keras.layers.Dense(actions) (hidden_layer)
sds = tf.keras.layers.Dense(actions) (hidden_layer)
sds = tf.math.exp(sds) # or sds = tf.math.softplus(sds)

action_dist = tfp.distributions.Normal (mus, sds)
Loss computed as - log m(als) * returns - entropy_regularization

loss = - action_dist.log_prob(actions) * returns \
- args.entropy_regularization * action_dist.entropy()

NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3 10/29

When the action consists of several real values, i.e., action is a suitable subregion of R™ for
n > 1, we can:

® either use multivariate Gaussian distribution;
® or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output — when modeling pixels
intensities (256 values) or sound amplitude (2'© values), instead of a softmax we use discretized

mixture of distributions, usually logistic (a distribution with a sigmoid CDF). Then,
m(a) = sz- (a((a +0.5—p;)/0i) —o((a—0.5— ,uz-)/az-)).
i
However, such mixtures are usually used in generative modeling, not in reinforcement learning.

Continuous Action Space 11/29

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem

Assume that the policy 7(s; @) is deterministic and computes an action a € R. Further,
assume the reward 7 (s, a) is actually a deterministic function of the given state-action pair.
Then, under several assumptions about continuousness, the following holds:

VeJ(0) x E,, [er(s; 0)V.q:(s,a) ’azw(s;@)}'

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al in 2014.

DPG 12/29

The proof is very similar to the original (stochastic) policy gradient theorem.

However, we will be exchanging derivatives and integrals, for which we need several
assumptions:

® we assume that h(s),p(s'|s,a), V,p(s'|s,a),7(s,a),V,r(s,a),7(s;0),Vgm(s;0) are
continuous in all parameters and variables;
® we further assume that h(s),p(s'|s,a), V,p(s'|s,a),r(s,a), V,7(s,a) are bounded.

Details (which assumptions are required and when) can be found in Appendix B of the paper
Deterministic Policy Gradient Algorithms: Supplementary Material by David Silver et al.

DPG

13/29

Vour(s) = Vogr (s, (s;0))
= Vo (r (s,7(s;0)) + /, vp(s'|s,(5;0)) (vx(s")) ds')

= Von(s;0)V,r(s, a’)‘a:w(s;e) + Vo / vp(s'|s, m(s;0))vr(s") ds’

= Vegr(s;0)V, (r(s, a) + / vp(s'|s, a)vx(s") ds')

s a=(s;0)

-+ / ’yp(s' s, 7(s; 0))V9v7r(s') ds’

= Von(s;0)V,q,(s a)’ r(s0) T / vp(s'|s, m(s;0)) Vouvr(s')ds’
We finish the proof as in the gradient theorem by continually expanding Vgu,(s'), getting
Vour(s) = [, Y pooY*P(s — & ink steps |7) | Vo (s';0)Vagr (s, a)|a:7r(8,,0)] ds’ and
then VgJ(O) = EsnVour(s) x Esy [er(s, H)Vaqﬂ(s,a)‘azﬁ(s;e)}.

DPG 14/29

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both 7(s; @) and q(s, a; 8), training q(s, a; 0)
using a deterministic variant of the Bellman equation:

Q(Sta Ay 9) = Eg, [T(Szb At) + 79(5t+17 7T(StH; 9))}

and 7(s; @) according to the deterministic policy gradient theorem.
The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with 7 = 0.001), batch normalization for CNNs, and perform exploration by adding a Ornstein-

Uhlenbeck noise to the predicted actions. Training is performed by Adam with learning rates of
le-4 and 1le-3 for the policy and critic network, respectively.

DDPG 15/29

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|6%) and actor p(s|0*) with weights 69 and 6*.
Initialize target network @’ and 1/ with weights 9" < 69, g+« g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = ju(s¢|0*) + Ny according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;1
Store transition (s¢, at,7¢, S¢11) in R
Sample a random minibatch of N transitions (s;, a;, 7, S;4+1) from R
Sety; = 1 + Q' (sig1, 1/ (si41]6)[09")
Update critic by minimizing the loss: L = % Y. (y; — Q(s4, a;]09))?
Update the actor policy using the sampled policy gradient:

Sq

1
Voud ~ ~ Z VaQ(8,al09) sz, ampu(s) Vor 11(s]0%)

Update the target networks:
09 «— 769 + (1 —1)0°
O 70" + (1 — 7)o"

end for
end for

Algorithm 1 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MulJoCo TD3

16/29

Deep Deterministic Policy Gradients

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balancing
1 1
1WW))
0 ¥
0
0
0 0
Gripper Blockworld Puck Shooting Cheetah Moving Gripper
° 1r 1r 1
S 1 !
& 0
° 0
N 0
o L
< 0 1 0 1 0 1 0 1 0 1
Million Steps

