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Multi-Agent Reinforcement Learning
We use the thesis

Cooperative Multi-Agent Reinforcement Learning
https://dspace.cuni.cz/handle/20.500.11956 /127431

as an introduction text.
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https://dspace.cuni.cz/handle/20.500.11956/127431

Multi-Agent Hide-and-Seek UL

As another example, consider https://openai.com/blog/emergent-tool-use/.

NPFL122, Lecture 13 VIS HideAndSeek NPG TRPO PPO 3/15


https://openai.com/blog/emergent-tool-use/

The following approach has been introduced by Kakade (2002).

Using policy gradient theorem, we are able to compute Vv,. Normally, we update the
parameters by using directly this gradient. This choice is justified by the fact that a vector d
which maximizes v, (s; @ + d) under the constraint that |d|? is bounded by a small constant is
exactly the gradient Vu,..

Normally, the length |d|2 is computed using Euclidean metric. But in general, any metric could
be used. Representing a metric using a positive-definite matrix G (identity matrix for Euclidean
metric), we can compute the distance as |d|? = >y Gijdid; = d" Gd. The steepest ascent

direction is then given by G~ 1Vu,.

Note that when G is the Hessian Hwv,, the above process is exactly Newton's method.
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Natural Policy Gradient
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(a) Vanilla policy gradient. (b) Natural policy gradient.

Figure 3 of the paper "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.
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A suitable choice for the metric is Fisher information matrix defined as

0log m(als; @) 0logm(als; 0)
00; 00 ;

Fs(e) = Eﬂ(a\s;e) [

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

Recall Kullback-Leibler distance (or relative entropy) defined as

e %
Dxw(pllg) =) pilog o~ Hp9 - Hp).

The Fisher information matrix is also a Hessian of the Dxr,(m(al|s; 0)||m(als; 8"):

82
F(6) = oy Drv(r(alsO) (el )],
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Using the metric

F(0) = Esvys F5(0)

. ef —
we want to update the parameters using dr = F(0) ' Vu,.

An interesting property of using the dr to update the parameters is that

® updating @ using Vv, will choose an arbitrary better action in state s;
® updating 0 using F(B)_1VU7T chooses the best action (maximizing expected return),

similarly to tabular greedy policy improvement.

However, computing dg in a straightforward way is too costly.
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Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous
Control propose a modification to the NPG to efficiently compute dp.

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations Ax = b in an iterative manner, by using A only to compute

products Aw for a suitable v.

Therefore, dF is found as a solution of
F(0)dr = Vv,

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of

0

V (Vv TF(0) Vo,
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Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies 7, 7r, we can write
Vi = Ug T ESNu(ﬁ)EaNﬁ(a|s) Qr (a’|3)7

where a,(a|s) is the advantage function g (a|s) — v;(s) and u(7) is the on-policy
distribution of the policy .

Analogously to policy improvement, we see that if a(als) > 0, policy 7 performance increases
(or stays the same if the advantages are zero everywhere).

However, sampling states s ~ u(7r) is costly. Therefore, we instead consider

Lﬂ(ﬁ') = VUr + ESNN(w)EaNﬁ(a|s) Ar (CL‘S).
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L (ﬁ-) = U + ESN,LL(TI') anfr(a\s) Qr (CL|S)

It can be shown that for parametrized m(a|s; @) the L, (7) matches vz to the first order.

Schulman et al. additionally proves that if we denote o = DR (mo1d ||Tpew) =
max, DK, (oid (+|8)||Tnew (-] $)) ., then

4
V. > Ly (Thew) — § _8?;)2 o where €= max la:(s,a)l.

Therefore, TRPO maximizes Ly, (mg) subject to DY (g, ||Te) < 8, where

max

o D% (mq,||me) = Esp(mo, ) DKL (o1d (+]8)||Tnew (:]$))] is used instead of DY

performance reasons;
® § is a constant found empirically, as the one implied by the above equation is too small:

® importance sampling is used to account for sampling actions from 7r.

for
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maximize Ln, (79) = Eywy(ny, ) a~mo, (als) [;‘;((‘1‘33) A, (a|s)} subject to D (g, ||Tg) < &

The parameters are updated using dr = F(0) 'V Ly, (mg), utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the Dkr, constraint, a line search is in fact performed.

