NPFL122, Lecture 6 Uz

Policy Gradient Methods

Milan Straka

m November 08, 2021

a N Charles University in Prague @ (7) (0
L EUROPEAN UNION Faculty of Mathematics and Physics ——
European Structural and Investment Fund

ol Proorartms Recears Institute of Formal and Applied Linguistics .
LAN GTECH gzveI;pmeln}tDangd Educatir\:an " pp g UnleSS Othel’Wlse Stated

Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).

Policy Gradient Methods 2/30

In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

1.6

-0

1

20k optir'nal
stochastic

policy

-40
£-greedy right
J(0) = vry (S)
_60 L
S.l=—|6
80 { e-greedy left
-100 _I 1 1 1 1 1

0 0.1 0.2 0?3 OT4 Of5 076 0?7 0.8 0.9 1
probability of right action

Policy Gradient Methods 3/30

Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the

def

on-policy distribution under 7 as u(s). Let also J(0) = E; v (s).
Then

Vv (s) ZP(S —...— 8| Zqﬂ(S’,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps. The v parameter should be treated as a form of termination,
e, P(s— ... = &|m) oc Y ooy v"P(s — ' in k steps |7).

Policy Gradient Methods 4/30

Vor(s) = V| Y w(als; 0)a(s,)

=" |Vnlals; 0)an(s,) + m(als; 6)Var (s, a)]

a L

_ :VT('(CL s: 9) ()—|‘7T CL|S 0 Z p {S CL —|—’)/’U7r(3’)))]
_ _Vﬂ(a $;0)q:(s,a) + ym(als;) ZS,Z? S ‘S,a)va(s’))]

a L

)

We now expand v, (s').
=", |Vn(als:0)g-(s,a) + yr(als;0)(3, pls'|s,a)
> |Vl 0)an(sa) +n(@ls0) (Y p(s"|s',a)Ven(s) |))]
Continuing to expand all v (s"), we obtain the following:

V(s ZZykP s — s in k steps |m) z:q7r (s',a)Vem(als'; 0).

s'eS k=0 acA
Policy Gradient Methods 5/30

To finish the proof of the first part, recall that
oo
Z’ykP(s — s in k steps |7) o< P(s — ... — §'|m).
k=0

For the second part, we know that

VoJ(0) = By Vour(s) x Egon Y P(s— ... = 8'|m) > g:(s',a)Vor(als';),
s'eS acA

therefore using the fact that p(s') = E, ., P(s — ... — §'|m) we get

VoJ(0) < Y u(s) > gx(s,a)Ver(als;0).

seS acA

Policy Gradient Methods 6/30

The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing —J (@) = —E,_,v.(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es) Eorgr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).

REINFORCE 7/30

REINFORCE Algorithm Uzt

REINFORCE therefore minimizes the loss —J(0) with gradient
EswyEoorgr(s,a)Ve —Inm(als; 0),

where we estimate the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for T,

Input: a differentiable policy parameterization m(al|s, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,...,S7_1, Ar_1, R, following 7(:|-,)
Loop for each step of the episode t =0,1,...,T — 1:
G Y1 VT Ry (Gy)
00+ oaGVinrm(AS:,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing y"t from the update of 6.

(N[2 VYR BTl TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 8/30

In the proof, we assumed y is used as a form of termination in the definition of the on-policy
distribution.

However, even when discounting is used during training (to guarantee convergence even for very
long episodes), evaluation is often performed without discounting.
Consequently, the distribution p used in the REINFORCE algorithm is almost always the

unterminated (undiscounted) on-policy distribution (I am not aware of any implementation or
paper that would use it), so that we learn even in states that are far from the beginning of an
episode.

Note that this is actually true even for DQN and its variants. Therefore, the discounting
parameter 7y is used mostly as a variance-reduction technique.

REINFORCE

9/30

The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s)) Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 0) = b(s ngn (as; 0) = b(s) VQZW (a|s; @) = b(s)V1 = 0.

Baseline

10/30

A good choice for b(s) is v (s), which can be shown to minimize the variance of the gradient
estimate (in limit v — 1; see L. Weaver and N. Tao, The Optimal Reward Baseline for

Gradient-Based Reinforcement Learning for the proof). Such baseline reminds centering of
returns, given that

Vr(8) = Egorgr (s, a).

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (8, a) — v;(s) function is also called the advantage function

CI,W(S, CI,) = QW(Sa CL) — UW(S)'

Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value
function estimation, which is trained using mean square error of the predicted and observed
return.

