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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the

def

on-policy distribution under 7 as u(s). Let also J(0) = E; v (s).
Then

Vv (s) ZP(S —...— 8| Zqﬂ(S’,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps. The v parameter should be treated as a form of termination,
e, P(s— ... = &|m) oc Y ooy v"P(s — ' in k steps |7).
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Vor(s) = V| Y w(als; 0)a(s, )

=" |Vnlals; 0)an(s, ) + m(als; 6)Var (s, a)]

a L

_ :VT('(CL s: 9) ( )—|‘7T CL|S 0 Z p {S CL —|—’)/’U7r(3’)))]
_ _Vﬂ(a $;0)q:(s,a) + ym(als; ) ZS,Z? S ‘S,a)va(s’))]

a L

)

We now expand v, (s').
=", |Vn(als:0)g-(s,a) + yr(als;0)( 3, pls'|s,a)
> |Vl 0)an(sa) +n(@ls0) (Y p(s"|s',a)Ven(s) | ))]
Continuing to expand all v (s"), we obtain the following:

V(s ZZykP s — s in k steps |m) z:q7r (s',a)Vem(als'; 0).

s'eS k=0 acA
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To finish the proof of the first part, recall that
oo
Z’ykP(s — s in k steps |7) o< P(s — ... — §'|m).
k=0

For the second part, we know that

VoJ(0) = By Vour(s) x Egon Y P(s— ... = 8'|m) > g:(s',a)Vor(als'; ),
s'eS acA

therefore using the fact that p(s') = E, ., P(s — ... — §'|m) we get

VoJ(0) < Y u(s) > gx(s,a)Ver(als;0).

seS acA
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The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing —J (@) = —E,_,v.(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es ) Eorgr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).
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REINFORCE Algorithm Uzt

REINFORCE therefore minimizes the loss —J(0) with gradient
EswyEoorgr(s,a)Ve —Inm(als; 0),

where we estimate the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for T,

Input: a differentiable policy parameterization m(al|s, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7_1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,T — 1:
G Y1 VT Ry (Gy)
00+ oaGVinrm(AS:,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing y"t from the update of 6.
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In the proof, we assumed y is used as a form of termination in the definition of the on-policy
distribution.

However, even when discounting is used during training (to guarantee convergence even for very
long episodes), evaluation is often performed without discounting.
Consequently, the distribution p used in the REINFORCE algorithm is almost always the

unterminated (undiscounted) on-policy distribution (I am not aware of any implementation or
paper that would use it), so that we learn even in states that are far from the beginning of an
episode.

Note that this is actually true even for DQN and its variants. Therefore, the discounting
parameter 7y is used mostly as a variance-reduction technique.

REINFORCE
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The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 0) = b(s ngn (as; 0) = b(s) VQZW (a|s; @) = b(s)V1 = 0.
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A good choice for b(s) is v (s), which can be shown to minimize the variance of the gradient
estimate (in limit v — 1; see L. Weaver and N. Tao, The Optimal Reward Baseline for

Gradient-Based Reinforcement Learning for the proof). Such baseline reminds centering of
returns, given that

Vr(8) = Egorgr (s, a).

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (8, a) — v;(s) function is also called the advantage function

CI,W(S, CI,) = QW(Sa CL) — UW(S)'

Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value
function estimation, which is trained using mean square error of the predicted and observed
return.
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https://arxiv.org/abs/1301.2315

REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization 7(als, )
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7-1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,1T — 1:
G ZZ:tJrl Y Ry, (Gt)
d < G — 0(S,w)
W W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y"t from the update of 6.
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Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called the actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.

14/30
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Actor-Critic UL

One-step Actor—Critic (episodic), for estimating mg ~ .,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 6 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A ~m(:|5,0)
Take action A, observe S/, R
d « R+ ~v0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 0+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.
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The A3C was introduced in a 2016 paper from Volodymyr Mnih et al. (the same group as
DQN) Asynchronous Methods for Deep Reinforcement Learning.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term —BH (7 (s; @)) to the loss to support
exploration and discourage premature convergence (they use 8 = 0.01).
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https://arxiv.org/abs/1602.01783

Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T' = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 6~ <+ 0

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r

[ for terminal s’
Y71 r+ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < db + 8(9’_@52’“’9))
/
s=s

T+ T+ 1landt <+ t+1

if ' mod Itarget == (0 then
Update the target network 6~ < 6

end if

ift mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of 6 using d#.
Clear gradients df < O.

end if

until 7" > Th oz

Algorithm 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector 6.
// Assume global shared target parameter vector 0~ .
// Assume global shared counter T’ = (.
Initialize thread step counter ¢ <— 1
Initialize target network parameters 6~ <« 0
Initialize thread-specific parameters ' = 6
Initialize network gradients df <— 0
repeat

