NPFL122, Lecture 5

Rainbow

Milan Straka

i October 31, 2022

EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

unless otherwise stated

Function Approximation

We will approximate value function v and/or state-value function q, selecting it from a family of functions parametrized by a weight vector $w \in \mathbb{R}^d$.

We denote the approximations as

 $\hat{v}(s;oldsymbol{w}),\ \hat{q}(s,a;oldsymbol{w}).$

We utilize the Mean Squared Value Error objective, denoted \overline{VE} :

$$\overline{VE}(oldsymbol{w}) \stackrel{ ext{def}}{=} \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s,oldsymbol{w})
ight]^2,$$

PriRep

where the state distribution $\mu(s)$ is usually on-policy distribution.

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

Dueling

Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector \boldsymbol{w}) is usually optimized using gradient methods, for example as

$$oldsymbol{w}_{t+1} \leftarrow oldsymbol{w}_t - rac{1}{2}lpha
abla_{oldsymbol{w}_t}ig(v_\pi(S_t) - \hat{v}(S_t;oldsymbol{w}_t)ig)^2 \ \leftarrow oldsymbol{w}_t + lphaig(v_\pi(S_t) - \hat{v}(S_t;oldsymbol{w}_t)ig)
abla_{oldsymbol{w}_t}\hat{v}(S_t;oldsymbol{w}_t).$$

As usual, the $v_{\pi}(S_t)$ is estimated by a suitable sample of a return:

- in Monte Carlo methods, we use episodic return G_t ,
- in temporal difference methods, we employ bootstrapping and use one-step return

$$R_{t+1} + [\neg ext{done}] \cdot \gamma \hat{v}(S_{t+1}; oldsymbol{w})$$

PriRep

or an *n*-step return.

NPFL122, Lecture 5

DDQN

Dueling N-step

NoisyNets

DistRL Rainbow

Deep Q Network

Off-policy Q-learning algorithm with a convolutional neural network function approximation of action-value function.

Training can be extremely brittle (and can even diverge).

NPFL122, Lecture 5

DQN

Refresh

Rainbow DDQN

PriRep Dueling

N-step

DistRL

NoisyNets

Rainbow

Deep Q Networks

- Preprocessing: 210×160 128-color images are converted to grayscale and then resized to 84×84 .
- Frame skipping technique is used, i.e., only every 4th frame (out of 60 per second) is considered, and the selected action is repeated on the other frames.
- Input to the network are last 4 frames (considering only the frames kept by frame skipping), i.e., an image with 4 channels.
- The network is fairly standard, performing
 - $^{\circ}~$ 32 filters of size 8×8 with stride 4 and ReLU,
 - $^{\circ}~$ 64 filters of size 4×4 with stride 2 and ReLU,
 - $^{\circ}~$ 64 filters of size 3×3 with stride 1 and ReLU,
 - $^{\circ}\,$ fully connected layer with 512 units and ReLU,
 - $^{\circ}$ output layer with 18 output units (one for each action)

Rainbow

Refresh

DDQN

Dueling N-step

PriRep

Rainbow

Deep Q Networks

Ú F_ÁL

• Network is trained with RMSProp to minimize the following loss:

 $\mathcal{L} \stackrel{ ext{\tiny def}}{=} \mathbb{E}_{(s,a,r,s') \sim ext{data}} \left[(r + [
egtadom done] \cdot \gamma \max_{a'} Q(s',a';ar{m{ heta}}) - Q(s,a;m{ heta}))^2
ight].$

• An arepsilon-greedy behavior policy is utilized (starts at arepsilon=1 and gradually decreases to 0.1).

Important improvements:

Refresh

DQN

- experience replay: the generated episodes are stored in a buffer as (s, a, r, s') quadruples, and for training a transition is sampled uniformly (off-policy training);
- separate target network θ: to prevent instabilities, a separate target network is used to estimate one-step returns. The weights are not trained, but copied from the trained network after a fixed number of gradient updates;
- reward clipping: because rewards have wildly different scale in different games, all positive rewards are replaced by +1 and negative by -1; life loss is used as end of episode.
 - furthermore, $(r + [\neg done] \cdot \gamma \max_{a'} Q(s', a'; \overline{\theta}) Q(s, a; \theta))$ is also clipped to [-1, 1] (i.e., a smooth_{L1} loss or Huber loss).