Baseline 11/30

https://arxiv.org/abs/1301.2315

REINFORCE with Baseline Uz

REINFORCE with Baseline (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization 7(als,)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a% > 0

Initialize policy parameter 6 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7-1, Ar_1, R, following 7(:|-,)
Loop for each step of the episode t =0,1,...,1T — 1:
G ZZ:tJrl Y Ry, (Gt)
d < G — 0(S,w)
W W+ aV Vo (S,w)
00+ a% Vinm(AS:,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y"t from the update of 6.

(N[2 VYR BTl TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 12/30

REINFORCE with Baseline Ut
10 REINFORCE with baseline of =27° o%¥ =27°

iy ¥ % i T WM#’M«W%‘f%a'l\v'i'*vi'iﬂ'nim T TR A ‘—U*(30>
_20 B I |
REINFORCE
| — 2—13
Go 40 “
Total reward
on episode
averaged over 100 runs
_60 L
_80 -
_90 B | | | | | |
1 200 400 600 800 1000
Episode

Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".

(N[2 B Py R NI TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 13/30

It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called the actor-critic methods.

The idea is straightforward — instead of estimating the episode return using the whole episode
rewards, we can use m-step temporal difference estimation.

14/30

Actor-Critic

Actor-Critic UL

One-step Actor—Critic (episodic), for estimating mg ~ .,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 6 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A ~m(:|5,0)
Take action A, observe S/, R
d « R+ ~v0(S",w) — 0(S,w) (if S’ is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 0+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.

(N[2 B VYRR BT TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 15/30

The A3C was introduced in a 2016 paper from Volodymyr Mnih et al. (the same group as
DQN) Asynchronous Methods for Deep Reinforcement Learning.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.

The authors also introduce entropy regularization term —BH (7 (s; @)) to the loss to support
exploration and discourage premature convergence (they use 8 = 0.01).

A3C 16/30

https://arxiv.org/abs/1602.01783

Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T' = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 6~ <+ 0

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r

[for terminal s’
Y71 r+ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < db + 8(9’_@52’“’9))
/
s=s

T+ T+ 1landt <+ t+1

if ' mod Itarget == (0 then
Update the target network 6~ < 6

end if

ift mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of 6 using d#.
Clear gradients df < O.

end if

until 7" > Th oz

Algorithm 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

NPFL122, Lecture 6 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC

17/30

Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector 6.
// Assume global shared target parameter vector 0~ .
// Assume global shared counter T’ = (.
Initialize thread step counter ¢ <— 1
Initialize target network parameters 6~ <« 0
Initialize thread-specific parameters ' = 6
Initialize network gradients df <— 0
repeat

Clear gradients df <— 0

Synchronize thread-specific parameters 6’ = 0

tstart =t
Get state s¢
repeat

Take action a; according to the e-greedy policy based on Q(s¢, a; 0")
Receive reward r; and new state S¢1

t—t+1
T+T+1
until terminal s; or ¢ — tstart == tmax
R = 0 for terminal s¢
| maxe Q(st,a;07) for non-terminal s;
for: € {t — 1, . ,tsta,rt} do
R+ ri+~vR

8(R—Q(s1,ai30"))*
a6’

Accumulate gradients wrt 6: df < df +
end for
Perform asynchronous update of 6 using df.
if ' mod Itarget == (0 then
0~ 0
end if
until 77 > Taz

Algorithm S2 of the paper "Asynchronous Methods for Deep Reinforcement Learning” by Volodymyr Mnih et al.

NPFL122, Lecture 6 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC

18/30

Asynchronous Methods for Deep RL

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0, and global shared counter T' = 0
// Assume thread-specific parameter vectors 0’ and 0.,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters ' = 0 and 0;, = 0,

tstart =1
Get state s;
repeat

Perform a; according to policy m(az|s¢;6")
Receive reward 7; and new state s;41

t—t+1
T+ T+1
until terminal s; or t — tstart == tmax
R = { 0 for terminal s¢
T Vs, 0y) for non-terminal s;// Bootstrap from last state
for: ¢ {t — 1, e ,tstart} do
R+ nri+vR

Accumulate gradients wrt 0": d < df + V/ log 7(ai|si; 0") (R — V(s4;65,))
Accumulate gradients wrt 0.,: df, < df, + 0 (R — V(s:;0.,))* /00,
end for
Perform asynchronous update of 6 using df and of 6,, using df,,.
until 7" > Tax

Algorithm S3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

NPFL122, Lecture 6 Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC

19/30

All methods performed updates every 5 actions (fmax = IAsyncUpdate = D), updating the target
network each 40 000 frames.
The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU non-linearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of v = 0.99 and used RMSProp with momentum decay
factor of 0.99.

