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MuZero

The MuZero algorithm extends the AlphaZero by a trained model, alleviating the requirement
for a known MDP dynamics. It is evaluated both on board games and on the Atari domain.

At each time-step , for each of  steps, a model , with parameters , conditioned

on past observations  and future actions , predicts three future

quantities:

the policy ,

the value function ,

the immediate reward ,

where  are the observed rewards and  is the behaviour policy.

t 1 ≤ k ≤ K μ  θ θ

o  , … , o  1 t a  , … , a  t+1 t+k

p  ≈t
k π(a  ∣o  , … , o  , a  , … , a  )t+k+1 1 t t+1 t+k

v  ≈t
k E[u  +t+k+1 γu  +t+k+2 … ∣o  , … , o  , a  , … , a  ]1 t t+1 t+k

r  ≈t
k u  t+k

u  i π

2/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM



MuZero

At each time-step  (omitted from now on for simplicity), the model is composed of three

components, a representation function, a dynamics function and a prediction function.

The dynamics function, , simulates the MDP dynamics and predicts

an immediate reward  and an internal state . The internal state has no explicit

semantics, its only goal is to accurately predict rewards, values and policies.

The prediction function , computes the policy and value function, similarly

as in AlphaZero.

The representation function, , generates an internal state encoding the

past observations.

t

r , s =k k g  (s , a )θ
k−1 k

rk sk

p , v =k k f  (s )θ
k

s =0 h  (o  , … , o  )θ 1 t

3/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM



MuZero

 

Figure 1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – MCTS

The MCTS algorithm is very similar to the one used in AlphaZero, only the trained model is
used. It produces a policy  and value estimate .

All actions, including the invalid ones, are allowed at any time, except at the root, where the
invalid actions (available from the current state) are disallowed.

No states are consider terminal during the search.

During the backup phase, we consider a general discounted bootstrapped return

Furthermore, the expected return is generally unbounded. Therefore, MuZero normalize the
Q-value estimates to  range by using minimum and maximum values observed in the

search tree until now:
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MuZero – Action Selection

To select a move, we employ a MCTS algorithm and then sample an action the obtained policy,
.

For games, the same strategy of sampling the actions  is used. In the Atari domain, the

actions are sampled according to visit counts for the whole episode, but with a given
temperature :

where  is decayed during training – for first 500k steps it is 1, for the next 250k steps it is

0.5 and for the last 250k steps it is 0.25.

While for the board games 800 simulations are used during MCTS, only 50 are used for Atari.

In case of Atari, the replay buffer consists of 125k sequences of 200 actions.

a  ∼t+1 π  t

a  t

T

π(a∣s) =  ,
 N(s, b)∑b

1/T

N(s, a)1/T

T

6/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM



MuZero – Training

During training, we utilize a sequence of  moves. We estimate the return using bootstrapping

as . The values  and  are used

in the paper.

The loss is then composed of the following components:

Note that in Atari, rewards are scaled by  for , and

authors utilize a cross-entropy loss with 601 categories for values , which they

claim to be more stable.

Furthermore in Atari, the discount factor  is used and the replay buffer elements are

sampled according to prioritized replay and importance sampling is used to account for changing
the sampling distribution.
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MuZero
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MuZero
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MuZero – Evaluation

 

Figure 2 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Atari Results

 

Table 1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

MuZero Reanalyze is optimized for greater sample efficiency. It revisits past trajectories using
the network with the latest parameters (using the fresh policy in 80% of the training steps).
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MuZero – Planning Ablations

 

Figure 3 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Planning Ablations

 

Figure S3 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Detailed Atari Results

 

Table S1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Detailed Atari Results

 

Table S1 of the paper "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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PlaNet

In Nov 2018, an interesting paper from D. Hafner et al. proposed a Deep Planning Network
(PlaNet), which is a model-based agent that learns the MDP dynamics from pixels and then
chooses actions using a CEM planner using a compact latent space.