NPFL122, Lecture 5

Rainbow

DistRL

Deep Q Networks Hyperparameters

Hyperparameter	Value
minibatch size	32
replay buffer size	1M
target network update frequency	10k
discount factor	0.99
training frames	50M
RMSProp learning rate and momentum	0.00025, 0.95
initial $arepsilon$, final $arepsilon$ (linear decay) and frame of final $arepsilon$	1.0, 0.1, 1M
replay start size	50k
no-op max	30

PriRep

Dueling

Refresh

DQN

Rainbow

DDQN

NoisyNets

Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017, the *Rainbow: Combining Improvements in Deep Reinforcement Learning* paper combines 6 of them into a single architecture they call **Rainbow**.

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.

NPFL122, Lecture 5

Refresh

DQN

DDQN

Rainbow

PriRep Dueling

NoisyNets DistRL

N-step

Rainbow

Q-learning and Maximization Bias

Ú_F≩L

Because behaviour policy in Q-learning is ε -greedy variant of the target policy, the same samples (up to ε -greedy) determine both the maximizing action and estimate its value.

Double Q-learning

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S$, $a \in \mathcal{A}(s)$, such that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'With 0.5 probabilility: $Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \Big(R + \gamma Q_2 \big(S', \operatorname{arg\,max}_a Q_1(S',a) \big) - Q_1(S,A) \Big)$ else: $Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{arg\,max}_a Q_2(S',a) \big) - Q_2(S,A) \Big)$ $S \leftarrow S'$ until S is terminal

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S + by S).

NPFL122, Lecture 5

Rainbow DDQN

PriRep Dueling

Rainbow

Double Q-learning

Similarly to double Q-learning, instead of

Refresh

DQN

$$r+\gamma \max_{a'} Q(s',a';oldsymbol{eta}) - Q(s,a;oldsymbol{ heta}),$$

we minimize

NPFL122, Lecture 5

Rainbow DDQN

PriRep Dueling

NoisyNets

N-step

Rainbow

DistRL

Double Q-learning True value and an estimate All estimates and max Bias as function of state Average error $\mathbf{2}$ 2 $\max_{a} Q_t(s,a) - \max_{a} Q_*(s,a)$ $\max_a Q_t(s,a)$ +0.61 $Q_*(s,a)$ 0 0 0 -0.02Double-Q estimate s. -1-2-2 $\max_{a} Q_t(s,a) - \max_{a} Q_*(s,a)$ $\max_a Q_t(s,a)$ +0.472 $Q_*(s,a)$ $\mathbf{2}$ $Q_t(s,a)$ +0.02Double-Q estimate -1 0 0 4 $\max_a Q$ $Q_t(s,a)$ $\max_a Q_t(s, a)$ $\max_a 0$ 222+3.350 0 -0.02Double-Q estimate $P_*(s, a)$ 2 $\mathbf{2}$ 6 6 26 4 state state state Figure 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

NPFL122, Lecture 5

DQN

Rainbow

Refresh

DDQN

PriRep Due

Dueling

N-step NoisyNets

DistRL Rainbow

Double Q-learning Space Invaders Time Pilot Alien Zaxxon 2.5Value estimates 20 8 DQN estimate 2.0151.5Double DQN estimate A Photograph 2 1.0Double DQN true value DQN true value 0 50 100 150 200 50 100 150 200 50 100 150 200 0 $50 \ 100 \ 150 \ 200$ 0 0 0 Training steps (in millions) Wizard of Wor Asterix Value estimates 100 80 $(log \ scale)$ DQN 40 1020DQN 10Double DQN Double DQN 5 0 50100 1502000 50100 150200 Wizard of Wor Asterix 4000 Double DQN 6000 Double DQN 3000 Score 4000 2000 2000 1000 DON 0 0 100 100 150200 150200 50500 0 Training steps (in millions) Training steps (in millions) Figure 3 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

NPFL122, Lecture 5

DQN

Refresh

DDQN Rainbow

PriRep

Dueling

N-step NoisyNets DistRL Rainbow

Ú F_ÁL

Double Q-learning

Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

	DQN	Double DQN
Median	93.5%	114.7%
Mean	241.1%	330.3%

Table 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

Performance on episodes taking at most 30 minutes and using human starts on 49 games:

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Table 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

Rainbow

Prioritized Replay

Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those with a large TD error. Therefore, we sample transitions according to their probability

$$p_t \propto \left| r + \gamma \max_{a'} Q(s',a';oldsymbol{eta}) - Q(s,a;oldsymbol{ heta})
ight|^\omega,$$

where ω controls the shape of the distribution (which is uniform for $\omega = 0$ and corresponds to TD error for $\omega = 1$).