A3C 20/30

—
Asynchronous Methods for Deep RL L
16000 Beamrider 600 Breakout 30 Pong 12000 Q*bert 1600 Space Invaders
— DQN — DQN — DQN — DQN
14000 — 1-stepQ 500 — l-stepQ 20 0000 — l-stepQ 1400 — 1-stepQ
12000 1-step SARSA — 1-step SARSA — 1-step SARSA 1200 1-step SARSA
—— n-step Q —— n-step Q —— n-step Q —— n-step Q
10000 A3C // 400 A3C 10 8000 A3C 1000 A3C
% 8000 E 300 3 0 6000 g 800
2] (7] (7] (7]
6000 4 200 -10 — DON 4000 600
4000 / — 1:2::2 SARSA /—/ 400 /
100 —-20 . 2000
2000 — n-step Q 200
A3C /
0O 2 4 6 8 10 12 14 00 2 4 6 8 10 12 14 _300 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours) Training time (hours) Training time (hours) Training time (hours)
Figure 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
| Method | Training Time | Mean | Median | Number of threads
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3% Method 1 2 4 8 16
D-DQN 8 dayson GPU | 332.9% | 110.9% I-step Q 10130 63 | 133 | 24.1
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6% 1-step SARSA | 1.0 | 2.8 | 5.9 | 13.1 | 22.1
igg’ IEIE 41 (fa.‘/ on %1;% 2‘9“6‘%? 16186260{; n-step Q 1.0 { 2.7 | 59 | 10.7 | 17.2
, ays on 8% 6%
A3C,LSTM 4 days on CPU 623.0% | 112.6% A3C 1.0 21 | 37| 69 12.5
Table 1 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Table 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning” by Volodymyr
Mnih et al. Mnih et al.
(N[2 VYR BTl TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 21/30

Asynchronous Methods for Deep RL

10000 Beamrider 350

1-step Q, 1 threads
1-step Q, 2 threads

1-step Q, 4 threads 300
8000 1-step Q, 8 threads
1-step Q, 16 threads
250
6000
© © 200
s S
& &
4000 150
100
2000
0
0 10 20 30 40
Training epochs
12000 Beamrider 350
— n-step Q, 1 threads
— n-step Q, 2 threads
—— n-step Q, 4 threads 300
10000\ ciep o 8 threads
n-step Q, 16 threads
250
8000
© o 200
g 6000 §
150
4000
100
2000
0
0 10 20 30 40
Training epochs
16000 Beamrider 800
— A3C, 1 threads
— A3C, 2 threads
14000 __ a3c 4 threads 700
—— A3C, 8 threads
12000 A3C, 16 threads | 600
10000 500
L o
S 8000 S 400
@ @
6000 300
4000 200
2000 / 100
0
0 10 20 30 40

Trainina epochs

NPFL122, Lecture 6

Policy Gradient Methods

Breakout

1-step Q, 1 threads
1-step Q, 2 threads

1-step Q, 4 threads

1-step Q, 8 threads A
1-step Q, 16 threads

20 30 40
Training epochs

Breakout

n-step Q, 1 threads
n-step Q, 2 threads
n-step Q, 4 threads
n-step Q, 8 threads

-step Q, 16 thread /
n-step Q. reads \ /

v

20 30 40
Training epochs

Breakout
— A3C, 1 threads
— A3C, 2 threads
— A3C, 4 threads
—— A3C, 8 threads
A3C, 16 threads

%Ag X “V&

10 20 30 40
Trainina epochs

REINFORCE

Score

Score

Score

20 Pong

4500
15 4000
10 3500
5 3000
0 o 2500
S
S
=5 ¥ 2000
-10 1500
_ — 1-step Q, 1 threads
1 — 1step Q, 2 threads 1000
— 1-step Q, 4 threads
-20 — 1step Q, 8 threads 500
1-step Q, 16 threads
=25 0
0 10 20 30 40
Training epochs
20 Pong 6000
15
5000
10
5 4000
0 2
S 3000
-5 [l
-10 2000
_1s5 — n-step Q, 1 threads
— n-step Q, 2 threads 1000
— n-step Q, 4 threads
-20 — n-step Q, 8 threads
n-step Q, 16 threads
=25 0
10 20 30 40
Training epochs
30 Pong 12000
20 10000
10 8000
o
0 S 6000
@
-10 4000
— A3C, 1 threads
— A3C, 2 threads
-20 — A3C, 4 threads 2000
—— A3C, 8 threads
A3C, 16 threads
=30 0
0 10 20 30 40