We start by the learning rate of \/5/(d£F(9)_1dF) and shrink it exponentially until the

constraint is satistifed and the objective improves.
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Figure 1. Illustration of locomotion tasks: (a) Swimmer; (b) Hop-
per; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid;

and (g) Full Humanoid.
Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG
Cart-Pole Balancing 77.1+0.0 4693.7+ 14.0 39864 4+ 748.9 4861.5 + 12.3 565.6 +137.6 4869.8 + 37.6 4815.4+ 4.8 2440.4+568.3 46344 + 87.8
Inverted Pendulum* —153.4+£0.2 13.44+ 18.0 209.7 + 555 84.7+ 13.8 —113.3+ 4.6 2472 + 76.1 38.2+ 25.7 —40.1+f 5.7 40.0 $244.6
Mountain Car —415.4+0.0 —-67.1£ 1.0 -665 =+ 4.5 —79.44+ 1.1 -275.6£166.3 -61.7 + 0.9 —66.0+ 24 -850+ 7.7 —288.44+170.3
Acrobot —1904.5+1.0 —508.1+ 91.0 —395.84+121.2 —352.7+ 35.9 —1001.5+ 10.8 —326.0+f 24.4 —436.8+ 14.7 —-785.6+ 13.1 -223.6 + 5.8
Double Inverted Pendulum* 149.74+0.1 4116.5+ 65.2 44554 + 37.6 3614.8 +368.1 446.7+114.8 44124 + 50.4 2566.2+178.9 1576.1+ 51.3 2863.4+154.0
Swimmer* —1.74+0.1 923+ 0.1 960 £ 0.2 60.7+ 5.5 3.8+ 3.3 960 £ 0.2 68.8+ 2.4 649+ 14 85.8+ 1.8
Hopper 8.44+0.0 714.0+ 29.3 11551 + 57.9 553.2+ 71.0 86.7+ 17.6 1183.3 =+ 150.0 63.1+ 7.8 20.3+ 14.3 267.1+ 43.5
2D Walker —1.74+0.0 506.5+ 78.8 1382.6 4+ 108.2 136.0+ 159 —37.0+ 38.1 1353.8 £+ 85.0 84.5+ 19.2 7714+ 24.3 318.4+181.6
Half-Cheetah —90.8+0.3 1183.1+& 69.2 1729.5 + 184.6 376.1+ 28.2 34.5+ 38.0 1914.0 =+ 120.1 330.4+£274.8 441.3 +£107.6 2148.6 + 702.7
Ant* 13.4+0.7 548.3+ 55.5 706.0 4+ 127.7 376+ 3.1 39.0+ 9.8 730.2 + 61.3 49.2+ 5.9 17.8+ 15.5 326.2+ 20.8
Simple Humanoid 41.54+0.2 128.1+ 34.0 255.0 + 24.5 93.3+ 17.4 28.3+ 4.7 269.7 + 403 60.6+ 12.9 28.7+ 3.9 99.4+ 28.1
Full Humanoid 13.2+0.1 262.2+ 10.5 2884 + 25.2 46.7+ 5.6 41.7+ 6.1 2870 + 234 36.9+ 2.9 N/A + N/A 119.0+ 31.2
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Proximal Policy Optimization Uz
A simplification of TRPO which can be implemented using a few lines of code.

Let 7,(0) = w?ﬁlﬁ%itéfll)' PPO maximizes the objective

LM (0) = E, [min (r+(6) Ay, clip(r:(6),1 — ,1 + S)At))]°

Such a LMP () is a lower (pessimistic) bound.
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Figure 1 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.
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Proximal Policy Optimization

The advantages A; are additionally estimated using the so-called generalized advantage
estimation, which is just an analogue of the truncated n-step lambda-return:

n—1

A = Zﬁ’i)\i (Rt+1+z' + YV (Styit1) — V(St+z'))-
i=0

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,...,N do
Run policy mg_, in environment for 7" timesteps

Compute advantage estimates 1211, e ,flT
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
‘901d 4
end for

Algorithm 1 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.
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Proximal Policy Optimization UL

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
v Y 1000
2000 o = 2500 'Y Y W 8000
. “‘ ; ‘ 800
1500
2000 6000
1000 1500 600
4000
500 1000 400
0 500 2000 200
-500
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
-20 —— A2C + Trust Region
100 3000 —— CEM
60 50 2000 —— Vanilla PG, Adaptive
—— TRPO
-80 40
1000
20
-100
0
-120 0
0 1000000 0 1000000 0 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million

timesteps.
Figure 3 of the paper "Proximal Policy Optimization Algorithms" by Schulman et al.
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