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Policy Gradient Methods

Instead of predicting expected returns, we could train the method to directly predict the policy

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution  instead of just -greedy sampling.

However, to train the network, we maximize the expected return  and to that account we

need to compute its gradient .

π(a∣s; θ).

π ε

v  (s)π

∇  v  (s)θ π
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Policy Gradient Methods

In addition to discarding -greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

 

Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

ε
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Policy Gradient Theorem

Let  be a parametrized policy. We denote the initial state distribution as  and the

on-policy distribution under  as . Let also .

Then

and

where  is the probability of getting to state  when starting from state ,

after any number of 0, 1, … steps. The  parameter should be treated as a form of termination,

i.e., .

π(a∣s; θ) h(s)
π μ(s) J(θ) =def E  v  (s)s∼h π

∇  v  (s) ∝θ π  P (s →
s ∈S′

∑ … → s ∣π)  q  (s , a)∇  π(a∣s ; θ)′

a∈A

∑ π
′

θ
′

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ),
s∈S

∑
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∑ π θ

P (s → … → s ∣π)′ s′ s

γ

P (s → … → s ∣π) ∝′
 γ P (s →∑k=0

∞ k s  in k steps ∣π)′
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Proof of Policy Gradient Theorem

We now expand .

Continuing to expand all , we obtain the following:

∇v  (s) =π ∇[  π(a∣s; θ)q  (s, a)]∑
a

π
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a
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Proof of Policy Gradient Theorem

To finish the proof of the first part, recall that

For the second part, we know that

therefore using the fact that  we get

 γ P (s →
k=0

∑
∞

k s  in k steps ∣π) ∝′ P (s → … → s ∣π).′
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REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing . The loss gradient is then

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

where we used the fact that

−J(θ) =def −E  v  (s)s∼h π

∇  −θ J(θ) ∝ −  μ(s)  q  (s, a)∇  π(a∣s; θ) =
s∈S

∑
a∈A

∑ π θ −E   q  (s, a)∇  π(a∣s; θ).s∼μ

a∈A

∑ π θ

∇  −θ J(θ) ∝ E  E  q  (s, a)∇  −s∼μ a∼π π θ ln π(a∣s; θ),

∇  ln π(a∣s; θ) =θ  ∇  π(a∣s; θ).
π(a∣s; θ)

1
θ
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REINFORCE Algorithm

REINFORCE therefore minimizes the loss  with gradient

where we estimate the  by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

 

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.

−J(θ)

E  E  q  (s, a)∇  −s∼μ a∼π π θ ln π(a∣s; θ),

q  (s, a)π
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REINFORCE Algorithm Example Performance

 

Example 13.1 of "Reinforcement Learning: An
Introduction, Second Edition".

 

Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
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On-policy Distribution in REINFORCE

In the proof, we assumed  is used as a form of termination in the definition of the on-policy

distribution.

However, even when discounting is used during training (to guarantee convergence even for very
long episodes), evaluation is often performed without discounting.

Consequently, the distribution  used in the REINFORCE algorithm is almost always the

unterminated (undiscounted) on-policy distribution (I am not aware of any implementation or
paper that would use it), so that we learn even in states that are far from the beginning of an
episode.

Note that this is actually true even for DQN and its variants. Therefore, the discounting
parameter  is used mostly as a variance-reduction technique.

γ

μ

γ
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REINFORCE with Baseline

The returns can be arbitrary – better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline  to

The baseline  can be a function or even a random variable, as long as it does not depend

on , because

b(s)

∇  J(θ) ∝θ  μ(s)  (q  (s, a) −
s∈S

∑
a∈A

∑ π b(s))∇  π(a∣s; θ).θ

b(s)
a

 b(s)∇  π(a∣s; θ) =
a

∑ θ b(s)  ∇  π(a∣s; θ) =
a

∑ θ b(s)∇   π(a∣s; θ) =θ

a

∑ b(s)∇  1 =θ 0.
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REINFORCE with Baseline

A good choice for  is , which can be shown to minimize the variance of the gradient

estimate (in limit ; see L. Weaver and N. Tao, The Optimal Reward Baseline for

Gradient-Based Reinforcement Learning for the proof). Such baseline reminds centering of
returns, given that

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting  function is also called the advantage function

Of course, the  baseline can be only approximated. If neural networks are used to estimate

, then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

b(s) v  (s)π

γ → 1

v  (s) =π E  q  (s, a).a∼π π

q  (s, a) −π v  (s)π

a  (s, a)π =def
q  (s, a) −π v  (s).π

v  (s)π

π(a∣s; θ)
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REINFORCE with Baseline

In REINFORCE with baseline, we train:

1. the policy network using the REINFORCE algorithm, and
2. the value network by minimizing the mean squared value error .

 

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing γ^t from the update of θ.

V E
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REINFORCE with Baseline Example Performance

 

Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Operator View of Policy Gradient Methods

In the middle of 2020, Dibya Ghosh et al. introduced the operator view of policy gradient
methods in their paper An operator view of policy gradient methods.

Trajectory Formulation
Let  be a specific trajectory with return .

The probability of  under a policy  is .