Trainina epochs

Baseline Actor-Critic

Q*bert

1-step Q, 1 threads
1-step Q, 2 threads
1-step Q, 4 threads
1-step Q, 8 threads
1-step Q, 16 threads

10 20 30 40
Training epochs

Q*bert
n-step Q, 1 threads
n-step Q, 2 threads
n-step Q, 4 threads
n-step Q, 8 threads
n-step Q, 16 threads

10 20 30 40
Training epochs

Q*bert
— A3C, 1 threads
— A3C, 2 threads
— A3C, 4 threads
— A3C, 8 threads
A3C, 16 threads

10 20 30 40
Trainina ebochs

Figure 3 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

A3C PAAC

Score

Score

Score

800 Space Invaders

700
600
500
400
300
— 1-step Q, 1 threads
— 1-step Q, 2 threads
200 — 1-step Q, 4 threads
—— 1-step Q, 8 threads
1-step Q, 16 threads
100
10 20 30 40
Training epochs
800 Space Invaders
PAY
700 VAL BN
600
500
400
300
— n-step Q, 1 threads
— n-step Q, 2 threads
200 — n-step Q, 4 threads
~— n-step Q, 8 threads
n-step Q, 16 threads
100
10 20 30 40
Training epochs
1400 Space Invaders

—— A3C, 1 threads
—— A3C, 2 threads
1200 — A3C, 4 threads
—— A3C, 8 threads
A3C, 16 threads
1000

0 10 20 30 40
Trainina eochs

22/30

Asynchronous M

1-step Q, 1 threads

1-step Q, 4 threads
1-step Q, 8 threads
1-step Q, 16 threads

8000 — l-stepQ, 2 threads

Beamrider 300
— 1-step Q, 1 threads
— 1-step Q, 2 threads
250 — 1-step Q, 4 threads

1-step Q, 8 threads
1-step Q, 16 threads

Breakout

8 10 12 14

Training time (hours)

Breakout

8 10 12 14

Training time (hours)

Breakout

6000 200
© 5000 o
S S 150
¥ 4000 v
3000 100
2000
50
1000
0 0
0 2 4 6 8 10 12 14 0 2 4 6
Training time (hours)
12000 Beamrider 350
— n-step Q, 1 threads — n-step Q, 1 threads
— n-step Q, 2 threads — n-step Q, 2 threads
10000 — M-step Q. 4 threads 300 — n-step Q, 4 threads
—— n-step Q, 8 threads —— n-step Q, 8 threads
n-step Q, 16 threads n-step Q, 16 threads
250
8000
© © 200
§ 6000 E
150
4000
100
2000 50
0 0
0 2 4 6 8 10 12 14 0 2 4 6
Training time (hours)
16000 Beamrider 600
— A3C, 1 threads — A3C, 1 threads
— A3C, 2 threads — A3C, 2 threads
14000 __ a3c, 4 threads 500 — A3C, 4 threads
—— A3C, 8 threads —— A3C, 8 threads
12000 A3C, 16 threads A3C, 16 threads
400
10000
g <
S 8000 S 300
@ @
6000
200
4000
100
2000
0 0
0 2 4 10 12 14 0 2 4 6

NPFL122, Lecture 6

Training time (hours)

Policy Gradient Methods

8 10 12 14

Training time (hours)

REINFORCE

Score

Score

Score

ethods for Deep RL

Pong

20 4000
— 1-step Q, 1 threads
15 — LstepQ, 2 threads
S o 3500
—— 1-step Q, 8 threads
10 1-step Q, 16 threads 3000
5
2500
0 g
S 2000
_s 3
1500
-10
s 1000
-20 500
=25 0
2 4 6 8 10 12 14
Training time (hours)
20 Pong 4500
4000
3500
3000
o 2500
S
3
¥ 2000
1500
1000

— n-step Q, 4 threads
~—— n-step Q, 8 threads
n-step Q, 16 threads

500

2 4 6 8 10 12 14
Training time (hours)

30 Pong 12000
—— A3C, 1 threads
—— A3C, 2 threads
—— A3C, 4 threads
20 A3C, 8 threads. 10000
A3C, 16 threads
10 8000
<
0 S 6000
3
10 4000
-20 2000
-30 o
o 2 4 6 8 10 12 14

Training time (hours)

Figure 4 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.