The PlaNet is evaluated on selected tasks from the DeepMind control suite

 

Figure 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551
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PlaNet

The partially observable MDPs are considered in PlaNet, that follow the stochastic dynamics:

The main goal is to train the first three – the transition function, the observation function and
the reward function.

    

transition function:

observation function:

reward function:

policy:

s  t

o  t

r  t

a  t

∼ p(s  ∣s  , a  ),t t−1 t−1

∼ p(o  ∣s  ),t t

∼ p(r  ∣s  ),t t

∼ p(a  ∣o  , a  ).t ≤t <t
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PlaNet – Data Collection

 

Algorithm 1 of "Learning Latent Dynamics for Planning from
Pixels", https://arxiv.org/abs/1811.04551

Because an untrained agent will most likely not cover all needed
environment states, we need to iteratively collect new experience
and train the model. The authors propose , , 

, ,  between 2 and 8.

For planning, CEM algorithm capable of solving all tasks with a
true model is used; , , , .

 

Algorithm 2 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

S = 5 C = 100
B = 50 L = 50 R

H = 12 I = 10 J = 1000 K = 100
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PlaNet – Latent Dynamics

 

Figure 2 of "Learning Latent Dynamics for Planning from Pixels",
https://arxiv.org/abs/1811.04551

First let us consider a typical latent-space model,
consisting of

The transition model is Gaussian with mean and variance predicted by a network, the
observation model is Gaussian with identity covariance and mean predicted by a deconvolutional
network, and the reward model is a scalar Gaussian with unit variance and mean predicted by a
neural network.

To train such a model, we turn to variational inference and use an encoder 

, which is a Gaussian with mean and variance

predicted by a convolutional neural network.

    

transition function:

observation function:

reward function:
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∼ p(s  ∣s  , a  ),t t−1 t−1
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∼ p(r  ∣s  ).t t
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T
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PlaNet – Training Objective

Using the encoder, we obtain the following variational lower bound on the log-likelihood of the
observations (for rewards the bound is analogous):

We evaluate the expectations using a single sample and use the reparametrization trick to allow
backpropagation through the sampling.

  

log p(o  ∣a  )1:T 1:T

= log  p(s  ∣s  , a  )p(o  ∣s  ) ds  ∫
t

∏ t t−1 t−1 t t 1:T

≥  (  −  ).
t=1

∑
T

reconstruction

 E  log p(o  ∣s  )q(s  ∣o  ,a  )t ≤t <t t t

complexity

 E  D  (q(s  ∣o  , a  )∥p(s  ∣s  , a  ))q(s  ∣o  ,a  )t−1 ≤t−1 <t−1 KL t ≤t <t t t−1 t−1
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PlaNet – Training Objective Derivation

To derive the training objective, we employ importance sampling and the Jensen’s inequality:

  

log p(o  ∣a  )1:T 1:T
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∑
T
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 E  log p(o  ∣s  )q(s  ∣o  ,a  )t ≤t <t t t
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 E  D  (q(s  ∣o  , a  )∥p(s  ∣s  , a  ))q(s  ∣o  ,a  )t−1 ≤t−1 <t−1 KL t ≤t <t t t−1 t−1
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PlaNet – Recurrent State-Space Model

The purely stochastic transitions nevertheless struggle to store information for multiple
timesteps. Therefore, the authors propose to include a deterministic path to the model,
obtaining the recurrent state-space model (RSSM):

 

Figure 2 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

    

deterministic state model:

stochastic state function:

observation function:

reward function:

encoder:

h  t

s  t

o  t

r  t

q  t

= f(h  , s  , a  ),t−1 t−1 t−1

∼ p(s  ∣h  ),t t

∼ p(o  ∣h  , s  ),t t t

∼ p(r  ∣h  , s  ),t t t

∼ q(s  ∣h  , o  ).t t t
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PlaNet – Results

 

Table 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551
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PlaNet – Ablations

 

Figure 4 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551
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PlaNet – Ablations

 

Figure 5 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

25/25NPFL122, Lecture 11 MuZero μ0Model μ0MCTS μ0Training PlaNet DataCollect&Plan LatentModel RSSM