New transitions are inserted into the replay buffer with maximum probability to support exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

$$p_t \propto \left| r + \gamma Q(s', rgmax_{a'} Q(s', a'; oldsymbol{ heta}); oldsymbol{eta}) - Q(s, a; oldsymbol{ heta})
ight|^{\omega},$$

PriRep

NPFL122, Lecture 5

Refresh

Dueling

Ú F_AL

Prioritized Replay

Because we now sample transitions according to p_t instead of uniformly, on-policy distribution and sampling distribution differ. To compensate, we therefore utilize importance sampling with ratio

$$ho_t = \left(rac{1/N}{p_t}
ight)^eta$$
 .

The authors utilize in fact "for stability reasons"

$$ho_t/\max_i
ho_i.$$

NPFL122, Lecture 5

Refresh DQN

DDQN

Rainbow

PriRep Dueling

N-step NoisyNets

DistRL Rainbow

Prioritized Replay

Algorithm 1 Double DQN with proportional prioritization

- 1: Input: minibatch k, step-size η , replay period K and size N, exponents α and β , budget T.
- 2: Initialize replay memory $\mathcal{H} = \emptyset, \Delta = 0, p_1 = 1$
- 3: Observe S_0 and choose $A_0 \sim \pi_{\theta}(S_0)$
- 4: **for** t = 1 **to** T **do**
- 5: Observe S_t, R_t, γ_t
- 6: Store transition $(S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t)$ in \mathcal{H} with maximal priority $p_t = \max_{i < t} p_i$
- 7: **if** $t \equiv 0 \mod K$ **then**
- 8: for j = 1 to k do
- 9: Sample transition $j \sim P(j) = p_j^{\alpha} / \sum_i p_i^{\alpha}$
- 10: Compute importance-sampling weight $w_j = (N \cdot P(j))^{-\beta} / \max_i w_i$
- 11: Compute TD-error $\delta_j = R_j + \gamma_j Q_{\text{target}} (S_j, \arg \max_a Q(S_j, a)) Q(S_{j-1}, A_{j-1})$

PriRep

- 12: Update transition priority $p_j \leftarrow |\delta_j|$
- 13: Accumulate weight-change $\Delta \leftarrow \Delta + w_j \cdot \delta_j \cdot \nabla_{\theta} Q(S_{j-1}, A_{j-1})$
- 14: **end for**
- 15: Update weights $\theta \leftarrow \theta + \eta \cdot \Delta$, reset $\Delta = 0$
- 16: From time to time copy weights into target network $\theta_{\text{target}} \leftarrow \theta$
- 17: **end if**
- 18: Choose action $A_t \sim \pi_{\theta}(S_t)$
- 19: **end for**

Refresh

Algorithm 1 of "Prioritized Experience Replay" by Tom Schaul et al.

NPFL122, Lecture 5

DDQN

Dueling

N-step NoisyNets

Rainbow

Dueling Networks

Instead of computing directly $Q(s, a; \boldsymbol{\theta})$, we compose it from the following quantities:

- value function for a given state s,
- advantage function computing an **advantage** of using action *a* in state *s*.

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

$$Q(s,a) \stackrel{ ext{\tiny def}}{=} Vig(f(s;\zeta);\etaig) + Aig(f(s;\zeta),a;\psiig) - rac{\sum_{a'\in\mathcal{A}} A(f(s;\zeta),a';\psi)}{|\mathcal{A}|}$$

PriRep

NPFL122, Lecture 5

DQN Rainbow

Refresh

DDQN

Dueling

N-step NoisyNets

Rainbow

Dueling Networks

Figure 3. (a) The corridor environment. The star marks the starting state. The redness of a state signifies the reward the agent receives upon arrival. The game terminates upon reaching either reward state. The agent's actions are going up, down, left, right and no action. Plots (b), (c) and (d) shows squared error for policy evaluation with 5, 10, and 20 actions on a log-log scale. The dueling network (Duel) consistently outperforms a conventional single-stream network (Single), with the performance gap increasing with the number of actions.