Baseline Actor-Critic

Q*bert

1-step Q, 1 threads
1-step Q, 2 threads
1-step Q, 4 threads
1-step Q, 8 threads

1-step Q, 16 threads

2 4 6 8
Training time (hours)

Q*bert

n-step Q, 1 threads

n-step Q, 4 threads

— n-step Q, 2 threads

n-step Q, 8 threads
n-step Q, 16 threads

2 4

10 12

10 12

Training time (hours)

—— A3C, 1 threads
—— A3C, 2 threads
—— A3C, 4 threads
~— A3C, 8 threads
A3C, 16 threads

Score

14

Score

14

Score

2 4

6 8
Q*bert
6 8

10 12

Training time (hours)

A3C

PAAC

14

Space Invaders

800
— 1-step Q, 1 threads
—— 1-step Q, 2 threads
700 — 1-step Q, 4 threads
~—— 1-step Q, 8 threads
1-step Q, 16 threads
600
500
400
300
200
100
0 2 4 6 8 10 12 14
Training time (hours)
800 Space Invaders
— n-step Q, 1 threads
— n-step Q, 2 threads
700 — n-step Q, 4 threads.

n-step Q, 8 threads
n-step Q, 16 thre:

2 4 6 8 10 12 14
Training time (hours)

Space Invaders

1600
—— A3C, 1 threads
—— A3C, 2 threads
1400 __ A3C, 4 threads
~— A3C, 8 threads
1200 A3C, 16 threads
1000
800
600
400
200
0

o 2 4 6 8 10 12 14
Training time (hours)

23/30

Asynchronous Methods for Deep RL

A3C, Beamrider A3C, Breakout A3C, Pong A3C, Q*bert A3C, Space Invaders

16000 1000 30 12000 1400
14000 . w00 o 2 I A 10000 Jor 1200 -
12000 o d . . q N .
Hi ee ® 8000 A 1000
10000 W e 600 10 e ¢
o 8000 : @ ML o ! o 0090 ; p 800 RPRRE
] S 400 RRE fet e o, S 0 .° S - o S feld o° LI
A 6000 . o w, @ . @ “ 4000 - “ 600 g . 2
@ o . ° & ° ala © oo ® s
4000 i A) 200 ~10 - ! 1 . i
° e H 5 - e 2000 = ? 400 . -
2000 oot e . o Lo | o YR T o .
. e | 0 ewose so oao -20 @ cme aoa 0 eo e 200 ° g
—2000 -200 -30 —2000 0
10 102 102 10 102 102 10 102 10? 10 102 107 10" 10° 107
Learnina rate Learnina rate Learnina rate Learnina rate Learnina rate
Figure 2 of the paper "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
(V[o4 o I 2 0 Tl ATTC-WM Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 24/30

An alternative to independent workers is to train in a synchronous and centralized way by
having the workes to only generate episodes. Such approach was described in May 2017 by
Clemente et al., who named their agent parallel advantage actor-critic (PAAC).

[
O O |
w w States | DNN
p-————]
s
Worker 0 Worker nw (learn)
| | \ - _ /
Environments A
Y VvV VY A
Targets
PAAC

25/30

https://arxiv.org/abs/1705.04862

Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights 6, 6,
2: Instantiate set e of n. environments
3: repeat

4: fort = 1to t,nax do
5: Sample a; from 7(a:|s¢; 6)
6: Calculate v, from V' (s¢; 6,)
7 parallel for : = 1 to n. do
8: Perform action a; ; in environment e;
9: Observe new state s¢1,; and reward 741 ;
10: end parallel for
11: end for
12- R _ 0 for terminal s;
. tmax+1 V (Styax+1;0) for non-terminal s¢
13: for t = tmax down to 1 do
14: Rt =7r:+ ")/Rt_|_1
15: end for
16: df = — tmam Sore Stimar(Ry; — v,i) Ve log m(as,i|sei;0) + BVeH (7 (se,t;0))
17 df, = +— tmw z ztmw 0, (Ri.i — V(s1.4:60,))°