Our goal is then to find

and the REINFORCE algorithm at each step sets the weights  to

τ = (S  ,A  ,S  ,A  , …)0 0 1 1 G(τ) =  γ R (τ)∑k=0
∞ k

k+1

τ π π(τ) = h(S  )  π(A  ∣S  )p(S  ∣S  ,A  )0 ∏i i i i+1 i i

θ =∗
 E  [G(τ)] =

θ

arg max τ∼π  θ
  π(τ)G(τ) dτ ,

θ

arg max ∫
τ

θ  t+1

θ  +t αE  [G(τ)    ] =τ∼π  θ  t ∂θ
∂ log π  (τ)θ

θ=θ  t

θ  +t α  π  (τ)G(τ)    dτ .∫
τ

θ  t ∂θ
∂ log π  (τ)θ

θ=θ  t
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Trajector Formulation of OP-REINFORCE

In the operator view, policy improvement is achieved by a successive application of a policy

improvement operator  and a projection operator . For tabular methods, the projection

operator is identity, but it is needed for functional approximation methods.

The operator version of REINFORCE is then the iterative application of  with

As formulated, the operator version of REINFORCE computes the projection perfectly in each
step, while the REINFORCE performs just one step of gradient descent in the direction of .

However, it is easy to show that the fixed points of both algorithms are the same.

I P

P ∘ I

(Iπ)(τ) ∝ G(τ)π(τ),

Pν =  D  (ν∥π  ).
θ

arg min KL θ

P

16/30NPFL122, Lecture 6 Policy Gradient Methods REINFORCE Baseline OP-REINFORCE Actor-Critic A3C



Trajector Formulation of OP-REINFORCE

The proposition is actually not difficult to prove, we just need to expand the definitions.

Denoting  the distribution over trajectories such that , we get

Therefore, the gradient is

ν ν(τ) ∝ G(τ)π(τ)

D  (ν∥π  ) =KL θ  ν(τ) log  dτ .∫
τ π  (τ)θ

ν(τ)

 =
∂θ

∂D  (ν∥π  )KL θ
−  ν(τ)∇  log π  (τ) dτ ∝∫

τ
θ θ −  π  (τ)G(τ)∇  log π  (τ) dτ .∫

τ
θ θ θ
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State-Action Formulation of OP-REINFORCE

We can formulate the operator view also employing the action-value function  and the on-

policy distribution ; however, the policy improvement operator needs to return not just a

policy, but a joint distribution over the states and actions.

The REINFORCE algorithm can be seen as performing one gradient step to minimize the
composition , where

q

μ  π

P ∘ I

(Iπ)(s, a) ∝ μ  (s)q  (s, a)π(a∣s),π π

Pν =  E  [D  (ν(⋅∣s)∥π  (⋅∣s))].
θ

arg min s∼ν(s) KL θ
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State-Action Formulation of OP-REINFORCE

Just for completeness, we can explicitly express the joint distribution  as a

product of , where

the distribution over the states is

the conditional distribution over the actions is

(Iπ)(s, a)
(Iπ)(s) ⋅ (Iπ)(a∣s)

(Iπ)(s) =  =
 μ  (s )v  (s )∑s′ π

′
π

′

μ  (s)v  (s)π π
 ,E  [v  (s )]s ∼μ  

′
π π

′

μ  (s)v  (s)π π

(Iπ)(a∣s) =  =
 q  (s, a )π(a ∣s)∑a′ π

′ ′

q  (s, a)π(a∣s)π
 =

E  [q  (s, a )]a ∼π(s)′ π
′

q  (s, a)π(a∣s)π
 .

v  (s)π

q  (s, a)π(a∣s)π
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Actor-Critic

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called the actor-critic methods.

The idea is straightforward – similarly to the REINFORCE with baseline, we train the policy
network together with the value network. However, instead of estimating the episode return
using the whole episode rewards, we use -step return TD estimate in both the policy gradient

and the mean squared value error .

n

V E
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Actor-Critic

 

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.
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Asynchronous Methods for Deep RL

The A3C was introduced in a 2016 paper from Volodymyr Mnih et al. (the same group as
DQN) Asynchronous Methods for Deep Reinforcement Learning.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, -step Q-learning and A3C (an asynchronous

advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term  to the loss to support

exploration and discourage premature convergence (they use ).

The entropy regularization has since become the standard way of encouraging exploration
with a policy network.

n

−βH(π(s; θ))
β = 0.01
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Asynchronous Methods for Deep RL

 

Algorithm 1 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

 

Algorithm S2 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

24/30NPFL122, Lecture 6 Policy Gradient Methods REINFORCE Baseline OP-REINFORCE Actor-Critic A3C



Asynchronous Methods for Deep RL

 

Algorithm S3 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

All methods performed updates every 5 actions ( ), updating the target

network each  frames.

The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters  stride 4, 32 filters  stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU nonlinearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of  and used RMSProp with momentum decay

factor of .

t  =max I  =AsyncUpdate 5
40 000

8 × 8 4 × 4

γ = 0.99
0.99
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Asynchronous Methods for Deep RL

 

Figure 1 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

 

Table 1 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et
al.

 

Table 2 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et
al.
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Asynchronous Methods for Deep RL

 

Figure 3 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

 

Figure 4 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

 

Figure 2 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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