Clear gradients df <— 0

Synchronize thread-specific parameters 6’ = 0

tstart =t
Get state s¢
repeat

Take action a; according to the e-greedy policy based on Q(s¢, a; 0")
Receive reward r; and new state S¢1

t—t+1
T+T+1
until terminal s; or ¢ — tstart == tmax
R = 0 for terminal s¢
| maxe Q(st,a;07) for non-terminal s;
for: € {t — 1, . ,tsta,rt} do
R+ ri+~vR

8(R—Q(s1,ai30"))*
a6’

Accumulate gradients wrt 6: df < df +
end for
Perform asynchronous update of 6 using df.
if ' mod Itarget == (0 then
0~ 0
end if
until 77 > Taz

Algorithm S2 of the paper "Asynchronous Methods for Deep Reinforcement Learning” by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0, and global shared counter T' = 0
// Assume thread-specific parameter vectors 0’ and 0.,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters ' = 0 and 0;, = 0,

tstart =1
Get state s;
repeat

Perform a; according to policy m(az|s¢;6")
Receive reward 7; and new state s;41

t—t+1
T+ T+1
until terminal s; or t — tstart == tmax
R = { 0 for terminal s¢
T Vs, 0y) for non-terminal s;// Bootstrap from last state
for: ¢ {t — 1, e ,tstart} do
R+ nri+vR

Accumulate gradients wrt 0": d < df + V/ log 7(ai|si; 0") (R — V(s4;65,))
Accumulate gradients wrt 0.,: df, < df, + 0 (R — V(s:;0.,))* /00,
end for
Perform asynchronous update of 6 using df and of 6,, using df,,.
until 7" > Tax

Algorithm S3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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All methods performed updates every 5 actions (fmax = IAsyncUpdate = D), updating the target
network each 40 000 frames.
The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU non-linearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of v = 0.99 and used RMSProp with momentum decay
factor of 0.99.
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Figure 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
| Method | Training Time | Mean | Median | Number of threads
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3% Method 1 2 4 8 16
D-DQN 8 dayson GPU | 332.9% | 110.9% I-step Q 10130 63 | 133 | 24.1
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6% 1-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 22.1
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Table 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Table 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning” by Volodymyr
Mnih et al. Mnih et al.
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Asynchronous Methods for Deep RL
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Figure 4 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL
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Figure 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).
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Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights 6, 6,
2: Instantiate set e of n. environments
3: repeat

4: fort = 1to t,nax do
5: Sample a; from 7(a:|s¢; 6)
6: Calculate v, from V' (s¢; 6,)
7 parallel for : = 1 to n. do
8: Perform action a; ; in environment e;
9: Observe new state s¢1,; and reward 741 ;
10: end parallel for
11: end for
12- R _ 0 for terminal s;
. tmax+1 V (Styax+1;0)  for non-terminal s¢
13: for t = tmax down to 1 do
14: Rt =7r:+ ")/Rt_|_1
15: end for
16:  df = — tmam Sore Stimar(Ry; — v,i) Ve log m(as,i|sei;0) + BVeH (7 (se,t;0))
17 df, = +— tmw z ztmw 0, (Ri.i — V(s1.4:60,))°

18: Update 6 using df and 0, using d@v.
19: NFN"’netma,x
20: until N > Noaq
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Game Gorila A3C FF GA3C PAAC archy;ps PAAC archpauyre

Amidar 1189.70 263.9 218 701.8 1348.3
Centipede 8432.30 3755.8 7386 5747.32 7368.1
Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0
Boxing 94.9 59.8 92 99.6 99.8
Breakout 402.2 681.9 N/A 470.1 565.3
Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0
Name This Game 6182.16 10476.1 5643 9743.7 14068.0
Pong 18.3 5.6 18 20.6 20.9
Qbert 10815.6 15148.8  14966.0 16561.7 17249.2
Seaquest 13169.06 2355.4 1706 1754.0 1755.3
Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8
Up n Down 12561.58 74705.7 8623 88105.3 100523.3
Training 4d CPU cluster  4d CPU 1d GPU 12h GPU 15h GPU

The authors use 8 workers, ne = 32 parallel environments, 5-step returns, v = 0.99, € = 0.1,
B = 0.01 and a learning rate of a = 0.0007 - n, = 0.0224.

The archy;,s is from A3C: 16 filters 8 x 8 stride 4, 32 filters 4 X 4 stride 2, a dense layer with
256 units. The archpature is from DQN: 32 filters 8 X 8 stride 4, 64 filters 4 X 4 stride 2, 64
filters 3 X 3 stride 1 and 512-unit fully connected layer. All nonlinearities are RelU.
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Parallel Advantage Actor Critic et
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Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

(N[ 2 B VYR NI TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 28/30



Parallel Advantage Actor Critic
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Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
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Figure 2 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

BN
(=)

w
o

Percent of runtime
B
(e}

Percent of runtime
at D
o o

DO
(=)
e
=)

—_
o

REINFORCE Baseline Actor-Critic A3C PAAC

30/30