18: Update 6 using df and 0, using d@v.
19: NFN"’netma,x
20: until N > Noaq

PAAC 26/30

Game Gorila A3C FF GA3C PAAC archy;ps PAAC archpauyre

Amidar 1189.70 263.9 218 701.8 1348.3
Centipede 8432.30 3755.8 7386 5747.32 7368.1
Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0
Boxing 94.9 59.8 92 99.6 99.8
Breakout 402.2 681.9 N/A 470.1 565.3
Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0
Name This Game 6182.16 10476.1 5643 9743.7 14068.0
Pong 18.3 5.6 18 20.6 20.9
Qbert 10815.6 15148.8 14966.0 16561.7 17249.2
Seaquest 13169.06 2355.4 1706 1754.0 1755.3
Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8
Up n Down 12561.58 74705.7 8623 88105.3 100523.3
Training 4d CPU cluster 4d CPU 1d GPU 12h GPU 15h GPU

The authors use 8 workers, ne = 32 parallel environments, 5-step returns, v = 0.99, € = 0.1,
B = 0.01 and a learning rate of a = 0.0007 - n, = 0.0224.

The archy;,s is from A3C: 16 filters 8 x 8 stride 4, 32 filters 4 X 4 stride 2, a dense layer with
256 units. The archpature is from DQN: 32 filters 8 X 8 stride 4, 64 filters 4 X 4 stride 2, 64
filters 3 X 3 stride 1 and 512-unit fully connected layer. All nonlinearities are RelU.

Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 27/30

Parallel Advantage Actor Critic et

Beam Rider 100 Boxing Breakout
3500 —— n.=16
3000 80 ne=32
2500} 60 P
° ° n.=128
5 2000 8 L
3 & 4l — n.=256
15007
1000} 20
5001
0 1 2 3 4 5 6 7 8 0 100 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Timestep x107 Training Epochs Training Epochs
‘ __ Pong ‘ ‘ ‘ ‘ _ QBert_ ‘ ‘ Space Invaders ‘ ‘
20 7/—'; - —— n.=16 /
15000 ne=32 //_/] 800 —
10 — n=16 ne=64
n.=32 - 600
2 N £ 10000} n.=128 2 n.=16
) 0 ne—64 g 1S} _ Q
S 3 — n.=256 A n.=392
n.=128 400 +—
10 — n.=256 | 5000} —] n.=64
| /—/ 200 =l |
— n.=256
—20 1 o |
0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 6 7 8
Training Epochs Training Epochs Timestep x 107

Figure 3 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

(N[2 B VYR NI TN Policy Gradient Methods REINFORCE Baseline Actor-Critic A3C PAAC 28/30

Parallel Advantage Actor Critic

Beam Rider

3500¢
3000¢
25001

]
g 2000t

Q

n
1500+
1000
500¢

0 2 4 6 8 10 12 14
Time (hours)

Pong

Score

o 1 2 3 4 5 6 71
Time (hours)

NPFL122, Lecture 6 Policy Gradient Methods

—

100 Boxing Breakout

80

60
g
3
@R 40}

20

0 ‘ 1 T) S S —
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
Time (hours) Time (hours)
QBert Space Invaders
15000 800
600
£ 100001 2 n.=16
3 2 32
n =

“ 400 e

5000 n.=64

200 n.=128 |
v, — n,=256 — n.=256
0]
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
Time (hours) Time (hours)
Figure 4 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

REINFORCE Baseline Actor-Critic A3C PAAC 29/30

Parallel Advantage Actor Critic VR

4500 ‘ _ Efficiency

4000
= 3500
2 3000 —— archys GPU
& archygire GPU
2.2500]
2 archy,s CPU
_qé 2000 — archpgure CPU
B 1500

1000+

500

0 100 200 300 400 500 600
Environment Count (n.)

NPFL122, Lecture 6 Policy Gradient Methods

_ Environment Interaction Model Interaction

-
=

e
o

D
(=)
[0s]
[a=)

ot
(=)

archpgture GPU |
archyi,s GPU
archpgture CPU |
archy,s CPU

archpgture GPU |
archyy,s GPU
archygture CPU |

K — archy,s CPU
30

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Environment Count (n.) Environment Count (7.)
Figure 2 of the paper "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.

BN
(=)

w
o

Percent of runtime
B
(e}

Percent of runtime
at D
o o

DO
(=)
e
=)

—_
o

REINFORCE Baseline Actor-Critic A3C PAAC

30/30