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

Figure 3 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MulJoCo TD3 17/29

Results using low-dimensional (/lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

environment Rtw,lowd Rbest,lowd Rav,pix Rbest,pim R(w,cntrl Rbest,cntrl
blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658
canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216
cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528
cartpoleParalle]Double 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerialTriple 0.736 0.946 0.412 0.427 0.583 0.942
cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927
fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999
gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618
movingGripper 0.474 0.936 0.480 0.644 0.416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953
reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158
reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
walker2d 0.705 1.573 0.944 1.476 0.393 1.397

torcs -393.385 | 1840.036 | -401.911 | 1876.284 | -911.034 | 1961.600

PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3 18/29

Ornstein-Uhlenbeck Exploration

While the exploration policy could just use Gaussian noise, the authors claim that temporarily-
correlated noise is more effective for physical control problems with inertia.

They therefore generate noise using Ornstein-Uhlenbeck process, by computing
ng < M1+ 0 (p—mn_1) +e~N(0,0%),

utilizing hyperparameter values 8 = 0.15 and o = 0.2.

NPFL122, Lecture 7 PAAC Continuous Action Space DPG DDPG OrnsteinUhlenbeck MulJoCo TD3

U=

19/29

Figure 4. Example MuJoCo environments (a) HalfCheetah-vl1, (b)
Hopper-vl, (¢) Walker2d-vl, (d) Ant-vl1.

MuJoCo 20/29

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

® decrease maximization bias by training two critics and choosing the minimum of their
predictions;

® introduce several variance-lowering optimizations:
O delayed policy updates;
O target policy smoothing.

The TD3 algorithm has been together with SAC one of the best algorithms for off-policy
continuous-actions RL training (as of 2022).

TD3 21/29

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit max operator. For DDPG methods, it can be

caused by the gradient descent itself. Let @ 4ppr0r be the parameters maximizing the gg and let

0. be the hypothetical parameters which maximise true g, and let Tapproz aNd Ty denote
the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small ¢ < €1 we have

E [C.Ie (37 7Tonpprom)} > E [%(87 the)] .

However, for real g, and for sufficiently small a < €39, it holds that
E |:Q7T(87 the)} Z E [QW('S) 7"-approac)] .
Therefore, if E[qg(s, wtme)} > E[qﬂ(s, the)], for a < min(eq, €2)

E [Q@ (37 7"'a,pp'roaz)] > K [Qﬁ (37 7"'ozpprox)} .

TD3

22/29

TD3 — Maximization Bias

400

w
o
(=]

Average Value
n
o
o

—_
o
o

o

m CDQ -e True CDQ
= DDPG -e- True DDPG

500
400
300
200

100

400

w
o
o

Average Value
N
o
o

—_
o
o

o

400

m DQ-AC

-o- True DQ-AC
m DDQN-AC -e- True DDQN-AC 0

300

200

100

0.4 0.6
Time steps (1€6)

0.0 0.2

(a) Hopper-v1

0.8 1.0 0.0

0.2 0.4 0.6 0.8

Time steps (1e6)

(b) Walker2d-v1

1.0

Figure 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott
Fujimoto et al.

0.4 0.6 0.8 1.0

Time steps (1e6)

0.0 0.2

(a) Hopper-v1

0.0 0.2

0.4 0.6 0.8 1.0

Time steps (1€6)

(b) Walker2d-v1

Figure 2 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott

Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e., 7 + gy (8, Ty(s)) (instead of using the target policy and the target

critic as in DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the
policy changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e., 7 + Ygg, (s', 7y, (8')) for updating gg, .
The resulting DQ-AC algorithm is slightly better, but still suffering from overestimation.

NPFL122, Lecture 7 PAAC

Continuous Action Space DPG

DDPG

OrnsteinUhlenbeck MulJoCo

TD3 23/29

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum
value of both critics as

T+ mig g (8", mp (8)).
=1,
The resulting algorithm is called CDQ — Clipped Double Q-learning.

Furthermore, the authors suggest two additional improvements for variance reduction.

® For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every d-th step (d = 2 is used in the paper).

® To explicitly model that similar actions should lead to similar results, a small random noise
is added to the performed actions when computing the target value:

r+ymin g (s', 1y (s') +¢) for e~ clip(N(0,0), —¢,<).