Figure 3 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

N-step N

NoisyNets DistRL

Rainbow

Dueling Networks

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

NPFL122, Lecture 5

DQN Rainbow

Refresh

DDQN

PriRep Dueling

N-step NoisyNets

DistRL Rainbow

Ú F_ÅL

Dueling Networks

Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers to DDQN with a direct computation of $Q(s, a; \theta)$, Clip corresponds to gradient clipping to norm at most 10.

	30 no-ops		Human Starts	
	Mean	Median	Mean	Median
Prior. Duel Clip	591.9 %	172.1%	567.0%	115.3%
Prior. Single	434.6%	123.7%	386.7%	112.9%
Duel Clip	373.1%	151.5%	343.8%	117.1%
Single Clip	341.2%	132.6%	302.8%	114.1%
Single	307.3%	117.8%	332.9%	110.9%
Nature DQN	227.9%	79.1%	219.6%	68.5%

Table 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

NPFL122, Lecture 5

DDQN

Rainbow

PriRep Dueling

Multi-step Learning

Instead of Q-learning, we use n-step variant of Q-learning, which estimates return as

$$\sum_{i=1}^n \gamma^{i-1} R_i + \gamma^n \max_{a'} Q(s',a';oldsymbol{ar{ heta}}).$$

This changes the off-policy algorithm to on-policy (because the "inner" actions are sampled from the behaviour distribution, but should follow the target distribution); however, it is not discussed in any way by the authors.

PriRep

Refresh

DDQN

Rainbow

Dueling

N-step

DistRL Rainbow

Noisy Nets

Noisy Nets are neural networks whose weights and biases are perturbed by a parametric function of a noise.

The parameters $\boldsymbol{\theta}$ of a regular neural network are in Noisy nets represented as

 $oldsymbol{ heta} pprox oldsymbol{\mu} + oldsymbol{\sigma} \odot oldsymbol{arepsilon},$

where $\boldsymbol{\varepsilon}$ is zero-mean noise with fixed statistics. We therefore learn the parameters $(\boldsymbol{\mu}, \boldsymbol{\sigma})$. A fully connected layer with parameters $(\boldsymbol{w}, \boldsymbol{b})$,

$$oldsymbol{y} = oldsymbol{w}oldsymbol{x} + oldsymbol{b},$$

is represented in the following way in Noisy nets:

$$oldsymbol{y} = (oldsymbol{\mu}_w + oldsymbol{\sigma}_w \odot oldsymbol{arepsilon}_w)oldsymbol{x} + (oldsymbol{\mu}_b + oldsymbol{\sigma}_b \odot oldsymbol{arepsilon}_b).$$

PriRep

NPFL122, Lecture 5

DQN Rainbow

Refresh

DDQN

Dueling N-step

NoisyNets

Noisy Nets

The noise ε can be for example independent Gaussian noise. However, for performance reasons, factorized Gaussian noise is used to generate a matrix of noise. If $\varepsilon_{i,j}$ is noise corresponding to a layer with i inputs and j outputs, we generate independent noise ε_i for input neurons, independent noise ε_j for output neurons, and set

 $arepsilon_{i,j} = f(arepsilon_i) f(arepsilon_j)$

for $f(x) = \operatorname{sign}(x) \sqrt{|x|}$.

The authors generate noise samples for every batch, sharing the noise for all batch instances.

Deep Q Networks

When training a DQN, ε -greedy is no longer used and all policies are greedy, and all fully connected layers are parametrized as noisy nets.

PriRep

Refresh

Noisy Nets

	Bas	seline	line Nois		Improvement
	Mean	Median	Mean	Median	(On median)
DQN	319	83	379	123	48%
Dueling	524	132	633	172	30%
A3Č	293	80	347	94	18%

Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.

NPFL122, Lecture 5

PriRep Dueling

N-step NoisyNets

DistRL Rainbow

Ú F_AL

Noisy Nets

Figure 3: Comparison of the learning curves of the average noise parameter $\overline{\Sigma}$ across five Atari games in NoisyNet-DQN. The results are averaged across 3 seeds and error bars (+/- standard deviation) are plotted.

