
NPFL122, Lecture 7

Continuous Actions, DDPG, TD3

Milan Straka

November 15, 2021

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Continuous Action Space

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

2/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution, we suitably parametrize the action value, usually using the normal

distribution. Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a regular regression (i.e., one output neuron without
activation);
the standard deviation (which must be positive) being computed again as a single neuron,

but with either or , where .

softmax

π(a∣s; θ) =
def
P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

3/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mus = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.keras.layers.Dense(actions)(hidden_layer)

 sds = tf.math.exp(sds) # or sds = tf.math.softplus(sds)

 action_dist = tfp.distributions.Normal(mus, sds)

 # Loss computed as - log π(a|s) * returns - entropy_regularization
 loss = - action_dist.log_prob(actions) * returns \

 - args.entropy_regularization * action_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

4/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Continuous Action Space

When the action consists of several real values, i.e., action is a suitable subregion of for

, we can:

either use multivariate Gaussian distribution;
or factorize the probability into a product of univariate normal distributions.

Modeling the action distribution using a single normal distribution might be insufficient, in
which case a mixture of normal distributions is usually used.

Sometimes, the continuous action space is used even for discrete output -- when modeling pixels
intensities (256 values) or sound amplitude (2 values), instead of a softmax we use discretized

mixture of distributions, usually (a distribution with a sigmoid cdf). Then,

However, such mixtures are usually used in generative modeling, not in reinforcement learning.

Rn
n > 1

16

logistic

π(a) = p (σ((a +
i

∑ i 0.5 − μ)/σ)−i i σ((a − 0.5 − μ)/σ)).i i

5/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy is deterministic and computes an action . Further,

assume the reward is actually a deterministic function of the given state-action pair.

Then, under several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al in 2014.

∇ J(θ) ∝θ E [q (s, a)∇ π(a∣s; θ)].s∼μ ∑
a∈A

π θ

π(s; θ) a ∈ R
r(s, a)

∇ J(θ) ∝θ E [∇ π(s; θ)∇ q (s, a)].s∼μ θ a π ∣
∣
a=π(s;θ)

6/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem.

However, we will be exchanging derivatives and integrals, for which we need several
assumptions:

we assume that are

continuous in all parameters and variables;
we further assume that are bounded.

Details about which assumptions are required and when, can be found in Appendix B of
Deterministic Policy Gradient Algorithms: Supplementary Material by David Silver et al.

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a),π(s; θ), ∇ π(s; θ)′
a

′
a θ

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a)′
a

′
a

7/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deterministic Policy Gradient Theorem – Proof

We finish the proof as in the gradient theorem by continually expanding , getting

 and

then .

∇ v (s) =θ π ∇ q (s,π(s; θ))θ π

= ∇ (r(s,π(s; θ))+θ p(s ∣s,π(s; θ))γv (s) ds)∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ r(s, a) +θ a ∣
∣
a=π(s;θ) ∇ γp(s ∣s,π(s; θ))v (s) dsθ ∫

s′

′
π

′ ′

= ∇ π(s; θ)∇ (r(s, a) +θ a γp(s ∣s, a)v (s) ds) ∫
s′

′
π

′ ′

∣
∣
a=π(s;θ)

+ γp(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

= ∇ π(s; θ)∇ q (s, a) +θ a π ∣
∣
a=π(s;θ) γp(s ∣s,π(s; θ))∇ v (s) ds∫

s′

′
θ π

′ ′

∇ v (s)θ π
′

∇ v (s) =θ π γ P (s →∫
s′ ∑k=0

∞ k s in k steps ∣π)[∇ π(s ; θ)∇ q (s , a)] ds′
θ

′
a π

′
∣
∣
a=π(s ;θ)′

′

∇ J(θ) =θ E ∇ v (s) ∝s∼h θ π E [∇ π(s; θ)∇ q (s, a)]s∼μ θ a π ∣
∣
a=π(s;θ)

8/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions (similarly to how expected
Sarsa is also an off-policy algorithm).

We therefore train function approximation for both and , training

using a deterministic variant of the Bellman equation:

and according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with), batch normalization for CNNs, and perform exploration by adding a Ornstein-

Uhlenbeck noise to predicted actions. Training is performed by Adam with learning rates of 1e-4
and 1e-3 for the policy and critic network, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S ,A ; θ) =t t E [R +R ,S t+1 t+1 t+1 γq(S ,π(S ; θ))]t+1 t+1

π(s; θ)

τ = 0.001

9/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deep Deterministic Policy Gradients

Algorithm 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

10/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deep Deterministic Policy Gradients

Figure 3 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

11/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Deep Deterministic Policy Gradients

Results using low-dimensional (lowd) version of the environment, pixel representation (pix) and
DPG reference (cntrl).

Table 1 of the paper "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

12/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Ornstein-Uhlenbeck Exploration

While the exploration policy could just use Gaussian noise, the authors claim that temporarily-
correlated noise is more effective for physical control problems with inertia.

They therefore generate noise using Ornstein-Uhlenbeck process, by computing

utilizing hyperparameter values and .

n ←t n +t−1 θ ⋅ (μ − n) +t−1 ε ∼ N (0,σ),2

τ = 0.15 σ = 0.2

13/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

MuJoCo

Figure 4 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

14/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

Twin Delayed Deep Deterministic Policy Gradient

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

decrease maximization bias by training two critics and choosing the minimum of their
predictions;

introduce several variance-lowering optimizations:
delayed policy updates;
target policy smoothing.

The TD3 algorithm has been together with SAC one of the state-of-the-art algorithms for off-
policy continuous-actions RL training (as of 2021).

15/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Maximization Bias

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit operator. For DDPG methods, it can be

caused by the gradient descent itself. Let be the parameters maximizing the and let

 be the hypothetical parameters which maximise true , and let and denote

the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small we have

However, for real and for sufficiently small , it holds that

Therefore, if , for

max
θ approx q θ

θ true q π π approx π true

α < ε 1

E[q (s,π)] ≥θ approx E[q (s,π)].θ true

q π α < ε 2

E[q (s,π)] ≥π true E[q (s,π)].π approx

E[q (s,π)] ≥θ true E[q (s,π)]π true α < min(ε , ε)1 2

E[q (s,π)] ≥θ approx E[q (s,π)].π approx

16/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Maximization Bias

Figure 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.

Figure 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by
Scott Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e., (instead of using target policy and target critic as in

DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the policy
changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e., for updating .

The resulting DQ-AC algorithm is slightly better, but still suffering from overestimation.

r + γq (s ,π)θ′ ′
φ(s)′

r + γq (s ,π (s))θ 2
′

φ 1
′ q θ 1

17/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Algorithm

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum

value of both critics as

Furthermore, the authors suggest two additional improvements for variance reduction.

For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every -th step (is used in the paper).

To explicitly model that similar actions should lead to similar results, a small random noise
is added to performed actions when computing the target value:

r + γ q (s ,π (s)).
i=1,2
min θ i

′
′

φ′
′

d d = 2

r + γ q (s ,π (s) +
i=1,2
min θ i

′
′

φ′
′ ε) for ε ∼ clip(N (0,σ), −c, c).

18/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Algorithm

Algorithm 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

19/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Algorithm

Table 3 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

20/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Results

Figure 5 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

Table 1 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

21/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Ablations

Figure 7 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

Figure 8 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

22/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

TD3 – Ablations

Table 2 of the paper "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

23/23NPFL122, Lecture 7 Continuous Action Space DPG DDPG OrnsteinUhlenbeck MuJoCo TD3