TD3 24/29

TD3 - Algorithm et

Algorithm 1 TD3

Initialize critic networks Qg, , Qs,, and actor network
with random parameters 61, 65, ¢
Initialize target networks 6] <— 61, 05 < 0, ¢' < ¢
Initialize replay buffer B
fort =1to T do
Select action with exploration noise a ~ 74 (s) + €,
e ~ N (0, 0) and observe reward r and new state s’
Store transition tuple (s, a,r,s’) in B

Sample mini-batch of IV transitions (s, a,r, s') from B
a< my(s')+e€ €~ clipN(0,6),—c,c)
Y < 1+ ymin=1 2 Qo (s, @)
Update critics 0; < argming. N ' >~ (y—Q, (s, a))?
if £ mod d then
Update ¢ by the deterministic policy gradient:
V¢J<¢) =N-! Z anel (87 a)‘azﬂ¢(s)V¢7T¢(S)
Update target networks:
0 < 76; + (1 —7)0;
¢ 1o+ (1—-7)¢
end if

end for
Algorithm 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

NPFL122, Lecture 7 EYYXe Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3 25/29

Hyper-parameter Ours DDPG

Critic Learning Rate 10 10~
Critic Regularization None 1072 - ||6]]?
Actor Learning Rate 10~° 104
Actor Regularization None None
Optimizer Adam Adam
Target Update Rate (7) 5-107° 107°
Batch Size 100 64
Iterations per time step 1 1
Discount Factor 0.99 0.99
Reward Scaling 1.0 1.0
Normalized Observations False True
Gradient Clipping False False
Exploration Policy N(0,0.1) OU,0=0.15,u=0,0 =0.2

TD3 26/29

TD3 — Results

== TD3 == DDPG = our DDPG = PPO = TRPO mm ACKTR == SAC
10000 3500 5000
< 8000 3000 4000 4000
g 6000 2500 3000 8000
% 4000 ngg 2000 2000
2 2000 - 1000 1000 1000
0 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 0z 04 06 08 10
Time steps (1e6) Time steps (1e6) Time steps (1e6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-v1 (c) Walker2d-v1 (d) Ant-v1
1000 10000
c 900 8000
§ 800 6000
© 700
§ 600 4000
< 500 2000
J 400 0
1250 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time steps (1€6) Time steps (1e6) Time steps (1e6)
(e) Reacher-v1 (f) InvertedPendulum-vl (g) InvertedDoublePendulum-v1
Figure 5 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC
HalfCheetah 9636.95 + 859.065 3305.60 8577.29 1795.43 -15.57 1450.46 2347.19
Hopper 3564.07 = 114.74 2020.46 1860.02 2164.70 247130 2428.39 2996.66
Walker2d 4682.82 + 539.64 1843.85 3098.11 3317.69 232147 1216.70 1283.67
Ant 4372.44 + 1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 £ 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 + 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDoublePendulum 9337.47 + 14.96 9355.52 8369.95 8977.94 205.85 9081.92 8487.15

NPFL122, Lecture 7 PAAC

Table 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

Continuous Action Space

DPG

DDPG

OrnsteinUhlenbeck

MulJoCo

TD3

27/29

TD3 — Ablations

m TD3 == DDPG m AHE m TD3 - TPS m= TD3 - DP m TD3 - CDQ
10000 3500 5000
3000
£ 8000 4000
% 2500
o 6000 2000 3000
[0
& 4000 1500 2000
[
>
< 2000 1000 1000
500 g
0 0 0 1000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1€6) Time steps (1€6) Time steps (1€6) Time steps (1e6)
(a) HalfCheetah-v1 (b) Hopper-vl (c) Walker2d-vl1 (d) Ant-v1
Figure 7 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
m TD3 = AHE m TD3 - CDQ m DQ-AC == DDQN-AC
5000
10000 3500
S 8000 3000 4000
% 2500
< 6000 2000 3000
g 4000 1500 2000
:% 1000
2000 1000
500 47 ,
0 oL oL— 1000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time steps (1€6)

(a) HalfCheetah-v1

Time steps (1e6)

(b) Hopper-v1

Time steps (1e6) Time steps (1e6)

(c) Walker2d-v1 (d) Ant-v1

Figure 8 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

The AHE is the authors' reimplementation of DDPG using updated architecture,
hyperparameters, and exploration. TPS is Target Policy Smoothing, DP is Delayed Policy
update, and CDQ is Clipped Double Q-learning.

NPFL122, Lecture 7 PAAC

Continuous Action Space

DPG DDPG OrnsteinUhlenbeck MulJoCo TD3

28,29

Method HCheetah Hopper Walker2d Ant
TD3 0532.99 3304.75 4565.24 4185.06
DDPG 3162.50 1731.94 1520.90 816.35
AHE 8401.02 1061.77 2362.13 564.07
AHE + DP 7588.64 1465.11 2459.53 896.13
AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14 3979.21 3818.71
TD3 - DP 9590.65 2407.42 4695.50 3754.26
TD3 - TPS 8987.69 2392.59 4033.67 4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75
DQ-AC 9433.87 1773.71 3100.45 2445.97
DDQN-AC 1030690 2155.75 3116.81 1092.18

TD3

29/29