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

N-step NoisyNets

DistRL

Rainbow

Distributional RL

Instead of an expected return Q(s, a), we could estimate the distribution of expected returns Z(s, a).

These distributions satisfy a distributional Bellman equation:

$$Z_{\pi}(s,a)=R(s,a)+\gamma \mathbb{E}_{s',a'}Z(s',a').$$

The authors of the paper prove similar properties of the distributional Bellman operator compared to the regular Bellman operator, mainly being a contraction under a suitable metric (Wasserstein metric).

PriRep

Refresh

DDQN

Rainbow

Dueling

N-step

Rainbow

Ú F_AL

Distributional RL

The distribution of returns is modeled as a discrete distribution parametrized by the number of atoms $N \in \mathbb{N}$ and by $V_{\text{MIN}}, V_{\text{MAX}} \in \mathbb{R}$. Support of the distribution are atoms

$$\{z_i \stackrel{ ext{def}}{=} V_{ ext{MIN}} + i\Delta z: 0 \leq i < N \} \; \; ext{for} \; \Delta z \stackrel{ ext{def}}{=} rac{V_{ ext{MAX}} - V_{ ext{MIN}}}{N-1}$$

The atom probabilities are predicted using a softmax distribution as

$$Z_{oldsymbol{ heta}}(s,a) = \left\{ z_i ext{ with probability } p_i = rac{e^{f_i(s,a;oldsymbol{ heta})}}{\sum_j e^{f_j(s,a;oldsymbol{ heta})}}
ight\}.$$

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

N-step NoisyNets

DistRL Rainbow

Refresh

DQN

Distributional RL

After the Bellman update, the support of the distribution $R(s,a) + \gamma Z(s',a')$ is not the same as the original support. We therefore project it to the original support by proportionally mapping each atom of the Bellman update to immediate neighbors in the original support.

Figure 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

$$\Phiig(R(s,a)+\gamma Z(s',a')ig)_i \stackrel{ ext{def}}{=} \sum_{j=1}^N \left[1-rac{\left|[r+\gamma z_j]_{V_{ ext{MIN}}}^{V_{ ext{MAX}}}-z_i
ight|}{\Delta z}
ight]_0^1 p_j(s',a').$$

The network is trained to minimize the Kullbeck-Leibler divergence between the current distribution and the (mapped) distribution of the one-step update

$$D_{ ext{KL}}\Big(\Phiig(R+\gamma Z_{ar{oldsymbol{ heta}}}ig(s',rg\max_{a'}\mathbb{E} Z_{ar{oldsymbol{ heta}}}(s',a')ig)\Big)\Big\|Z_{oldsymbol{ heta}}ig(s,aig)\Big).$$

NPFL122, Lecture 5

Rainbow DDQN

PriRep Dueling

N-step NoisyNets

Distributional RL

Algorithm 1 Categorical Algorithm

input A transition $x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]$ $Q(x_{t+1}, a) := \sum_{i} z_i p_i(x_{t+1}, a)$ $a^* \leftarrow \arg \max_a Q(x_{t+1}, a)$ $m_i = 0, \quad i \in 0, \dots, N-1$ for $j \in 0, ..., N - 1$ do # Compute the projection of $\mathcal{T}z_i$ onto the support $\{z_i\}$ $\hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{max}}}^{V_{\text{max}}}$ $b_i \leftarrow (\hat{\mathcal{T}} z_i - V_{\text{MIN}}) / \Delta z \quad \# b_i \in [0, N-1]$ $l \leftarrow |b_i|, u \leftarrow [b_i]$ # Distribute probability of $\hat{\mathcal{T}}z_i$ $m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)$ $m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)$ end for **output** $-\sum_{i} m_i \log p_i(x_t, a_t)$ # Cross-entropy loss

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

NPFL122, Lecture 5

Distributional RL

	Mean	Median	> H.B.	>DQN
DQN	228%	79%	24	0
DDQN	307%	118%	33	43
DUEL.	373%	151%	37	50
Prior.	434%	124%	39	48
PR. DUEL.	592%	172%	39	44
C51	701%	178%	40	50

Figure 6 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Figure 4. Learned value distribution during an episode of SPACE
 INVADERS. Different actions are shaded different colours. Returns below 0 (which do not occur in SPACE INVADERS) are not shown here as the agent assigns virtually no probability to them.
 Figure 4 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

