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Function Approximation

We will approximate value function  and/or state-value function , selecting it from a family

of functions parametrized by a weight vector .

We denote the approximations as

We utilize the Mean Squared Value Error objective, denoted :

where the state distribution  is usually on-policy distribution.
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Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector ) is usually optimized using gradient

methods, for example as

As usual, the  is estimated by a suitable sample of a return:

in Monte Carlo methods, we use episodic return ,

in temporal difference methods, we employ bootstrapping and use one-step return

or an -step return.
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Deep Q Network

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge).

 

Figure 1 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks

Preprocessing:  128-color images are converted to grayscale and then resized to 

.

Frame skipping technique is used, i.e., only every  frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Input to the network are last  frames (considering only the frames kept by frame skipping),

i.e., an image with  channels.

The network is fairly standard, performing
32 filters of size  with stride 4 and ReLU,

64 filters of size  with stride 2 and ReLU,

64 filters of size  with stride 1 and ReLU,

fully connected layer with 512 units and ReLU,
output layer with 18 output units (one for each action)

210 × 160
84 × 84

4th

4
4

8 × 8
4 × 4
3 × 3
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Deep Q Networks

Network is trained with RMSProp to minimize the following loss:

An -greedy behavior policy is utilized (starts at  and gradually decreases to ).

Important improvements:

experience replay: the generated episodes are stored in a buffer as  quadruples,

and for training a transition is sampled uniformly (off-policy training);
separate target network : to prevent instabilities, a separate target network is used to

estimate one-step returns. The weights are not trained, but copied from the trained network
after a fixed number of gradient updates;
reward clipping: because rewards have wildly different scale in different games, all positive
rewards are replaced by  and negative by ; life loss is used as end of episode.

furthermore,  is also clipped to 

 (i.e., a  loss or Huber loss).

L =def E  (r + ¬done ⋅ γ max  Q(s , a ; ) − Q(s, a; θ)) .(s,a,r,s )∼data′ [ [ ] a′
′ ′ θ̄ 2]

ε ε = 1 0.1

(s, a, r, s )′

θ̄

+1 −1
(r + ¬done ⋅[ ] γ max  Q(s , a ; ) −a′

′ ′ θ̄ Q(s, a; θ))
[−1, 1] smooth  L  1
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Deep Q Networks Hyperparameters

Hyperparameter Value

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M

RMSProp learning rate and momentum 0.00025, 0.95

initial , final  (linear decay) and frame of final 1.0, 0.1, 1M

replay start size 50k

no-op max 30

ε ε ε
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of
them into a single architecture they call Rainbow.

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and estimate its value.

 

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε
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Double Q-learning

 

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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Rainbow DQN Extensions

Double Q-learning
Similarly to double Q-learning, instead of

we minimize

 

Figure 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ),

r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ).
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Rainbow DQN Extensions

Double Q-learning
 

Figure 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
 

Figure 3 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

 

Table 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

Performance on episodes taking at most 30 minutes and using human starts on 49 games:

 

Table 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Prioritized Replay
Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

where  controls the shape of the distribution (which is uniform for  and corresponds to

TD error for ).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

p  ∝t  r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ)  ,
ω

ω ω = 0
ω = 1

p  ∝t  r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ)  ,

ω
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Rainbow DQN Extensions

Prioritized Replay
Because we now sample transitions according to  instead of uniformly, on-policy distribution

and sampling distribution differ. To compensate, we therefore utilize importance sampling with
ratio

The authors utilize in fact “for stability reasons”

p  t

ρ  =t  .(
p  t

1/N
)
β

ρ  /  ρ  .t
i

max i
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Rainbow DQN Extensions

Prioritized Replay
 

Algorithm 1 of "Prioritized Experience Replay" by Tom Schaul et al.
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Rainbow DQN Extensions

Dueling Networks
Instead of computing directly , we compose it from the following quantities:

value function for a given state ,

advantage function computing an advantage of using action  in state .

 

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)

s

a s

Q(s, a) =def
V (f(s; ζ); η)+ A(f(s; ζ), a;ψ)−  

∣A∣
 A(f(s; ζ), a ;ψ)∑a ∈A′

′
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Rainbow DQN Extensions

Dueling Networks
 

Figure 3 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Dueling Networks
 

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Dueling Networks
Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of , Clip corresponds to gradient clipping to

norm at most 10.