NPFL122, Lecture 5

DQN

Refresh

Rainbow DDQN

PriRep Dueling

N-step

NoisyNets DistRL

Rainbow

Distributional RL

Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success. *Figure 18 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.*

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

N-step NoisyNets

DistRL

Rainbow

Distributional RL

Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames. Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

N-step NoisyNets

DistRL

Rainbow

Rainbow Architecture

Rainbow combines all described DQN extensions. Instead of 1-step updates, *n*-step updates are utilized, and KL divergence of the current and target return distribution is minimized:

$$D_{ ext{KL}}\Big(\Phiig(\sum_{i=0}^{n-1} \gamma^i R_{t+i+1} + \gamma^n Z_{ar{oldsymbol{ heta}}}ig(S_{t+n}, rgmax_{a'} \mathbb{E} Z_{oldsymbol{ heta}}(S_{t+n}, a')ig)\Big)\Big\|Z(S_t, A_t)\Big).$$

The prioritized replay chooses transitions according to the probability

$$p_t \propto D_{ ext{KL}} \Big(\Phiig(\sum_{i=0}^{n-1} \gamma^i R_{t+i+1} + \gamma^n Z_{ar{oldsymbol{ heta}}}ig(S_{t+n}, rgmax_{a'} \mathbb{E} Z_{oldsymbol{ heta}}(S_{t+n}, a') ig) \Big) \Big\| Z(S_t, A_t) \Big)^w.$$

Network utilizes dueling architecture feeding the shared representation $f(s; \zeta)$ into value computation $V(f(s; \zeta); \eta)$ and advantage computation $A_i(f(s; \zeta), a; \psi)$ for atom z_i , and the final probability of atom z_i in state s and action a is computed as

$$p_i(s,a) \stackrel{\text{def}}{=} \frac{e^{V_i(f(s;\zeta);\eta) + A_i(f(s;\zeta),a;\psi) - \sum_{a' \in \mathcal{A}} A_i(f(s;\zeta),a';\psi)/|\mathcal{A}|}}{\sum_j e^{V_j(f(s;\zeta);\eta) + A_j(f(s;\zeta),a;\psi) - \sum_{a' \in \mathcal{A}} A_j(f(s;\zeta),a';\psi)/|\mathcal{A}|}}.$$
5 Refresh DQN Rainbow DDQN PriRep Dueling *N*-step NoisyNets DistRL Rainbow 34/3

9

Rainbow Hyperparameters

Ú_F≩L

Finally, we replace all linear layers by their noisy equivalents.

Parameter	Value
Min history to start learning	80K frames
Adam learning rate	0.0000625
Exploration ϵ	0.0
Noisy Nets σ_0	0.5
Target Network Period	32K frames
Adam ϵ	1.5×10^{-4}
Prioritization type	proportional
Prioritization exponent ω	0.5
Prioritization importance sampling β	$0.4 \rightarrow 1.0$
Multi-step returns n	3
Distributional atoms	51
Distributional min/max values	[-10, 10]

Table 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.

NPFL122, Lecture 5

Refresh DQN

Rainbow DDQN

PriRep Dueling

 $N ext{-step}$

NoisyNets

DistRL Rainbow

Rainbow Results

Agent	no-ops	human starts
DQN	79%	68%
DDQN (*)	117%	110%
Prioritized DDQN (*)	140%	128%
Dueling DDQN (*)	151%	117%
A3C (*)	-	116%
Noisy DQN	118%	102%
Distributional DQN	164%	125%
Rainbow	223%	153%

 Table 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo

 Hessel et al.

NPFL122, Lecture 5

DDQN

PriRep

Rainbow

Dueling

N-step

DistRL NoisyNets

Rainbow

Rainbow Results

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Figure 3 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.

NPFL122, Lecture 5

DQN

Refresh

DDQN

Rainbow

PriRep Dueling

ueling IV -

 $N\operatorname{\mathsf{-step}}$

NoisyNets

DistRL

Rainbow

Rainbow Ablations

Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

Figure 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.

N-step

NoisyNets

DQN Rainbow

Refresh

DDQN

PriRep

Dueling

Rainbow

DistRL

Rainbow Ablations