 

Table 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)
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Rainbow DQN Extensions

Multi-step Learning
Instead of Q-learning, we use -step variant of Q-learning, which estimates return as

This changes the off-policy algorithm to on-policy (because the “inner” actions are sampled
from the behaviour distribution, but should follow the target distribution); however, it is not
discussed in any way by the authors.

n

 γ R  +
i=1

∑
n

i−1
i γ  Q(s , a ; ).n

a′
max ′ ′ θ̄
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Rainbow DQN Extensions

Noisy Nets
Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters  of a regular neural network are in Noisy nets represented as

where  is zero-mean noise with fixed statistics. We therefore learn the parameters .

A fully connected layer with parameters ,

is represented in the following way in Noisy nets:

θ

θ ≈ μ+ σ ⊙ ε,

ε (μ,σ)

(w, b)

y = wx+ b,

y = (μ  +w σ  ⊙w ε  )x+w (μ  +b σ  ⊙b ε  ).b
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Rainbow DQN Extensions

Noisy Nets
The noise  can be for example independent Gaussian noise. However, for performance reasons,

factorized Gaussian noise is used to generate a matrix of noise. If  is noise corresponding to

a layer with  inputs and  outputs, we generate independent noise  for input neurons,

independent noise  for output neurons, and set

for .

The authors generate noise samples for every batch, sharing the noise for all batch instances.

Deep Q Networks

When training a DQN, -greedy is no longer used and all policies are greedy, and all fully

connected layers are parametrized as noisy nets.

ε

ε  i,j

i j ε  i

ε  j

ε  =i,j f(ε  )f(ε  )i j

f(x) = sign(x)  ∣x∣

ε
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Rainbow DQN Extensions

Noisy Nets
 

Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.

 

Figure 2 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Noisy Nets
 

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Distributional RL
Instead of an expected return , we could estimate the distribution of expected returns 

.

These distributions satisfy a distributional Bellman equation:

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric
(Wasserstein metric).

Q(s, a)
Z(s, a)

Z  (s, a) =π R(s, a) + γE  Z(s , a ).s ,a′ ′
′ ′
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Rainbow DQN Extensions

Distributional RL
The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms  and by . Support of the distribution are atoms

The atom probabilities are predicted using a  distribution as

N ∈ N V  ,V  ∈MIN MAX R

{z  i =def
V  +MIN iΔz : 0 ≤ i < N}   for Δz =def

 .
N − 1

V  − V  MAX MIN

softmax

Z  (s, a) =θ z   with probability p  =  .{ i i
 e∑j
f  (s,a;θ)j

ef  (s,a;θ)i

}
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Rainbow DQN Extensions

 

Figure 1 of "A Distributional Perspective on
Reinforcement Learning" by Marc G. Bellemare et al.

Distributional RL
After the Bellman update, the support of the distribution 

 is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors
in the original support.

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

R(s, a) + γZ(s , a )′ ′

Φ(R(s, a) + γZ(s , a ))  

′ ′
i

=def
  1 −    p  (s , a ).

j=1

∑
N

Δz

 [r + γz  ]  − z   j V  MIN

V  MAX
i

0

1

j
′ ′

D  (Φ(R+KL γZ  (s ,  EZ  (s , a )))  Z  (s, a)).θ̄
′

a′
arg max θ̄

′ ′
θ
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Rainbow DQN Extensions

Distributional RL
 

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 6 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

 

Figure 4 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 18 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow Architecture

Rainbow combines all described DQN extensions. Instead of -step updates, -step updates are

utilized, and KL divergence of the current and target return distribution is minimized:

The prioritized replay chooses transitions according to the probability

Network utilizes dueling architecture feeding the shared representation  into value

computation  and advantage computation  for atom , and the

final probability of atom  in state  and action  is computed as

1 n

D  (Φ(  γ R  +KL ∑i=0
n−1 i

t+i+1 γ Z  (S  ,  EZ  (S  , a )))  Z(S  ,A  )).n
θ̄ t+n

a′
arg max θ t+n

′
t t

p  ∝t D  (Φ(  γ R  +KL ∑i=0
n−1 i

t+i+1 γ Z  (S  ,  EZ  (S  , a )))  Z(S  ,A  )) .n
θ̄ t+n

a′
arg max θ t+n

′
t t

w

f(s; ζ)
V (f(s; ζ); η) A  (f(s; ζ), a;ψ)i z  i

z  i s a

p  (s, a)i =def .
 e∑j
V  (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣j j ∑

a ∈A′ j
′

eV  (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣i i ∑a ∈A′ i
′
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Rainbow Hyperparameters

Finally, we replace all linear layers by their noisy equivalents.

 

Table 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Table 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Figure 3 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Ablations

 

Figure 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Ablations

 

Figure 4 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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